Download citation
Download citation
link to html
The structure of Pb2HgCrO6 (space group P\overline 1) can be described as consisting of isolated [CrO4]2- tetrahedra and nearly linear [HgO2]2- dumb-bells, which form layers of composition [HgCrO6]4-. These are intercalated with corrugated pseudo-hexagonal Pb2+ layers. The Pb2+ cation is stereochemically active and has coordination 3+5.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010827010102087X/br1350sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010102087X/br1350Isup2.hkl
Contains datablock I

Comment top

Pb2HgCrO6 was first obtained as a by-product of different syntheses aiming to produce ternary silver oxides in steel autoclaves with perchloric acid as an accelerator (Curda et al., 2001). Subsequently, single crystals of Pb2HgCrO6 have been prepared by solid state reaction of a mixture of HgO, PbO2 and elemental Cr (molar ratio 1:2:1) under an elevated oxygen pressure.

The structure of Pb2HgCrO6 can be described as consisting of three basic building units: isolated [CrO4]2- tetrahedra and nearly linear [HgO2]2- dumbbells form layers of composition [HgCrO6]4- which are intercalated with corrugated pseudohexagonal Pb2+ layers perpendicular to the [110] direction (Fig. 1).

The Pb2+ is stereochemically active. Every Pb2+ has a first coordination sphere formed by three O atoms at distances ranging from 2.24 to 2.45 Å. The second coordination sphere is formed by five further O atoms at distances of 2.64–3.66 Å (Table 1; Fig. 2).

Bond valence sums for the cations calculated according to Brese & O'Keeffe (1991) are 6.16 for Cr, 1.98 for Hg, and 2.14 and 2.21 for Pb. While for the O atoms O1, O5 and O6 the bond valence sums are within the normal range (2.09, 2.11 and 1.96, respectively), for O2 (2.22), O3 (1.79) and O4 (2.30), higher deviations from the ideal value are observed.

Experimental top

To synthesize Pb2HgCrO6, a mixture of HgO, PbO2 and elemental Cr (molar ratio 1:2:1), under an elevated oxygen pressure of 11 MPa, was annealed for 120 h at 773 K in silver crucibles placed in stainless steel autoclaves (Linke & Jansen, 1997) using H2O (2 ml) as an accelerator. Single crystals of Pb2HgCrO6 were formed.

Refinement top

Refinement was also carried out in space group P1, but did not lead to better agreement factors and was therefore discarded.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA; data reduction: X-RED (Stoe & Cie, 2001); program(s) used to solve structure: SIR97 (Altomare et al., 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 1998-2000).

Figures top
[Figure 1] Fig. 1. A projection onto ab of the structure of Pb2HgCrO6. The [CrO4]2- tetrahedra are shown.
[Figure 2] Fig. 2. Views of the two environments of the Pb2+ ions in Pb2HgCrO6.
Dilead mercury chromate(VI) top
Crystal data top
Pb2HgCrO6Z = 2
Mr = 762.98F(000) = 632
Triclinic, P1Dx = 7.651 Mg m3
a = 6.505 (2) ÅMo Kα radiation, λ = 0.71069 Å
b = 7.201 (3) ÅCell parameters from 8070 reflections
c = 7.605 (3) Åθ = 2.6–24.5°
α = 91.82 (3)°µ = 75.35 mm1
β = 92.17 (3)°T = 293 K
γ = 111.33 (3)°Prismatic, red
V = 331.2 (2) Å30.20 × 0.05 × 0.02 mm
Data collection top
Stoe IPDS II
diffractometer
1838 independent reflections
Radiation source: fine-focus sealed tube1583 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.070
image plate scansθmax = 29.5°, θmin = 2.7°
Absorption correction: numerical
(Coppens, 1970)
h = 97
Tmin = 0.011, Tmax = 0.081k = 99
3475 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049 w = 1/[σ2(Fo2) + (0.0857P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.127(Δ/σ)max < 0.001
S = 0.97Δρmax = 3.68 e Å3
1838 reflectionsΔρmin = 3.30 e Å3
92 parametersExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0073 (7)
Crystal data top
Pb2HgCrO6γ = 111.33 (3)°
Mr = 762.98V = 331.2 (2) Å3
Triclinic, P1Z = 2
a = 6.505 (2) ÅMo Kα radiation
b = 7.201 (3) ŵ = 75.35 mm1
c = 7.605 (3) ÅT = 293 K
α = 91.82 (3)°0.20 × 0.05 × 0.02 mm
β = 92.17 (3)°
Data collection top
Stoe IPDS II
diffractometer
1838 independent reflections
Absorption correction: numerical
(Coppens, 1970)
1583 reflections with I > 2σ(I)
Tmin = 0.011, Tmax = 0.081Rint = 0.070
3475 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04992 parameters
wR(F2) = 0.1270 restraints
S = 0.97Δρmax = 3.68 e Å3
1838 reflectionsΔρmin = 3.30 e Å3
Special details top

Experimental. measured with Stoe IPDS II; 1. run: phi=0; omega=0–180; delta omega=1; time=1 min 2. run: phi=90; omega=0–180; delta omega=1; time=1 min detector distance= 100 mm

Integration: Coefficient A=12.0 Coefficient B=2.0 EMS=0.010

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hg10.68673 (8)0.70067 (9)0.63551 (7)0.03091 (19)
Pb10.21924 (9)0.25922 (8)0.13343 (8)0.0320 (2)
Pb20.17992 (9)0.74491 (8)0.39612 (7)0.0317 (2)
Cr10.7086 (4)0.7665 (4)0.1477 (3)0.0301 (5)
O10.463 (2)0.6478 (18)0.2086 (19)0.049 (3)
O20.0538 (16)0.3898 (15)0.3672 (14)0.031 (2)
O30.844 (2)0.9460 (17)0.2982 (15)0.039 (2)
O40.4134 (16)0.7651 (17)0.6257 (14)0.035 (2)
O50.1528 (19)0.6160 (18)0.1271 (16)0.042 (3)
O60.686 (2)0.8686 (18)0.0350 (15)0.042 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg10.0240 (3)0.0354 (3)0.0366 (3)0.0149 (2)0.0000 (2)0.0017 (2)
Pb10.0300 (3)0.0332 (3)0.0344 (3)0.0134 (2)0.0011 (2)0.0004 (2)
Pb20.0265 (3)0.0341 (3)0.0364 (3)0.0136 (2)0.0018 (2)0.0036 (2)
Cr10.0287 (11)0.0302 (10)0.0339 (12)0.0138 (8)0.0007 (9)0.0015 (9)
O10.037 (6)0.036 (5)0.068 (8)0.007 (5)0.009 (6)0.010 (5)
O20.021 (4)0.034 (5)0.043 (5)0.018 (4)0.005 (4)0.002 (4)
O30.044 (6)0.035 (5)0.043 (6)0.020 (5)0.000 (5)0.000 (4)
O40.021 (5)0.054 (6)0.040 (5)0.026 (4)0.004 (4)0.002 (5)
O50.028 (5)0.043 (6)0.049 (7)0.008 (4)0.009 (5)0.007 (5)
O60.052 (7)0.043 (6)0.036 (6)0.024 (5)0.002 (5)0.007 (5)
Geometric parameters (Å, º) top
Hg1—O41.993 (9)Pb2—O22.384 (10)
Hg1—O2i2.019 (9)Pb2—O2iv2.395 (11)
Hg1—O1i2.673 (9)Pb2—O12.642 (14)
Hg1—O6ii2.749 (9)Pb2—O52.795 (14)
Hg1—O33.150 (9)Pb2—O3vii3.109 (14)
Hg1—O3iii3.193 (9)Pb2—O3viii3.215 (14)
Hg1—O13.459 (9)Pb2—O4viii3.571 (14)
Pb1—O4iv2.240 (11)Pb2—Pb1iv3.5791 (16)
Pb1—O22.375 (10)Cr1—O11.609 (12)
Pb1—O52.448 (12)Cr1—O61.619 (11)
Pb1—O3v2.765 (12)Cr1—O5ix1.650 (13)
Pb1—O6vi2.893 (12)Cr1—O31.661 (12)
Pb1—O6v2.895 (12)O2—Hg1i2.019 (9)
Pb1—O5vi3.080 (12)O2—Pb2iv2.395 (11)
Pb1—O1vi3.209 (12)O4—Pb1iv2.240 (11)
Pb1—Pb2iv3.5791 (16)O5—Cr1vii1.650 (13)
Pb2—O42.236 (9)
O4—Hg1—O2i174.5 (4)O6—Cr1—O3108.5 (6)
O4iv—Pb1—O275.7 (4)O5ix—Cr1—O3108.0 (5)
O4iv—Pb1—O590.6 (4)Cr1—O1—Pb2134.6 (7)
O2—Pb1—O578.9 (3)Hg1i—O2—Pb1116.2 (5)
O4—Pb2—O293.6 (4)Hg1i—O2—Pb2110.3 (4)
O4—Pb2—O2iv75.4 (4)Pb1—O2—Pb2111.8 (4)
O2—Pb2—O2iv71.5 (4)Hg1i—O2—Pb2iv112.1 (4)
O4—Pb2—O185.2 (4)Pb1—O2—Pb2iv97.2 (4)
O2—Pb2—O172.0 (4)Pb2—O2—Pb2iv108.5 (4)
O2iv—Pb2—O1137.1 (3)Hg1—O4—Pb2129.4 (5)
O1—Cr1—O6107.5 (7)Hg1—O4—Pb1iv119.8 (5)
O1—Cr1—O5ix111.0 (6)Pb2—O4—Pb1iv106.2 (4)
O6—Cr1—O5ix112.2 (6)Cr1vii—O5—Pb1138.9 (6)
O1—Cr1—O3109.5 (7)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y, z+1; (iii) x+2, y+2, z+1; (iv) x, y+1, z+1; (v) x1, y1, z; (vi) x, y+1, z; (vii) x1, y, z; (viii) x+1, y+2, z+1; (ix) x+1, y, z.

Experimental details

Crystal data
Chemical formulaPb2HgCrO6
Mr762.98
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)6.505 (2), 7.201 (3), 7.605 (3)
α, β, γ (°)91.82 (3), 92.17 (3), 111.33 (3)
V3)331.2 (2)
Z2
Radiation typeMo Kα
µ (mm1)75.35
Crystal size (mm)0.20 × 0.05 × 0.02
Data collection
DiffractometerStoe IPDS II
diffractometer
Absorption correctionNumerical
(Coppens, 1970)
Tmin, Tmax0.011, 0.081
No. of measured, independent and
observed [I > 2σ(I)] reflections
3475, 1838, 1583
Rint0.070
(sin θ/λ)max1)0.694
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.127, 0.97
No. of reflections1838
No. of parameters92
Δρmax, Δρmin (e Å3)3.68, 3.30

Computer programs: X-AREA (Stoe & Cie, 2001), X-AREA, X-RED (Stoe & Cie, 2001), SIR97 (Altomare et al., 1997), SHELXL97 (Sheldrick, 1997), DIAMOND (Brandenburg, 1998-2000).

Selected geometric parameters (Å, º) top
Hg1—O41.993 (9)Pb1—O1vi3.209 (12)
Hg1—O2i2.019 (9)Pb2—O42.236 (9)
Hg1—O1i2.673 (9)Pb2—O22.384 (10)
Hg1—O6ii2.749 (9)Pb2—O2iv2.395 (11)
Hg1—O33.150 (9)Pb2—O12.642 (14)
Hg1—O3iii3.193 (9)Pb2—O52.795 (14)
Hg1—O13.459 (9)Pb2—O3vii3.109 (14)
Pb1—O4iv2.240 (11)Pb2—O3viii3.215 (14)
Pb1—O22.375 (10)Pb2—O4viii3.571 (14)
Pb1—O52.448 (12)Cr1—O11.609 (12)
Pb1—O3v2.765 (12)Cr1—O61.619 (11)
Pb1—O6vi2.893 (12)Cr1—O5ix1.650 (13)
Pb1—O6v2.895 (12)Cr1—O31.661 (12)
Pb1—O5vi3.080 (12)
O4—Hg1—O2i174.5 (4)O1—Cr1—O6107.5 (7)
O4iv—Pb1—O275.7 (4)O1—Cr1—O5ix111.0 (6)
O4iv—Pb1—O590.6 (4)O6—Cr1—O5ix112.2 (6)
O2—Pb1—O578.9 (3)O1—Cr1—O3109.5 (7)
O4—Pb2—O293.6 (4)O6—Cr1—O3108.5 (6)
O4—Pb2—O2iv75.4 (4)O5ix—Cr1—O3108.0 (5)
O2—Pb2—O2iv71.5 (4)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y, z+1; (iii) x+2, y+2, z+1; (iv) x, y+1, z+1; (v) x1, y1, z; (vi) x, y+1, z; (vii) x1, y, z; (viii) x+1, y+2, z+1; (ix) x+1, y, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds