Download citation
Download citation
link to html
β-RbSb crystallizes with the LiAs structure type. As in the α phase (NaP type), Sb forms approximate 41 helical chains (21 crystallographic symmetry), with Sb—Sb distances of 2.838 (1) and 2.862 (1) Å. In contrast to the α phase, the helices have different chirality.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101002451/br1316sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101002451/br1316Isup2.hkl
Contains datablock I

Comment top

The monopentelides AIMV of the alkaline metals A have been known for a long time and are well characterized. They crystallize in two structure types, which both contain infinite helical chains of M- as common building units: In each pentelid series, the compounds having a smaller ratio of cation to anion radius, i.e. LiP (Hönle & von Schnering, 1981), LiAs (Cromer, 1959a), NaSb (Cromer, 1959b) and KSb (Hönle & von Schnering, 1981) form the LiAs structure type, whereas higher ionic radius ratios for example in NaP, KP (von Schnering & Hönle, 1979), NaAs, KAs, RbAs (Hönle & von Schnering, 1978), RbSb and CsSb (von Schnering et al., 1979) give rise to the formation of the NaSb structure type. As already expected by von Schnering & Hönle (1979), both structure types may be stable at the border of the ratio ranges.

The second form of RbSb, β-RbSb, crystallizes with the LiAs structure type (Cromer, 1959a). Sb- atoms form infinite chains arranged around crystallographic 21 screw axes with approximate 41 symmetry (Fig. 1) running parallel to the [010] direction (Fig. 2). The distances and angles within the chains are in accordance with those observed in KSb (LiAs structure type) and α-RbSb (NaP structure type): The Sb—Sb distances are of two lengths, 2.838 (1) and 2.862 (1) Å [KSb: 2.829 (1) and 2.852 (1) Å; α-RbSb: 2.852 (3) and 2.864 (3) Å]. The interbond angles at the two crystallographically independent Sb atoms are 115.59 (3)° [Sb(1)] and 110.36 (3)° [Sb(2)], respectively, [KSb: 113.95 (4) and 109.38 (4)°; α-RbSb: 116.93 (8) and 109.72 (6)°]. The values of the dihedral angles [56.9 (1) and 71.6 (1)°] are also in the same range as in KSb and the α form of the title compound. The further coordination of the Sb atoms consists of six Rb cations with distances Sb—Rb ranging from 3.641 (2) Å to 3.794 (2) Å. The main difference of the two forms of RbSb is the chirality of the Sb- screw chains: While in the α form only one chirality is present (acentric space group), the β form described here contains both screw directions side by side, i.e. the Sb chains at (0,y,1/4) and (0,y,3/4) are of different chirality (Fig. 2). We have observed a related form of dimorphism for the corresponding Cs compound, but the β form of CsSb (Hirschle et al., 2000) crystallizes with a superstructure of the LiAs structure. In the series of the ASb structures, the Sb bond angle and the rise per turn of the helical chains increases with the radius of the A cation [NaSb: 6.34 (2) Å; CsSb 7.32 (2) Å], where the β forms show smaller values [RbSb: α: 7.197 (4) Å, β: 7.134 (1) Å; CsSb: α: 7.345 (5) β: 7.32 (2)]. Both the α and the β phase where prepared below the melting point of RbSb at 883 K (Dorn & Klemm 1961). While the α phase (von Schnering et al., 1979) was synthezized by treatment of Sb with Rb at 843 K for 140 h, the β phase is formed at a lower temperature of 793 K. For this reason we assume, that the new modification reported here is the low temperature form of RbSb. This is in accordance with the unit-cell volumes per formular unit (α: 84.3 Å3, β: 82.5 Å3). Details concerning the thermodynamic and kinetic aspects of the formation of the two phases are currently under study.

Related literature top

For related literature, see: Cromer (1959a, 1959b); Dorn & Klemm (1961); Hönle & von Schnering (1978, 1981); Hirschle, Emmerling & Röhr (2000); Schnering & Hönle (1979); Schnering et al. (1979).

Experimental top

Liquid rubidium (Alkalimetallhandelsgesellschaft Bonn, 99.9%) (678.8 mg, 7.93 mmol) was reacted with Sb (ABCR, 99.999%) (322.0 mg, 2.64 mmol) in tantalum crucibles under an argon atmosphere. The mixture was heated up to 793 K within 5 h and cooled to 733 K with a rate of 2 K h-1 and after that to room temperature by switching off the furnace. Almost black metallic crystals in the form of flattened needles of β-RbSb up to a length of 0.3 mm grow in the matrix of elemental Rb.

Computing details top

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: HELENA (Spek, 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP (Johnson, 1968) and DRAWxtl (Finger & Kroeker, 1999); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. ORTEP (Johnson, 1968) view of the 1[Sb]- chains (75% probability ellipsoids) with the coordination polyhedra of one Sb1 and one Sb2 atom.
[Figure 2] Fig. 2. Unit cell of β-RbSb (light gray spheres: Rb; dark gray balls: Sb).
Rubidium antimonide top
Crystal data top
Rb4Sb4F(000) = 704
Mr = 828.88Dx = 4.172 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71070 Å
a = 7.3566 (8) ÅCell parameters from 25 reflections
b = 7.1341 (9) Åθ = 12.3–26.9°
c = 13.7930 (13) ŵ = 22.70 mm1
β = 114.28 (2)°T = 293 K
V = 659.86 (13) Å3Prism, dark metallic
Z = 20.3 × 0.1 × 0.08 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.048
Radiation source: fine-focus sealed tubeθmax = 29.0°, θmin = 4.0°
Graphite monochromatorh = 010
ω/2Θ scansk = 09
Absorption correction: ψ scan
(North et al., 1968)
l = 1817
Tmin = 0.051, Tmax = 0.1633 standard reflections every 120 min
1863 measured reflections intensity decay: none
1740 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.048Secondary atom site location: difference Fourier map
wR(F2) = 0.127 w = 1/[σ2(Fo2) + (0.0591P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
1627 reflectionsΔρmax = 1.97 e Å3
37 parametersΔρmin = 3.01 e Å3
Crystal data top
Rb4Sb4V = 659.86 (13) Å3
Mr = 828.88Z = 2
Monoclinic, P21/cMo Kα radiation
a = 7.3566 (8) ŵ = 22.70 mm1
b = 7.1341 (9) ÅT = 293 K
c = 13.7930 (13) Å0.3 × 0.1 × 0.08 mm
β = 114.28 (2)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
1740 independent reflections
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.048
Tmin = 0.051, Tmax = 0.1633 standard reflections every 120 min
1863 measured reflections intensity decay: none
Refinement top
R[F2 > 2σ(F2)] = 0.04837 parameters
wR(F2) = 0.1270 restraints
S = 1.02Δρmax = 1.97 e Å3
1627 reflectionsΔρmin = 3.01 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sb10.17113 (12)0.59690 (12)0.21589 (6)0.0250 (2)
Sb20.17081 (13)0.33027 (12)0.37083 (6)0.0247 (2)
Rb10.28587 (19)0.09726 (19)0.16633 (9)0.0305 (3)
Rb20.7414 (2)0.3301 (2)0.02977 (9)0.0362 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sb10.0195 (4)0.0274 (4)0.0289 (4)0.0013 (4)0.0107 (3)0.0012 (3)
Sb20.0223 (4)0.0261 (4)0.0204 (4)0.0041 (4)0.0033 (3)0.0014 (3)
Rb10.0248 (6)0.0329 (7)0.0336 (6)0.0049 (6)0.0117 (5)0.0059 (5)
Rb20.0392 (8)0.0333 (7)0.0288 (6)0.0054 (6)0.0066 (5)0.0019 (5)
Geometric parameters (Å, º) top
Sb1—Sb2i2.8383 (13)Rb1—Sb23.6605 (15)
Sb1—Sb22.8617 (12)Rb1—Sb2vi3.7097 (16)
Sb1—Rb1ii3.6414 (17)Rb1—Sb13.7894 (17)
Sb1—Rb2iii3.6788 (17)Rb1—Sb1ix3.7943 (17)
Sb1—Rb2ii3.6920 (15)Rb1—Sb2x3.8417 (15)
Sb1—Rb2iv3.7365 (16)Rb1—Rb2iii4.018 (2)
Sb1—Rb13.7894 (17)Rb1—Rb2xi4.026 (2)
Sb1—Rb1v3.7943 (17)Rb2—Sb1xii3.6788 (17)
Sb1—Rb1i4.2933 (17)Rb2—Sb1vii3.6921 (15)
Sb2—Sb1vi2.8383 (13)Rb2—Sb1iv3.7364 (16)
Sb2—Sb12.8617 (12)Rb2—Sb2vii3.7793 (16)
Sb2—Rb13.6605 (15)Rb2—Sb2ii3.7817 (17)
Sb2—Rb1i3.7096 (16)Rb2—Sb2x4.0207 (18)
Sb2—Rb2ii3.7793 (16)Rb2—Rb1xi4.026 (2)
Sb2—Rb2vii3.7817 (17)Rb2—Rb2iv4.095 (3)
Sb2—Rb1viii3.8417 (15)Rb2—Rb1ii4.6833 (19)
Sb2—Rb2viii4.0207 (18)Rb2—Rb1x4.776 (2)
Rb1—Sb1vii3.6414 (17)
Sb2i—Sb1—Sb2115.59 (3)Rb2iii—Rb1—Sb1vi52.62 (3)
Sb2i—Sb1—Rb1ii143.82 (4)Rb2xi—Rb1—Sb1vi115.05 (4)
Sb2—Sb1—Rb1ii90.28 (4)Sb1vii—Rb1—Rb2vii92.48 (4)
Sb2i—Sb1—Rb2iii69.57 (4)Sb2—Rb1—Rb2vii52.16 (3)
Sb2—Sb1—Rb2iii85.00 (4)Sb2vi—Rb1—Rb2vii62.94 (3)
Rb1ii—Sb1—Rb2iii141.44 (4)Sb1—Rb1—Rb2vii97.28 (3)
Sb2i—Sb1—Rb2ii85.08 (4)Sb1ix—Rb1—Rb2vii50.31 (3)
Sb2—Sb1—Rb2ii69.10 (3)Sb2x—Rb1—Rb2vii158.82 (4)
Rb1ii—Sb1—Rb2ii81.09 (4)Rb2iii—Rb1—Rb2vii100.75 (3)
Rb2iii—Sb1—Rb2ii131.32 (3)Rb2xi—Rb1—Rb2vii106.53 (3)
Sb2i—Sb1—Rb2iv89.39 (4)Sb1vi—Rb1—Rb2vii48.14 (3)
Sb2—Sb1—Rb2iv145.41 (4)Sb1vii—Rb1—Rb1ii52.36 (4)
Rb1ii—Sb1—Rb2iv80.68 (4)Sb2—Rb1—Rb1ii66.22 (3)
Rb2iii—Sb1—Rb2iv81.86 (4)Sb2vi—Rb1—Rb1ii147.72 (5)
Rb2ii—Sb1—Rb2iv140.45 (3)Sb1—Rb1—Rb1ii49.474 (18)
Sb2i—Sb1—Rb1134.45 (4)Sb1ix—Rb1—Rb1ii141.36 (4)
Sb2—Sb1—Rb165.05 (3)Sb2x—Rb1—Rb1ii103.30 (4)
Rb1ii—Sb1—Rb178.24 (3)Rb2iii—Rb1—Rb1ii104.76 (3)
Rb2iii—Sb1—Rb165.08 (3)Rb2xi—Rb1—Rb1ii138.11 (5)
Rb2ii—Sb1—Rb1129.09 (4)Sb1vi—Rb1—Rb1ii106.64 (4)
Rb2iv—Sb1—Rb180.40 (3)Rb2vii—Rb1—Rb1ii97.84 (4)
Sb2i—Sb1—Rb1v66.20 (3)Sb1vii—Rb1—Rb1vii52.28 (4)
Sb2—Sb1—Rb1v145.94 (4)Sb2—Rb1—Rb1vii106.71 (4)
Rb1ii—Sb1—Rb1v78.18 (3)Sb2vi—Rb1—Rb1vii93.69 (3)
Rb2iii—Sb1—Rb1v123.51 (4)Sb1—Rb1—Rb1vii141.35 (4)
Rb2ii—Sb1—Rb1v77.44 (3)Sb1ix—Rb1—Rb1vii49.459 (18)
Rb2iv—Sb1—Rb1v64.62 (3)Sb2x—Rb1—Rb1vii115.77 (4)
Rb1—Sb1—Rb1v140.34 (4)Rb2iii—Rb1—Rb1vii152.07 (4)
Sb2i—Sb1—Rb1i57.52 (3)Rb2xi—Rb1—Rb1vii65.95 (3)
Sb2—Sb1—Rb1i58.44 (3)Sb1vi—Rb1—Rb1vii106.58 (4)
Rb1ii—Sb1—Rb1i135.83 (4)Rb2vii—Rb1—Rb1vii61.14 (3)
Rb2iii—Sb1—Rb1i71.48 (3)Rb1ii—Rb1—Rb1vii99.03 (5)
Rb2ii—Sb1—Rb1i59.86 (3)Sb1xii—Rb2—Sb1vii78.82 (3)
Rb2iv—Sb1—Rb1i142.82 (4)Sb1xii—Rb2—Sb1iv98.14 (4)
Rb1—Sb1—Rb1i109.63 (4)Sb1vii—Rb2—Sb1iv153.73 (5)
Rb1v—Sb1—Rb1i109.54 (4)Sb1xii—Rb2—Sb2vii105.39 (4)
Sb1vi—Sb2—Sb1110.36 (3)Sb1vii—Rb2—Sb2vii45.02 (2)
Sb1vi—Sb2—Rb181.64 (3)Sb1iv—Rb2—Sb2vii113.14 (4)
Sb1—Sb2—Rb169.82 (3)Sb1xii—Rb2—Sb2ii44.70 (2)
Sb1vi—Sb2—Rb1i69.37 (3)Sb1vii—Rb2—Sb2ii98.26 (3)
Sb1—Sb2—Rb1i80.46 (3)Sb1iv—Rb2—Sb2ii97.46 (4)
Rb1—Sb2—Rb1i127.58 (3)Sb2vii—Rb2—Sb2ii141.31 (4)
Sb1vi—Sb2—Rb2ii134.11 (4)Sb1xii—Rb2—Rb1xii58.79 (3)
Sb1—Sb2—Rb2ii65.87 (3)Sb1vii—Rb2—Rb1xii67.52 (3)
Rb1—Sb2—Rb2ii130.45 (4)Sb1iv—Rb2—Rb1xii88.42 (4)
Rb1i—Sb2—Rb2ii64.89 (3)Sb2vii—Rb2—Rb1xii56.72 (3)
Sb1vi—Sb2—Rb2vii65.73 (3)Sb2ii—Rb2—Rb1xii103.38 (4)
Sb1—Sb2—Rb2vii147.72 (4)Sb1xii—Rb2—Sb2x158.85 (5)
Rb1—Sb2—Rb2vii77.98 (3)Sb1vii—Rb2—Sb2x97.17 (4)
Rb1i—Sb2—Rb2vii123.00 (4)Sb1iv—Rb2—Sb2x94.34 (3)
Rb2ii—Sb2—Rb2vii141.31 (4)Sb2vii—Rb2—Sb2x85.05 (4)
Sb1vi—Sb2—Rb1viii107.25 (4)Sb2ii—Rb2—Sb2x116.78 (4)
Sb1—Sb2—Rb1viii129.45 (4)Rb1xii—Rb2—Sb2x138.93 (4)
Rb1—Sb2—Rb1viii149.18 (4)Sb1xii—Rb2—Rb1xi130.68 (5)
Rb1i—Sb2—Rb1viii82.50 (4)Sb1vii—Rb2—Rb1xi103.78 (4)
Rb2ii—Sb2—Rb1viii63.76 (3)Sb1iv—Rb2—Rb1xi58.38 (3)
Rb2vii—Sb2—Rb1viii79.17 (3)Sb2vii—Rb2—Rb1xi58.87 (3)
Sb1vi—Sb2—Rb2viii127.48 (4)Sb2ii—Rb2—Rb1xi155.79 (5)
Sb1—Sb2—Rb2viii105.97 (4)Rb1xii—Rb2—Rb1xi76.50 (4)
Rb1—Sb2—Rb2viii76.74 (3)Sb2x—Rb2—Rb1xi70.47 (3)
Rb1i—Sb2—Rb2viii154.76 (3)Sb1xii—Rb2—Rb2iv105.03 (5)
Rb2ii—Sb2—Rb2viii94.95 (4)Sb1vii—Rb2—Rb2iv104.79 (5)
Rb2vii—Sb2—Rb2viii63.22 (4)Sb1iv—Rb2—Rb2iv101.20 (5)
Rb1viii—Sb2—Rb2viii74.61 (3)Sb2vii—Rb2—Rb2iv129.51 (6)
Sb1vii—Rb1—Sb2102.44 (4)Sb2ii—Rb2—Rb2iv61.24 (4)
Sb1vii—Rb1—Sb2vi145.72 (4)Rb1xii—Rb2—Rb2iv162.55 (5)
Sb2—Rb1—Sb2vi81.74 (3)Sb2x—Rb2—Rb2iv55.54 (4)
Sb1vii—Rb1—Sb1101.83 (4)Rb1xi—Rb2—Rb2iv120.94 (5)
Sb2—Rb1—Sb145.14 (2)Sb1xii—Rb2—Rb1ii60.37 (3)
Sb2vi—Rb1—Sb1104.57 (4)Sb1vii—Rb2—Rb1ii52.26 (3)
Sb1vii—Rb1—Sb1ix101.74 (4)Sb1iv—Rb2—Rb1ii147.32 (4)
Sb2—Rb1—Sb1ix98.59 (4)Sb2vii—Rb2—Rb1ii97.07 (3)
Sb2vi—Rb1—Sb1ix44.43 (2)Sb2ii—Rb2—Rb1ii49.86 (3)
Sb1—Rb1—Sb1ix140.34 (4)Rb1xii—Rb2—Rb1ii98.63 (4)
Sb1vii—Rb1—Sb2x101.31 (4)Sb2x—Rb2—Rb1ii100.63 (4)
Sb2—Rb1—Sb2x137.44 (4)Rb1xi—Rb2—Rb1ii154.28 (4)
Sb2vi—Rb1—Sb2x97.50 (4)Rb2iv—Rb2—Rb1ii65.53 (4)
Sb1—Rb1—Sb2x95.54 (4)Sb1xii—Rb2—Rb1116.52 (4)
Sb1ix—Rb1—Sb2x110.45 (4)Sb1vii—Rb2—Rb148.99 (3)
Sb1vii—Rb1—Rb2iii155.32 (5)Sb1iv—Rb2—Rb1144.89 (4)
Sb2—Rb1—Rb2iii70.83 (3)Sb2vii—Rb2—Rb164.60 (3)
Sb2vi—Rb1—Rb2iii58.39 (3)Sb2ii—Rb2—Rb1103.21 (4)
Sb1—Rb1—Rb2iii56.13 (3)Rb1xii—Rb2—Rb1113.45 (4)
Sb1ix—Rb1—Rb2iii102.74 (4)Sb2x—Rb2—Rb150.98 (3)
Sb2x—Rb1—Rb2iii72.83 (4)Rb1xi—Rb2—Rb198.78 (4)
Sb1vii—Rb1—Rb2xi92.39 (4)Rb2iv—Rb2—Rb165.98 (4)
Sb2—Rb1—Rb2xi153.93 (5)Rb1ii—Rb2—Rb159.50 (3)
Sb2vi—Rb1—Rb2xi74.11 (4)Sb1xii—Rb2—Rb1x134.99 (4)
Sb1—Rb1—Rb2xi151.69 (4)Sb1vii—Rb2—Rb1x144.99 (4)
Sb1ix—Rb1—Rb2xi56.99 (3)Sb1iv—Rb2—Rb1x48.79 (2)
Sb2x—Rb1—Rb2xi57.36 (3)Sb2vii—Rb2—Rb1x115.13 (4)
Rb2iii—Rb1—Rb2xi103.50 (4)Sb2ii—Rb2—Rb1x102.69 (4)
Sb1vii—Rb1—Sb1vi135.83 (4)Rb1xii—Rb2—Rb1x132.13 (5)
Sb2—Rb1—Sb1vi40.85 (2)Sb2x—Rb2—Rb1x48.24 (3)
Sb2vi—Rb1—Sb1vi41.10 (2)Rb1xi—Rb2—Rb1x63.73 (2)
Sb1—Rb1—Sb1vi70.44 (3)Rb2iv—Rb2—Rb1x63.18 (4)
Sb1ix—Rb1—Sb1vi70.39 (3)Rb1ii—Rb2—Rb1x128.71 (4)
Sb2x—Rb1—Sb1vi122.43 (4)Rb1—Rb2—Rb1x98.55 (4)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x1, y, z; (iv) x+1, y+1, z; (v) x, y+1, z; (vi) x, y1/2, z+1/2; (vii) x+1, y1/2, z+1/2; (viii) x, y+1/2, z+1/2; (ix) x, y1, z; (x) x, y+1/2, z1/2; (xi) x+1, y, z; (xii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaRb4Sb4
Mr828.88
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.3566 (8), 7.1341 (9), 13.7930 (13)
β (°) 114.28 (2)
V3)659.86 (13)
Z2
Radiation typeMo Kα
µ (mm1)22.70
Crystal size (mm)0.3 × 0.1 × 0.08
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.051, 0.163
No. of measured, independent and
observed (?) reflections
1863, 1740, ?
Rint0.048
(sin θ/λ)max1)0.682
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.127, 1.02
No. of reflections1627
No. of parameters37
Δρmax, Δρmin (e Å3)1.97, 3.01

Computer programs: CAD-4 Software (Enraf-Nonius, 1989), CAD-4 Software, HELENA (Spek, 1993), SHELXL97 (Sheldrick, 1997), ORTEP (Johnson, 1968) and DRAWxtl (Finger & Kroeker, 1999), SHELXL97.

Selected geometric parameters (Å, º) top
Sb1—Sb2i2.8383 (13)Rb1—Sb2v3.8417 (15)
Sb1—Sb22.8617 (12)Rb2—Sb1vi3.6788 (17)
Rb1—Sb1ii3.6414 (17)Rb2—Sb1ii3.6921 (15)
Rb1—Sb23.6605 (15)Rb2—Sb1vii3.7364 (16)
Rb1—Sb2iii3.7097 (16)Rb2—Sb2ii3.7793 (16)
Rb1—Sb13.7894 (17)Rb2—Sb2viii3.7817 (17)
Rb1—Sb1iv3.7943 (17)Rb2—Sb2v4.0207 (18)
Sb2i—Sb1—Sb2115.59 (3)Sb1iii—Sb2—Sb1110.36 (3)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2; (iii) x, y1/2, z+1/2; (iv) x, y1, z; (v) x, y+1/2, z1/2; (vi) x+1, y, z; (vii) x+1, y+1, z; (viii) x+1, y+1/2, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds