Download citation
Download citation
link to html
The crystal structures of the isomorphous title compounds, namely potassium zinc hydrogen pyrophosphate dihydrate and potassium manganese hydrogen pyrophosphate dihydrate, consist of acidic pyrophosphate-metallate(II) layers joined by K+ ions and hydrogen-bridging bonds. The Zn2+/Mn2+ ions are octahedrally surrounded by four pyrophosphate O atoms and by two water mol­ecules. The (HP2O7)3- anions exhibit eclipsed conformations. The metal ions and water O atoms lie on mirror planes, as does the central O atom of the (HP2O7)3- anion.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102007394/br1366sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102007394/br1366Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102007394/br1366IIsup3.hkl
Contains datablock II

Comment top

Compared to anhydrous diphosphates (El Bali et al., 2001, and references therein), little information is available in the literature concerning the crystal structures of acidic metal diphosphates and hydrated metal diphosphates. Structural data have only been reported for the following compounds: CaNH4HP2O7 (Mathew & Schroeder, 1977), Cr(NH3)4HP2O7·2H2O (Haromy et al., 1984), K3Cu2[(P2O7)(HP2O7)] (Effenberger, 1987), Ca2KH3(P2O7)2·2H2O (Mathew et al., 1993) and Cr(HP2O7)(NH3)3 (Haromy et al., 1999). The biological applications of acidic metal diphosphates are well known, viz. their role in some enzyme-catalyzed reaction processes (Haromy et al., 1984) and their use as inhibitors in the formation and dissolution of apatite crystals in vitro (Mathew et al., 1993). The title compounds, KHZnP2O7·2H2O, (I), and KHMnP2O7·2H2O, (II), are isotypic. The octahedral coordination around the Mn/Zn atoms and the pyrophosphate groups in (I) and (II) are shown in Fig. 1, together with the atom-numbering schemes. The three-dimensional structure is built from acidic pyrophosphate–metallate(II) [M = Zn in (I) and Mn in (II)] layers stacked along the c axis (Fig. 2), alternating with layers of K+ cations. The Zn2+/Mn2+ ions are octahedrally surrounded by four O atoms from three different pyrophosphate anions, and by two water molecules. The angle between the plane through water molecule OW5 and the M2+—OW5 bond is about 141.8° (143.3°), while the corresponding angle involving OW6 is significantly smaller, ϕ = 107.8° (108.6°) [items in parentheses are for the manganese compound, (II)]. We attribute these quite different values to differences in the hydrogen-bridging bonds from H5W (H6W) to O2 (O4) of the diphosphate anions, which basically result from a slightly longer O5W—O2 distance of ~2.83 Å compared to O6W—O4 of ~2.67 Å. Apparently, the coordination mode of water to a transition metal ion, expressed by the angle between the plane through the water molecule and the M2+—OH2 bond, is quite flexible.

The powder reflectance spectrum of KHMnP2O7·2H2O, (II) (Fig. 3a), shows the spin-forbidden absorption bands typically found for Mn2+. The transitions 6A1 g 4T1 g, 6A1 g 4T2 g, 6A1 g (4Eg,4A1 g) and 6A1 g 4T2 g(D) can be recognized. Thus, the spectrum provides, in addition to the X-ray study, clear evidence for a manganese(II) hydrogen pyrophosphate instead of a manganese(III) compound. The band positions are similar to those found for anhydrous manganese(II) phosphates, such as Mn2P2O7, Mn2P4O12 and Mn2Si(P2O7)2 (Glaum et al., 2002), and for the hexaqua complex of Mn2+ (Figgis & Hitchman, 2000). The Raman spectrum of (II) (Fig. 3 b) is in agreement with the different P—O bond distances found in the pyrophosphate anions (Table 2). We attribute the strong emission at ν = 1015 cm-1 to the symmetric stretching vibration of the external PO3 groups, while the weaker signals at ν = 1123 and 1183 cm-1 most likely belong to asymmetric stretches of the external PO3 groups (Rulmont et al., 1991). The signal at 787 cm-1 might be assigned to the symmetric stretch of the P—O—P bridge.

Experimental top

The title compounds were obtained by mixing equimolar quantities of K4P2O7 and ZnCl2·4H2O [or MnCl2·4H2O in the case of (II)] in a few ml of concentrated HCl. The former reactant was obtained by heating K2HPO4 at 873 K for 6 h. From the solution left at room temperature, well shaped colourless [or rose coloured in the case of (II)] crystals with edge-lengths up to 1 mm were deposited after 2–3 d.

Refinement top

All H atoms were located from difference Fourier maps. Within the limits of the method, the positions of the H atoms were refined allowing for isotropic displacement parameters. A split position with half-occupancy (around a center of inversion) was introduced for the acid H2 atom. Attempts to resolve this splitting in non-centrosymmetric subgroups of Pnma did not lead to an improved refinement.

Computing details top

Data collection: XSCANS (Siemens, 1996) for (I); CAD-4 EXPRESS (Enraf-Nonius, 1994) for (II). Cell refinement: XSCANS for (I); CAD-4 EXPRESS for (II). Data reduction: SHELXTL (Siemens, 1991) for (I); XCAD4 (Harms & Wocadlo, 1995) for (II). Program(s) used to solve structure: SHELXTL for (I); SHELXS97 (Sheldrick, 1997) for (II). Program(s) used to refine structure: SHELXTL for (I); SHELXL97 (Sheldrick, 1997) for (II). Molecular graphics: SHELXTL for (I); ATOMS (Dowty, 1998) for (II). Software used to prepare material for publication: SHELXTL for (I).

Figures top
[Figure 1] Fig. 1. View of the [MO4(H2O)2]2+ coordination polyhedra for (a) M = Zn and (b) M = Mn, and the pyrophosphate groups for (c) M = Zn and (d) M = Mn in KMHP2O7·2H2O. Ellipsoids are shown at the 75% probability level.
[Figure 2] Fig. 2. Projections of the crystal structure of KHMP2O7·2H2O (M = Zn, Mn) (a) along the b axis and (b) along the c axis, with schematic coordination polyhedra. Key: dark grey polyhedra = [MO6], light grey polyhedra = [P2O7] groups, large grey circles = K+ ions, small black circles = H+ ions, O—H bonds are bold black bonds and hydrogen-bridging bonds are thin lines.
[Figure 3] Fig. 3. (a) Powder reflectance spectrum and (b) the Raman spectrum for KHMnP2O7·2H2O. Assignement of the electronic transitions in (a): (I) 6A1 g 4T1 g, (II) 6A1 g 4T2 g, (III) 6A1 g (4Eg,4A1 g), (IV) 6A1 g 4T2 g(D).
(I) potassium zinc hydrogen pyrophosphate dihydrate top
Crystal data top
KZn(HP2O7)(H2O)2Dx = 2.677 Mg m3
Mr = 315.45Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PnmaCell parameters from 40 reflections
a = 15.4727 (12) Åθ = 5.3–17.5°
b = 7.7820 (9) ŵ = 4.10 mm1
c = 6.5009 (7) ÅT = 293 K
V = 782.76 (14) Å3Prismatic, colourless
Z = 40.4 × 0.4 × 0.3 mm
F(000) = 624
Data collection top
Bruker P4
diffractometer
692 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.025
Graphite monochromatorθmax = 25.0°, θmin = 2.6°
2θ/ω scansh = 118
Absorption correction: ψ scan
(North et al., 1968)
k = 91
Tmin = 0.589, Tmax = 0.986l = 17
1080 measured reflections3 standard reflections every 97 reflections
738 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025All H-atom parameters refined
wR(F2) = 0.066 w = 1/[σ2(Fo2) + (0.0335P)2 + 0.9013P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max = 0.001
738 reflectionsΔρmax = 0.43 e Å3
77 parametersΔρmin = 0.38 e Å3
0 restraintsExtinction correction: SHELXTL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0275 (18)
Crystal data top
KZn(HP2O7)(H2O)2V = 782.76 (14) Å3
Mr = 315.45Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 15.4727 (12) ŵ = 4.10 mm1
b = 7.7820 (9) ÅT = 293 K
c = 6.5009 (7) Å0.4 × 0.4 × 0.3 mm
Data collection top
Bruker P4
diffractometer
692 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.025
Tmin = 0.589, Tmax = 0.9863 standard reflections every 97 reflections
1080 measured reflections intensity decay: none
738 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.066All H-atom parameters refined
S = 1.11Δρmax = 0.43 e Å3
738 reflectionsΔρmin = 0.38 e Å3
77 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.69589 (3)0.25000.56130 (7)0.0102 (2)
K10.96483 (6)0.25000.11827 (15)0.0195 (3)
P10.86388 (5)0.06111 (9)0.36065 (11)0.0088 (2)
O10.88760 (19)0.25000.2742 (5)0.0124 (6)
O20.92463 (13)0.0311 (3)0.5454 (3)0.0148 (5)
H20.97170.00060.49440.02 (2)*0.50
O30.88466 (13)0.0567 (3)0.1842 (3)0.0141 (5)
O40.77097 (13)0.0615 (3)0.4290 (3)0.0140 (5)
O5W0.8937 (2)0.25000.8113 (5)0.0173 (7)
H5W0.895 (3)0.158 (6)0.733 (7)0.041 (12)*
O6W0.7156 (2)0.25000.3182 (5)0.0158 (7)
H6W0.734 (3)0.168 (6)0.386 (7)0.045 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0093 (3)0.0096 (3)0.0117 (3)0.0000.00099 (19)0.000
K10.0153 (5)0.0267 (6)0.0165 (5)0.0000.0003 (4)0.000
P10.0087 (4)0.0076 (4)0.0101 (4)0.0001 (3)0.0008 (3)0.0023 (3)
O10.0161 (15)0.0079 (14)0.0131 (14)0.0000.0050 (12)0.000
O20.0131 (11)0.0194 (11)0.0120 (11)0.0023 (9)0.0017 (9)0.0015 (9)
O30.0115 (10)0.0139 (10)0.0170 (11)0.0003 (8)0.0007 (9)0.0053 (9)
O40.0095 (11)0.0117 (10)0.0208 (12)0.0011 (9)0.0024 (9)0.0048 (9)
O5W0.0237 (17)0.0164 (15)0.0118 (15)0.0000.0053 (14)0.000
O6W0.0179 (16)0.0121 (15)0.0173 (17)0.0000.0037 (14)0.000
Geometric parameters (Å, º) top
Zn1—O4i2.059 (2)K1—Zn1xi3.5942 (11)
Zn1—O42.059 (2)K1—P13.7807 (12)
Zn1—O3ii2.111 (2)K1—P1i3.7807 (12)
Zn1—O3iii2.111 (2)P1—O31.503 (2)
Zn1—O5Wiv2.136 (3)P1—O41.505 (2)
Zn1—O6Wii2.160 (3)P1—O21.543 (2)
Zn1—K1v3.5942 (11)P1—O11.6160 (14)
K1—O3vi2.805 (2)O1—P1i1.6160 (14)
K1—O3vii2.805 (2)O2—K1xii2.841 (2)
K1—O12.817 (3)O3—Zn1iv2.111 (2)
K1—O6Wiv2.822 (3)O3—K1vii2.805 (2)
K1—O2viii2.841 (2)O5W—Zn1ii2.136 (3)
K1—O2ix2.841 (2)O5W—K1x2.963 (4)
K1—O5Wx2.963 (4)O6W—Zn1iv2.160 (3)
K1—O3i3.332 (2)O6W—K1ii2.822 (3)
K1—O33.332 (2)
O4i—Zn1—O490.82 (11)O5Wx—K1—O382.97 (6)
O4i—Zn1—O3ii177.29 (8)O3i—K1—O391.50 (7)
O4—Zn1—O3ii89.06 (8)O3vi—K1—Zn1xi35.91 (4)
O4i—Zn1—O3iii89.06 (8)O3vii—K1—Zn1xi35.91 (4)
O4—Zn1—O3iii177.29 (8)O1—K1—Zn1xi109.18 (7)
O3ii—Zn1—O3iii90.93 (11)O6Wiv—K1—Zn1xi177.50 (8)
O4i—Zn1—O5Wiv92.75 (9)O2viii—K1—Zn1xi107.28 (5)
O4—Zn1—O5Wiv92.75 (9)O2ix—K1—Zn1xi107.28 (5)
O3ii—Zn1—O5Wiv84.55 (9)O5Wx—K1—Zn1xi36.44 (6)
O3iii—Zn1—O5Wiv84.55 (9)O3i—K1—Zn1xi108.03 (4)
O4i—Zn1—O6Wii88.02 (9)O3—K1—Zn1xi108.03 (4)
O4—Zn1—O6Wii88.02 (9)O3vi—K1—P1132.63 (6)
O3ii—Zn1—O6Wii94.68 (9)O3vii—K1—P1105.08 (5)
O3iii—Zn1—O6Wii94.68 (9)O1—K1—P122.929 (13)
O5Wiv—Zn1—O6Wii178.90 (13)O6Wiv—K1—P173.25 (7)
O4i—Zn1—K1v127.17 (6)O2viii—K1—P1108.07 (5)
O4—Zn1—K1v127.17 (6)O2ix—K1—P1140.94 (5)
O3ii—Zn1—K1v51.22 (5)O5Wx—K1—P175.55 (6)
O3iii—Zn1—K1v51.22 (5)O3i—K1—P168.82 (4)
O5Wiv—Zn1—K1v55.47 (9)O3—K1—P123.32 (4)
O6Wii—Zn1—K1v123.43 (9)Zn1xi—K1—P1109.03 (3)
O3vi—K1—O3vii64.86 (9)O3vi—K1—P1i105.08 (5)
O3vi—K1—O1119.37 (7)O3vii—K1—P1i132.63 (6)
O3vii—K1—O1119.37 (7)O1—K1—P1i22.929 (13)
O3vi—K1—O6Wiv143.02 (6)O6Wiv—K1—P1i73.25 (7)
O3vii—K1—O6Wiv143.02 (6)O2viii—K1—P1i140.94 (5)
O1—K1—O6Wiv73.32 (10)O2ix—K1—P1i108.07 (5)
O3vi—K1—O2viii112.69 (7)O5Wx—K1—P1i75.55 (6)
O3vii—K1—O2viii75.08 (6)O3i—K1—P1i23.32 (4)
O1—K1—O2viii127.17 (6)O3—K1—P1i68.82 (4)
O6Wiv—K1—O2viii70.78 (7)Zn1xi—K1—P1i109.03 (3)
O3vi—K1—O2ix75.08 (6)P1—K1—P1i45.76 (2)
O3vii—K1—O2ix112.69 (7)O3—P1—O4115.53 (12)
O1—K1—O2ix127.17 (6)O3—P1—O2111.80 (12)
O6Wiv—K1—O2ix70.78 (7)O4—P1—O2110.65 (12)
O2viii—K1—O2ix73.70 (9)O3—P1—O1103.93 (13)
O3vi—K1—O5Wx59.30 (7)O4—P1—O1108.52 (13)
O3vii—K1—O5Wx59.30 (7)O2—P1—O1105.67 (14)
O1—K1—O5Wx72.74 (9)O3—P1—K161.33 (8)
O6Wiv—K1—O5Wx146.06 (10)O4—P1—K1129.56 (9)
O2viii—K1—O5Wx132.87 (6)O2—P1—K1116.63 (9)
O2ix—K1—O5Wx132.87 (6)O1—P1—K142.78 (10)
O3vi—K1—O3i90.86 (6)P1—O1—P1i130.91 (19)
O3vii—K1—O3i141.57 (4)P1—O1—K1114.29 (10)
O1—K1—O3i46.18 (4)P1i—O1—K1114.29 (10)
O6Wiv—K1—O3i73.62 (6)P1—O2—K1xii129.92 (12)
O2viii—K1—O3i143.35 (6)P1—O3—Zn1iv126.67 (12)
O2ix—K1—O3i86.74 (6)P1—O3—K1vii128.40 (11)
O5Wx—K1—O3i82.97 (6)Zn1iv—O3—K1vii92.87 (7)
O3vi—K1—O3141.57 (4)P1—O3—K195.35 (9)
O3vii—K1—O390.86 (6)Zn1iv—O3—K1120.46 (8)
O1—K1—O346.18 (4)K1vii—O3—K189.14 (6)
O6Wiv—K1—O373.62 (6)P1—O4—Zn1131.60 (12)
O2viii—K1—O386.74 (6)Zn1ii—O5W—K1x88.09 (11)
O2ix—K1—O3143.35 (6)Zn1iv—O6W—K1ii137.76 (15)
Symmetry codes: (i) x, y+1/2, z; (ii) x+3/2, y, z+1/2; (iii) x+3/2, y+1/2, z+1/2; (iv) x+3/2, y, z1/2; (v) x1/2, y, z+1/2; (vi) x+2, y+1/2, z; (vii) x+2, y, z; (viii) x, y, z1; (ix) x, y+1/2, z1; (x) x+2, y, z+1; (xi) x+1/2, y, z+1/2; (xii) x, y, z+1.
(II) potassium manganese(II) hydrogenpyrophosphate dihydrate top
Crystal data top
KMn(HP2O7)(H2O)2F(000) = 604
Mr = 305.02Dx = 2.508 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 21 reflections
a = 15.7186 (5) Åθ = 5.0–25.0°
b = 7.8706 (5) ŵ = 2.57 mm1
c = 6.5297 (5) ÅT = 293 K
V = 807.82 (8) Å3Prismatic, pink
Z = 40.30 × 0.30 × 0.30 mm
Data collection top
Enraf Nonius CAD-4
diffractometer
2278 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.046
Graphite monochromatorθmax = 40.0°, θmin = 2.6°
non–profiled ω scansh = 2228
Absorption correction: ψ scan
Number of ψ scan sets used was 9. Theta correction was applied. Averaged transmission function was used. No Fourier smoothing was applied 'North & al. (1968)'
k = 1414
Tmin = 0.532, Tmax = 0.602l = 1111
17404 measured reflections3 standard reflections every 60 min
2633 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: difference Fourier map
wR(F2) = 0.061All H-atom parameters refined
S = 1.06 w = 1/[σ2(Fo2) + (0.0305P)2 + 0.244P]
where P = (Fo2 + 2Fc2)/3
2633 reflections(Δ/σ)max = 0.002
79 parametersΔρmax = 0.73 e Å3
0 restraintsΔρmin = 0.46 e Å3
Crystal data top
KMn(HP2O7)(H2O)2V = 807.82 (8) Å3
Mr = 305.02Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 15.7186 (5) ŵ = 2.57 mm1
b = 7.8706 (5) ÅT = 293 K
c = 6.5297 (5) Å0.30 × 0.30 × 0.30 mm
Data collection top
Enraf Nonius CAD-4
diffractometer
2278 reflections with I > 2σ(I)
Absorption correction: ψ scan
Number of ψ scan sets used was 9. Theta correction was applied. Averaged transmission function was used. No Fourier smoothing was applied 'North & al. (1968)'
Rint = 0.046
Tmin = 0.532, Tmax = 0.6023 standard reflections every 60 min
17404 measured reflections intensity decay: none
2633 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.061All H-atom parameters refined
S = 1.06Δρmax = 0.73 e Å3
2633 reflectionsΔρmin = 0.46 e Å3
79 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
K0.96310 (2)0.25000.11760 (5)0.02138 (6)
Mn0.694614 (11)0.25000.55922 (3)0.01119 (4)
P0.866688 (13)0.06286 (3)0.36102 (3)0.01013 (5)
O10.88963 (6)0.25000.27658 (14)0.01411 (15)
O20.92618 (5)0.03270 (10)0.54532 (10)0.01680 (12)
H20.968 (2)0.008 (6)0.509 (6)0.032 (9)*0.50
O30.88784 (5)0.05244 (9)0.18429 (11)0.01651 (12)
O40.77556 (4)0.06125 (8)0.42890 (11)0.01586 (12)
O5W0.89678 (8)0.25000.80036 (17)0.02169 (19)
H5W0.8989 (13)0.174 (2)0.721 (3)0.038 (5)*
O6W0.71626 (7)0.25000.33230 (17)0.01878 (17)
H6W0.7320 (13)0.167 (2)0.390 (3)0.039 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K0.01792 (12)0.02820 (14)0.01803 (11)0.0000.00050 (9)0.000
Mn0.00991 (7)0.01041 (7)0.01323 (7)0.0000.00147 (5)0.000
P0.00958 (8)0.00877 (8)0.01204 (8)0.00040 (6)0.00046 (6)0.00204 (6)
O10.0171 (4)0.0103 (3)0.0149 (4)0.0000.0045 (3)0.000
O20.0159 (3)0.0210 (3)0.0135 (2)0.0030 (2)0.0022 (2)0.0016 (2)
O30.0142 (2)0.0155 (3)0.0198 (3)0.0003 (2)0.0011 (2)0.0091 (2)
O40.0114 (2)0.0127 (2)0.0234 (3)0.00065 (19)0.0044 (2)0.0040 (2)
O5W0.0293 (5)0.0195 (4)0.0162 (4)0.0000.0069 (4)0.000
O6W0.0208 (4)0.0138 (4)0.0217 (4)0.0000.0031 (4)0.000
Geometric parameters (Å, º) top
K—O12.8211 (10)Mn—O6Wix2.2676 (11)
K—O6Wi2.8382 (12)Mn—Kxi3.6590 (4)
K—O3ii2.8456 (7)P—O41.4995 (7)
K—O3iii2.8456 (7)P—O31.5052 (7)
K—O2iv2.8472 (8)P—O21.5424 (7)
K—O2v2.8472 (8)P—O11.6136 (4)
K—O5Wvi3.0236 (13)P—H21.91 (4)
K—O3vii3.3093 (8)O1—Pvii1.6136 (4)
K—O33.3093 (8)O2—Kxii2.8472 (8)
K—Mnviii3.6590 (4)O2—H20.72 (4)
K—Pvii3.7727 (4)O3—Mni2.1828 (7)
K—P3.7727 (4)O3—Kiii2.8456 (7)
Mn—O4vii2.1330 (7)O5W—Mnix2.2183 (11)
Mn—O42.1330 (7)O5W—Kvi3.0236 (13)
Mn—O3ix2.1828 (7)O6W—Mni2.2676 (11)
Mn—O3x2.1828 (7)O6W—Kix2.8382 (12)
Mn—O5Wi2.2183 (11)
O1—K—O6Wi72.45 (3)O3iii—K—P104.133 (17)
O1—K—O3ii118.47 (2)O2iv—K—P108.904 (17)
O6Wi—K—O3ii143.156 (18)O2v—K—P142.470 (19)
O1—K—O3iii118.47 (2)O5Wvi—K—P74.04 (2)
O6Wi—K—O3iii143.156 (18)O3vii—K—P69.133 (13)
O3ii—K—O3iii66.25 (3)Mnviii—K—P108.252 (9)
O1—K—O2iv128.45 (2)O4vii—Mn—O488.29 (4)
O6Wi—K—O2iv73.05 (2)O4vii—Mn—O3ix178.31 (3)
O3ii—K—O2iv112.20 (2)O4—Mn—O3ix90.42 (3)
O3iii—K—O2iv73.82 (2)O4vii—Mn—O3x90.42 (3)
O1—K—O2v128.45 (2)O4—Mn—O3x178.31 (3)
O6Wi—K—O2v73.05 (2)O3ix—Mn—O3x90.86 (4)
O3ii—K—O2v73.82 (2)O4vii—Mn—O5Wi94.72 (3)
O3iii—K—O2v112.20 (2)O4—Mn—O5Wi94.72 (3)
O2iv—K—O2v73.84 (3)O3ix—Mn—O5Wi84.29 (3)
O1—K—O5Wvi70.92 (3)O3x—Mn—O5Wi84.29 (3)
O6Wi—K—O5Wvi143.38 (3)O4vii—Mn—O6Wix86.86 (3)
O3ii—K—O5Wvi60.33 (2)O4—Mn—O6Wix86.86 (3)
O3iii—K—O5Wvi60.33 (2)O3ix—Mn—O6Wix94.16 (3)
O2iv—K—O5Wvi132.70 (2)O3x—Mn—O6Wix94.16 (3)
O2v—K—O5Wvi132.70 (2)O5Wi—Mn—O6Wix177.79 (4)
O6Wi—K—O3vii73.36 (2)O4vii—Mn—Kxi129.404 (19)
O3ii—K—O3vii89.57 (2)O4—Mn—Kxi129.404 (19)
O3iii—K—O3vii141.128 (14)O3ix—Mn—Kxi50.986 (18)
O2iv—K—O3vii145.06 (2)O3x—Mn—Kxi50.986 (18)
O2v—K—O3vii87.45 (2)O5Wi—Mn—Kxi55.62 (3)
O5Wvi—K—O3vii81.51 (2)O6Wix—Mn—Kxi122.17 (3)
O6Wi—K—O373.36 (2)O4—P—O3115.63 (4)
O3ii—K—O3141.128 (14)O4—P—O2110.32 (4)
O3iii—K—O389.57 (2)O3—P—O2111.81 (4)
O2iv—K—O387.45 (2)O4—P—O1108.80 (4)
O2v—K—O3145.06 (2)O3—P—O1103.82 (4)
O5Wvi—K—O381.51 (2)O2—P—O1105.76 (5)
O3vii—K—O391.99 (2)O4—P—K129.19 (3)
O1—K—Mnviii108.18 (2)O3—P—K60.76 (3)
O6Wi—K—Mnviii179.36 (3)O2—P—K117.57 (3)
O2iv—K—Mnviii106.455 (17)Pvii—O1—P131.80 (6)
O2v—K—Mnviii106.455 (17)Pvii—O1—K113.78 (3)
O3vii—K—Mnviii107.066 (14)P—O1—K113.78 (3)
O3—K—Mnviii107.066 (14)P—O2—Kxii129.37 (4)
O6Wi—K—Pvii72.33 (2)P—O3—Mni125.81 (4)
O3ii—K—Pvii104.133 (17)P—O3—Kiii128.95 (4)
O3iii—K—Pvii132.133 (18)Mni—O3—Kiii92.43 (2)
O2iv—K—Pvii142.470 (19)P—O3—K95.86 (3)
O2v—K—Pvii108.904 (17)Mni—O3—K120.12 (3)
O5Wvi—K—Pvii74.04 (2)Kiii—O3—K90.43 (2)
O3vii—K—Pvii23.384 (12)P—O4—Mn132.99 (4)
O3—K—Pvii69.133 (13)Mnix—O5W—Kvi87.12 (4)
Mnviii—K—Pvii108.252 (9)Mni—O6W—Kix134.77 (5)
O6Wi—K—P72.33 (2)Mni—O6W—H6W100.5 (15)
O3ii—K—P132.133 (18)
Symmetry codes: (i) x+3/2, y, z1/2; (ii) x+2, y+1/2, z; (iii) x+2, y, z; (iv) x, y, z1; (v) x, y+1/2, z1; (vi) x+2, y, z+1; (vii) x, y+1/2, z; (viii) x+1/2, y, z+1/2; (ix) x+3/2, y, z+1/2; (x) x+3/2, y+1/2, z+1/2; (xi) x1/2, y, z+1/2; (xii) x, y, z+1.

Experimental details

(I)(II)
Crystal data
Chemical formulaKZn(HP2O7)(H2O)2KMn(HP2O7)(H2O)2
Mr315.45305.02
Crystal system, space groupOrthorhombic, PnmaOrthorhombic, Pnma
Temperature (K)293293
a, b, c (Å)15.4727 (12), 7.7820 (9), 6.5009 (7)15.7186 (5), 7.8706 (5), 6.5297 (5)
V3)782.76 (14)807.82 (8)
Z44
Radiation typeMo KαMo Kα
µ (mm1)4.102.57
Crystal size (mm)0.4 × 0.4 × 0.30.30 × 0.30 × 0.30
Data collection
DiffractometerBruker P4
diffractometer
Enraf Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
ψ scan
Number of ψ scan sets used was 9. Theta correction was applied. Averaged transmission function was used. No Fourier smoothing was applied 'North & al. (1968)'
Tmin, Tmax0.589, 0.9860.532, 0.602
No. of measured, independent and
observed [I > 2σ(I)] reflections
1080, 738, 692 17404, 2633, 2278
Rint0.0250.046
(sin θ/λ)max1)0.5950.903
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.066, 1.11 0.024, 0.061, 1.06
No. of reflections7382633
No. of parameters7779
H-atom treatmentAll H-atom parameters refinedAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.43, 0.380.73, 0.46

Computer programs: XSCANS (Siemens, 1996), CAD-4 EXPRESS (Enraf-Nonius, 1994), XSCANS, CAD-4 EXPRESS, SHELXTL (Siemens, 1991), XCAD4 (Harms & Wocadlo, 1995), SHELXTL, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ATOMS (Dowty, 1998).

Selected geometric parameters (Å, º) for (I) top
Zn1—O42.059 (2)P1—O31.503 (2)
Zn1—O3i2.111 (2)P1—O41.505 (2)
Zn1—O5Wii2.136 (3)P1—O21.543 (2)
Zn1—O6Wi2.160 (3)P1—O11.6160 (14)
O3—P1—O4115.53 (12)O4—P1—O1108.52 (13)
O3—P1—O2111.80 (12)O2—P1—O1105.67 (14)
O4—P1—O2110.65 (12)P1—O1—P1iii130.91 (19)
O3—P1—O1103.93 (13)
Symmetry codes: (i) x+3/2, y, z+1/2; (ii) x+3/2, y, z1/2; (iii) x, y+1/2, z.
Selected geometric parameters (Å, º) for (II) top
Mn—O42.1330 (7)P—O41.4995 (7)
Mn—O3i2.1828 (7)P—O31.5052 (7)
Mn—O5Wii2.2183 (11)P—O21.5424 (7)
Mn—O6Wi2.2676 (11)P—O11.6136 (4)
O4—P—O3115.63 (4)O3—P—O1103.82 (4)
O4—P—O2110.32 (4)O2—P—O1105.76 (5)
O3—P—O2111.81 (4)Piii—O1—P131.80 (6)
O4—P—O1108.80 (4)
Symmetry codes: (i) x+3/2, y, z+1/2; (ii) x+3/2, y, z1/2; (iii) x, y+1/2, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds