Download citation
Download citation
link to html
The crystal structures of 4-(phenyl­diazenyl)­naphthalen-1-amine, C16H13N3, (I), and its hydro­chloride, (4-amino­naph­thal­en-1-yl)­phenyl­diazenium chloride, C16H14­N3+·­Cl-, (II), have been determined from X-ray single-crystal and powder data, respectively. The effect of the crystal environment on the molecular electronic structure was analysed on the AM1 level. One of the two symmetry-independent mol­ecules in (I) is involved in intermolecular hydrogen bonding, so that its dipole moment is twice as large as that of the other mol­ecule. The cations in (II) form stacks along [100], with the Cl- anions forming hydrogen bonds to all three H atoms attached to N atoms.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100018692/br1305sup1.cif
Contains datablocks I, global, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100018692/br1305Isup2.hkl
Contains datablock I

rtv

Rietveld powder data file (CIF format) https://doi.org/10.1107/S0108270100018692/br1305IIsup3.rtv
Contains datablock II

CCDC references: 162571; 162572

Comment top

Azoderivatives of α-naphthylamine form a family of widely used dyes. However, the structure of only one representative of this family has been determined up to now (Foitzik et al., 1991). Solvent Yellow 4, (I), is the simplest molecule of this class. \sch

In the crystal, the two independent molecules of (I) form pairs, as shown in Fig. 1. Both molecules are close to planar, the dihedral angles formed by the least-squares planes through the naphthalene and phenyl moieties being 5.19 (6) and 2.12 (5)° in molecules (Ia) and (Ib), respectively. The C1—N1 and C21—N4 bond lengths fall in between the values for planar and pyramidal amino groups (Yatsenko & Paseshnichenko, 1999). The shortest intermolecular distance within a pair (C12···C31) is 3.392 (3) Å, and the dihedral angle between the least-squares planes of (Ia) and (Ib) is 3.31 (3)°.

The molecular pairs in (I) are packed in a herringbone manner into layers perpendicular to [100]. In addition, molecules (Ia) are linked by weak N1—H10···N3i hydrogen bonds: N1···N3i 3.188 (3) Å and N1—H10···N3i 166 (2)° [symmetry code: (i) 1/2 - x, -y, z - 1/2]. The polarization of molecule (Ia) under the effect of this bond does not cause any noticeable difference in bond lengths in the aminoazo chains of (Ia) and (Ib) (Table 1). However, the AM1 calculations, in which the polarization effect of the surrounding molecules in the crystal was modelled via the incorporation of an electrostatic field into the Hamiltonian of a molecule, indicate the pronounced nonequivalence of (Ia) and (Ib): their calculated dipole moments were 6.09 and 2.95 D, respectively, whereas for an isolated molecule of (I) the calculations yield 2.69 D. It is noteworthy that the polarization effect of the crystal environment on the electronic structure of (Ia) is stronger than the possible effect of polar solvent modelled with COSMO (Klamt & Schüürmann, 1993): the calculated dipole moment of molecule of (I) placed into a medium with a relative? dielectric permittivity ε = 81 is 5.10 D.

The crystal-packing motif adopted by (II) is presented in Fig. 2, with the dotted lines representing the hydrogen bonds (Table 2). The cation is close to planar: the phenyl ring is twisted by 4.4 (2)° with respect to the naphthalene residue. Neighbouring cations within the stack are related by inversion centres, with interplanar distances of 3.42 (1) and 3.48 (1) Å. The very close packing motif - columns of inversion-related cations with the Cl- anions in the intercolumnar channels - has been observed in the structure of p-phenylazoaniline hydrochloride (Yatsenko et al., 2000), and in the structure of 2,4-diaminoazobenzene hydrochloride dihydrate (Moreiras et al., 1981) the cations also form stacks, although they are not parallel. The cation-anion and cation-cation interactions facilitate charge transfer from the amino group to the azonium linkage: according to the AM1 calculations, the total effective charges on the amino group in an isolated cation and in the cation in the crystal environment are 0.24 and 0.39 e, respectively, and the effective charges on the azonium linkage are 0.27 and 0.19 e, respectively.

The first ππ*-excitation of (I) and (II) is almost pure HOMO LUMO (highest occupied molecular orbital lowest unoccupied molecular orbital) one-electron excitation. Thus, in order to study the properties of the frontier orbitals, we modelled the effect of the crystal environment on the HOMO-LUMO energy gap. For (II), the gap extends from 5.95 eV for an isolated cation to 6.33 eV for a cation in the crystal lattice, whereas in (I) the two non-equivalent molecules behave in different ways: in (Ia) this gap decreases from 7.10 to 6.79 eV, and in (Ib) it remains essentially unchanged (7.16 and 7.14 eV, respectively). In line with these calculations, (I) and (II) demonstrate red and blue shifts, respectively, on transfer from alcohol solution to the solid state: from 22800 cm-1 to 21350 cm-1 for (I), and from 18850 cm-1 to 19400 cm-1 for (II).

Related literature top

For related literature, see: Chernyshev & Schenk (1998); Foitzik et al. (1991); Klamt & Schüürmann (1993); Moreiras et al. (1981); Popa (1998); Sheldrick (1997); Stewart (1993); Werner et al. (1985); Yatsenko & Paseshnichenko (1999, 2000); Yatsenko, Chernyshev, Kurbakov & Schenk (2000); Zhukov et al. (2000).

Experimental top

Original source of both compounds? Single crystals of (I) were grown by slow evaporation of an acetone solution. The UV-visible spectra were recorded on a Specord M-40 spectrophotometer (Carl Zeiss, Jena).

Refinement top

For (I), all H atoms except those belonging to the amino group of (Ib) (H4A and H4B) were refined isotropically. Amino-H atoms were refined assuming ideal 120° angles at the N4 atoms (AFIX 94 in SHELXL97; Sheldrick, 1997) The monoclinic cell dimensions of (II) were determined with TREOR90 (Werner et al., 1985) and refined to M20 = 41 and F30 = 76 (0.007,56) using the first 75 peaks. The positions of the cation and anion were determined by combining the grid-search (Chernyshev & Schenk, 1998) and simulated-annealing (Zhukov et al., 2000) procedures. The initial molecular model was built with MOPAC7.0 (Stewart, 1993) on the AM1 level. The X-ray diffraction profile and the difference between the measured and calculated profiles after the Rietveld refinement are shown in Fig. 3, with the final RB = 0.076. A l l atoms were refined isotropically, with an overall Uiso parameter for the C and N atoms. H atoms were placed in geometrically calculated positions, with a common isotropic displacement parameter Uiso fixed at 0.05 Å2. The planarity of the phenyl and naphthalene groups was restrained. The anisotropy of diffraction-line broadening was approximated by a quartic form in hkl (Popa, 1998). The self-consistent electrostatic field produced by the crystal environment of a molecule was calculated, taking into account atomic point charges and hybridization dipoles, and the resulting electrostatic potentials and gradients in the positions of the atomic nuclei were used to modify the diagonal elements of the Hcore matrix and the off-diagonals Hµν, where the indices µν denote atomic orbitals centred at the same atom (Yatsenko & Paseshnichenko, 2000).

Computing details top

Data collection: CAD-4 Software (Enraf-Nonius, 1989) for (I); local program for (II). Cell refinement: CAD-4 Software for (I); LSPAID (Visser, 1986) for (II). Data reduction: PROFIT (Streltsov & Zavodnik, 1989) for (I). Program(s) used to solve structure: SHELXS97 (Sheldrick, 1990) for (I); MRIA (Zlokazov & Chernyshev, 1992) for (II). Program(s) used to refine structure: SHELXL97 for (I); MRIA for (II). Molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) for (I); PLUTON92 (Spek, 1992) for (II). Software used to prepare material for publication: SHELXL97 for (I); PARST (Nardelli, 1983) for (II).

Figures top
[Figure 1] Fig. 1. The two independent molecules of (I), showing the atom-numbering scheme and with displacement ellipsoids at the 50% probability level. H atoms are drawn as small spheres of arbitrary radii. Atoms N1—C16 belong to molecule (Ia) and the remainder to molecule (Ib).
[Figure 2] Fig. 2. The packing diagram of (II) viewed along c. The atom-numbering scheme is the same as for (Ia). Dashed lines indicate hydrogen bonds.
[Figure 3] Fig. 3. The Rietveld plot for (II) showing the observed and difference profiles. The reflection positions are shown above the difference profile.
(I) 4-(phenyldiazenyl)naphthalen-1-amine top
Crystal data top
C16H13N3Dx = 1.312 Mg m3
Mr = 247.29Melting point: 396 K
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
a = 26.120 (5) ÅCell parameters from 22 reflections
b = 18.473 (4) Åθ = 14.7–16.5°
c = 10.379 (3) ŵ = 0.08 mm1
V = 5008 (2) Å3T = 293 K
Z = 16Plate, red
F(000) = 20800.45 × 0.38 × 0.14 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.000
Radiation source: fine-focus sealed tubeθmax = 26.0°, θmin = 1.6°
Graphite monochromatorh = 032
ω scansk = 022
4915 measured reflectionsl = 012
4915 independent reflections3 standard reflections every 120 min
2908 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053All H-atom parameters refined
wR(F2) = 0.118 w = 1/[σ2(Fo2) + (0.04P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.28(Δ/σ)max = 0.021
4915 reflectionsΔρmax = 0.33 e Å3
443 parametersΔρmin = 0.15 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0045 (3)
Crystal data top
C16H13N3V = 5008 (2) Å3
Mr = 247.29Z = 16
Orthorhombic, PbcaMo Kα radiation
a = 26.120 (5) ŵ = 0.08 mm1
b = 18.473 (4) ÅT = 293 K
c = 10.379 (3) Å0.45 × 0.38 × 0.14 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.000
4915 measured reflections3 standard reflections every 120 min
4915 independent reflections intensity decay: none
2908 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.118All H-atom parameters refined
S = 1.28Δρmax = 0.33 e Å3
4915 reflectionsΔρmin = 0.15 e Å3
443 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.19711 (8)0.11543 (10)0.07824 (18)0.0555 (5)
N20.14729 (6)0.07504 (9)0.47727 (14)0.0442 (4)
N30.18239 (6)0.11234 (8)0.52983 (14)0.0438 (4)
N40.16634 (14)0.25577 (13)0.3546 (2)0.0938 (8)
H4A0.1966 (8)0.25980 (16)0.3334 (6)0.142 (17)*
H4B0.1443 (5)0.2808 (6)0.3195 (9)0.19 (2)*
N50.10966 (6)0.06221 (9)0.74285 (17)0.0540 (5)
N60.14443 (7)0.02607 (10)0.79748 (17)0.0624 (5)
C10.18467 (7)0.06957 (10)0.17689 (18)0.0422 (5)
C20.22244 (7)0.02806 (11)0.2337 (2)0.0458 (5)
C30.21107 (7)0.01979 (11)0.33204 (19)0.0449 (5)
C40.16209 (7)0.02764 (10)0.37888 (18)0.0401 (5)
C50.07036 (8)0.01017 (12)0.3671 (2)0.0500 (5)
C60.03282 (8)0.05146 (13)0.3139 (2)0.0581 (6)
C70.04427 (8)0.10059 (13)0.2161 (2)0.0600 (6)
C80.09341 (8)0.10744 (12)0.1717 (2)0.0509 (5)
C90.13320 (7)0.06496 (10)0.22341 (18)0.0405 (5)
C100.12189 (7)0.01509 (10)0.32454 (17)0.0397 (5)
C110.16327 (7)0.15787 (10)0.63115 (18)0.0417 (5)
C120.11381 (8)0.15559 (12)0.6772 (2)0.0512 (5)
C130.09934 (9)0.20058 (12)0.7769 (2)0.0561 (6)
C140.13384 (9)0.24739 (13)0.8317 (2)0.0562 (6)
C150.18267 (9)0.25047 (13)0.7866 (2)0.0606 (6)
C160.19809 (8)0.20549 (12)0.6858 (2)0.0543 (6)
C210.15272 (10)0.20762 (13)0.4478 (2)0.0667 (7)
C220.18927 (10)0.16590 (13)0.5063 (2)0.0638 (6)
C230.17667 (9)0.11757 (13)0.6031 (2)0.0595 (6)
C240.12661 (8)0.10946 (11)0.6448 (2)0.0545 (6)
C250.03485 (9)0.14348 (14)0.6250 (3)0.0646 (7)
C260.00117 (11)0.18438 (15)0.5662 (3)0.0747 (7)
C270.01101 (13)0.23589 (17)0.4715 (3)0.0902 (10)
C280.06034 (14)0.24409 (16)0.4349 (3)0.0818 (9)
C290.09980 (9)0.20238 (11)0.4886 (2)0.0549 (6)
C300.08807 (9)0.15150 (11)0.5868 (2)0.0569 (6)
C310.12692 (9)0.02105 (11)0.8972 (2)0.0531 (5)
C320.07563 (9)0.02685 (13)0.9341 (2)0.0636 (6)
C330.06304 (11)0.07348 (15)1.0318 (3)0.0724 (7)
C340.09943 (12)0.11322 (14)1.0925 (2)0.0694 (7)
C350.14975 (11)0.10847 (13)1.0569 (2)0.0653 (7)
C360.16350 (10)0.06231 (13)0.9593 (2)0.0584 (6)
H100.2301 (7)0.1135 (10)0.0494 (18)0.051 (6)*
H110.1733 (8)0.1366 (11)0.033 (2)0.069 (8)*
H20.2584 (7)0.0316 (9)0.2029 (17)0.060 (6)*
H30.2372 (6)0.0510 (8)0.3672 (16)0.040 (5)*
H50.0621 (7)0.0260 (10)0.4320 (18)0.052 (6)*
H60.0011 (8)0.0466 (10)0.3445 (19)0.072 (7)*
H70.0194 (7)0.1312 (10)0.1789 (19)0.062 (6)*
H80.1015 (7)0.1431 (10)0.1107 (18)0.047 (6)*
H120.0918 (7)0.1206 (10)0.643 (2)0.066 (7)*
H130.0645 (8)0.1997 (10)0.8108 (18)0.067 (7)*
H140.1233 (8)0.2771 (11)0.899 (2)0.069 (7)*
H150.2066 (8)0.2838 (10)0.8210 (19)0.068 (7)*
H160.2332 (7)0.2037 (9)0.6536 (18)0.058 (6)*
H220.2238 (8)0.1697 (11)0.484 (2)0.073 (7)*
H230.2047 (9)0.0847 (12)0.643 (2)0.093 (8)*
H250.0262 (9)0.1066 (13)0.685 (2)0.092 (9)*
H260.0400 (10)0.1802 (12)0.592 (2)0.105 (9)*
H270.0092 (9)0.2693 (13)0.417 (2)0.101 (9)*
H280.0707 (10)0.2824 (14)0.376 (3)0.104 (10)*
H320.0585 (10)0.0173 (14)0.871 (3)0.121 (9)*
H330.0260 (10)0.0753 (12)1.057 (2)0.095 (8)*
H340.0905 (8)0.1446 (12)1.154 (2)0.073 (8)*
H350.1745 (7)0.1384 (11)1.101 (2)0.067 (7)*
H360.1980 (8)0.0572 (10)0.9376 (18)0.060 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0499 (12)0.0659 (13)0.0507 (12)0.0034 (10)0.0021 (10)0.0130 (10)
N20.0438 (9)0.0511 (10)0.0376 (9)0.0030 (8)0.0019 (8)0.0007 (8)
N30.0454 (9)0.0497 (10)0.0362 (9)0.0042 (8)0.0031 (8)0.0024 (8)
N40.119 (2)0.0844 (17)0.0775 (16)0.0169 (16)0.0081 (16)0.0253 (14)
N50.0533 (10)0.0587 (11)0.0501 (11)0.0069 (9)0.0057 (9)0.0025 (10)
N60.0625 (12)0.0675 (12)0.0572 (12)0.0004 (10)0.0013 (10)0.0005 (10)
C10.0451 (11)0.0419 (11)0.0394 (11)0.0067 (9)0.0022 (9)0.0007 (9)
C20.0375 (11)0.0521 (12)0.0477 (12)0.0028 (10)0.0018 (10)0.0006 (10)
C30.0415 (11)0.0502 (12)0.0429 (12)0.0032 (10)0.0048 (10)0.0046 (10)
C40.0395 (11)0.0453 (11)0.0357 (10)0.0039 (9)0.0001 (9)0.0010 (9)
C50.0450 (12)0.0595 (14)0.0454 (13)0.0001 (11)0.0032 (10)0.0046 (12)
C60.0371 (12)0.0747 (16)0.0626 (15)0.0040 (12)0.0021 (12)0.0079 (14)
C70.0466 (13)0.0663 (15)0.0671 (16)0.0145 (12)0.0126 (12)0.0059 (13)
C80.0534 (14)0.0494 (13)0.0498 (13)0.0050 (11)0.0092 (11)0.0008 (12)
C90.0414 (11)0.0413 (11)0.0387 (11)0.0006 (9)0.0065 (9)0.0056 (9)
C100.0366 (10)0.0450 (11)0.0376 (11)0.0018 (9)0.0024 (9)0.0058 (9)
C110.0446 (11)0.0444 (11)0.0363 (11)0.0063 (9)0.0044 (9)0.0033 (10)
C120.0544 (13)0.0541 (14)0.0450 (13)0.0021 (11)0.0011 (11)0.0032 (11)
C130.0549 (14)0.0635 (14)0.0500 (14)0.0011 (12)0.0054 (12)0.0072 (12)
C140.0613 (15)0.0613 (15)0.0459 (13)0.0101 (13)0.0038 (12)0.0106 (12)
C150.0588 (14)0.0609 (14)0.0621 (15)0.0026 (13)0.0145 (13)0.0152 (12)
C160.0418 (12)0.0605 (13)0.0605 (15)0.0044 (11)0.0015 (11)0.0073 (12)
C210.0892 (19)0.0554 (15)0.0554 (15)0.0073 (14)0.0067 (14)0.0043 (12)
C220.0639 (16)0.0636 (15)0.0639 (16)0.0022 (14)0.0094 (14)0.0018 (13)
C230.0553 (14)0.0652 (15)0.0580 (15)0.0015 (13)0.0008 (12)0.0068 (13)
C240.0647 (15)0.0511 (13)0.0479 (13)0.0023 (11)0.0047 (11)0.0050 (11)
C250.0599 (15)0.0722 (17)0.0618 (16)0.0145 (13)0.0040 (13)0.0151 (14)
C260.0712 (18)0.0825 (19)0.0703 (18)0.0244 (15)0.0087 (15)0.0139 (16)
C270.098 (2)0.081 (2)0.092 (2)0.0350 (19)0.030 (2)0.0264 (19)
C280.110 (2)0.0634 (18)0.0717 (19)0.0235 (18)0.0301 (18)0.0136 (15)
C290.0731 (16)0.0468 (12)0.0448 (13)0.0052 (12)0.0117 (12)0.0084 (11)
C300.0708 (15)0.0509 (13)0.0490 (13)0.0161 (11)0.0161 (12)0.0168 (11)
C310.0717 (15)0.0474 (12)0.0402 (12)0.0076 (11)0.0019 (11)0.0013 (10)
C320.0676 (16)0.0637 (16)0.0596 (16)0.0055 (13)0.0062 (13)0.0063 (13)
C330.0687 (17)0.0811 (19)0.0673 (18)0.0110 (15)0.0140 (15)0.0112 (15)
C340.095 (2)0.0644 (17)0.0487 (16)0.0130 (16)0.0007 (15)0.0026 (13)
C350.0782 (18)0.0591 (16)0.0585 (16)0.0000 (14)0.0142 (14)0.0042 (13)
C360.0539 (14)0.0628 (15)0.0586 (15)0.0051 (12)0.0039 (13)0.0067 (13)
Geometric parameters (Å, º) top
N1—C11.368 (2)C12—C131.380 (3)
C1—C21.381 (3)C12—H120.933 (19)
C2—C31.383 (3)C13—C141.373 (3)
C3—C41.376 (2)C13—H130.98 (2)
C4—N21.400 (2)C14—C151.360 (3)
N2—N31.270 (2)C14—H140.93 (2)
N4—C211.362 (3)C15—C161.396 (3)
C21—C221.369 (3)C15—H150.947 (19)
C22—C231.384 (3)C16—H160.976 (18)
C23—C241.386 (3)C21—C291.449 (3)
C24—N51.412 (3)C22—H220.93 (2)
N5—N61.262 (2)C23—H231.04 (2)
N1—H100.912 (18)C24—C301.407 (3)
N1—H110.87 (2)C25—C261.352 (3)
N3—C111.436 (2)C25—C301.453 (3)
N4—H4A0.8230C25—H250.95 (2)
N4—H4B0.8230C26—C271.405 (4)
N6—C311.427 (3)C26—H261.05 (2)
C1—C91.431 (2)C27—C281.352 (4)
C2—H20.995 (18)C27—H270.99 (2)
C3—H30.965 (16)C28—C291.402 (3)
C4—C101.430 (2)C28—H280.97 (3)
C5—C61.359 (3)C29—C301.420 (3)
C5—C101.420 (3)C31—C361.382 (3)
C5—H50.973 (18)C31—C321.398 (3)
C6—C71.394 (3)C32—C331.370 (3)
C6—H60.95 (2)C32—H321.14 (3)
C7—C81.370 (3)C33—C341.356 (4)
C7—H70.944 (19)C33—H331.00 (2)
C8—C91.409 (3)C34—C351.368 (3)
C8—H80.938 (18)C34—H340.89 (2)
C9—C101.427 (2)C35—C361.372 (3)
C11—C121.378 (3)C35—H350.96 (2)
C11—C161.386 (3)C36—H360.933 (19)
C1—N1—H10116.4 (12)C14—C15—H15121.1 (12)
C1—N1—H11120.8 (14)C16—C15—H15118.6 (12)
H10—N1—H11120.9 (19)C11—C16—C15119.7 (2)
N3—N2—C4116.97 (15)C11—C16—H16117.0 (11)
N2—N3—C11112.42 (15)C15—C16—H16123.2 (11)
C21—N4—H4A120.0N4—C21—C22120.0 (3)
C21—N4—H4B120.0N4—C21—C29120.0 (3)
H4A—N4—H4B120.0C22—C21—C29119.9 (2)
N6—N5—C24115.17 (17)C21—C22—C23121.3 (3)
N5—N6—C31114.70 (18)C21—C22—H22121.3 (13)
N1—C1—C2119.57 (19)C23—C22—H22117.4 (13)
N1—C1—C9120.83 (18)C22—C23—C24121.4 (2)
C2—C1—C9119.60 (18)C22—C23—H23120.0 (13)
C1—C2—C3121.10 (18)C24—C23—H23118.5 (13)
C1—C2—H2120.0 (11)C23—C24—C30118.8 (2)
C3—C2—H2118.8 (11)C23—C24—N5126.0 (2)
C4—C3—C2121.85 (19)C30—C24—N5115.2 (2)
C4—C3—H3117.5 (10)C26—C25—C30119.0 (3)
C2—C3—H3120.6 (10)C26—C25—H25122.1 (15)
C3—C4—N2125.48 (17)C30—C25—H25118.7 (15)
C3—C4—C10119.03 (18)C25—C26—C27122.5 (3)
N2—C4—C10115.49 (16)C25—C26—H26121.2 (14)
C6—C5—C10121.4 (2)C27—C26—H26116.3 (14)
C6—C5—H5120.5 (11)C28—C27—C26119.2 (3)
C10—C5—H5118.0 (11)C28—C27—H27106.2 (15)
C5—C6—C7120.4 (2)C26—C27—H27134.5 (15)
C5—C6—H6119.1 (13)C27—C28—C29121.8 (3)
C7—C6—H6120.5 (12)C27—C28—H28121.6 (16)
C8—C7—C6120.4 (2)C29—C28—H28116.3 (17)
C8—C7—H7116.9 (12)C28—C29—C30119.4 (3)
C6—C7—H7122.7 (12)C28—C29—C21123.3 (3)
C7—C8—C9120.8 (2)C30—C29—C21117.4 (2)
C7—C8—H8120.3 (11)C24—C30—C29121.2 (2)
C9—C8—H8118.8 (11)C24—C30—C25120.7 (2)
C8—C9—C10119.15 (18)C29—C30—C25118.0 (2)
C8—C9—C1122.10 (18)C36—C31—C32119.5 (2)
C10—C9—C1118.74 (16)C36—C31—N6116.9 (2)
C5—C10—C9117.80 (18)C32—C31—N6123.6 (2)
C5—C10—C4122.57 (19)C33—C32—C31118.8 (2)
C9—C10—C4119.63 (16)C33—C32—H32141.6 (13)
C12—C11—C16119.50 (19)C31—C32—H3299.4 (13)
C12—C11—N3124.19 (18)C34—C33—C32121.1 (3)
C16—C11—N3116.30 (17)C34—C33—H33122.5 (14)
C11—C12—C13119.9 (2)C32—C33—H33116.4 (14)
C11—C12—H12117.9 (13)C33—C34—C35120.8 (3)
C13—C12—H12122.0 (13)C33—C34—H34120.0 (15)
C14—C13—C12120.7 (2)C35—C34—H34119.1 (15)
C14—C13—H13118.2 (12)C34—C35—C36119.4 (3)
C12—C13—H13121.1 (12)C34—C35—H35118.7 (12)
C15—C14—C13120.0 (2)C36—C35—H35121.9 (12)
C15—C14—H14120.7 (13)C35—C36—C31120.4 (2)
C13—C14—H14119.3 (13)C35—C36—H36119.6 (12)
C14—C15—C16120.2 (2)C31—C36—H36119.9 (12)
(II) [4-(phenyldiazenyl)naphthalen-1-yl]ammonium chloride top
Crystal data top
C16H14N3+·ClZ = 4
Mr = 283.76F(000) = 592
Monoclinic, P21/cDx = 1.366 Mg m3
a = 7.426 (3) ÅCu Kα radiation, λ = 1.5418 Å
b = 13.305 (4) ÅT = 295 K
c = 14.027 (4) ÅParticle morphology: plates
β = 95.32 (2)°dark blue
V = 1380 (1) Å3flat_sheet, 25 × 25 mm
Data collection top
DRON-3M
diffractometer (Burevestnik, Russia)
Data collection mode: reflection
Radiation source: X-ray sealed tubeScan method: step
Ni filtered monochromator2θmin = 8.5°, 2θmax = 68.5°, 2θstep = 0.02°
Specimen mounting: pressed as a thin layer in the specimen holder. Specimen was rotated in its plane
Refinement top
Refinement on Inet107 parameters
Least-squares matrix: full with fixed elements per cycle10 restraints
Rp = 0.0420 constraints
Rwp = 0.052H-atom parameters not refined
Rexp = 0.032Weighting scheme based on measured s.u.'s
χ2 = 2.560(Δ/σ)max = 0.04
3226 data pointsBackground function: Chebyshev polynomial up to the 5th order
Excluded region(s): 5.50-8.48Preferred orientation correction: March-Dollase (Dollase, 1986) along [100], G1 = 1.4883(9)
Profile function: split-type pseudo-Voigt
Crystal data top
C16H14N3+·Clβ = 95.32 (2)°
Mr = 283.76V = 1380 (1) Å3
Monoclinic, P21/cZ = 4
a = 7.426 (3) ÅCu Kα radiation, λ = 1.5418 Å
b = 13.305 (4) ÅT = 295 K
c = 14.027 (4) Åflat_sheet, 25 × 25 mm
Data collection top
DRON-3M
diffractometer (Burevestnik, Russia)
Scan method: step
Specimen mounting: pressed as a thin layer in the specimen holder. Specimen was rotated in its plane2θmin = 8.5°, 2θmax = 68.5°, 2θstep = 0.02°
Data collection mode: reflection
Refinement top
Rp = 0.0423226 data points
Rwp = 0.052107 parameters
Rexp = 0.03210 restraints
χ2 = 2.560H-atom parameters not refined
Special details top

Experimental. The specimen was rotated in its plane

Refinement. H atoms were constrained at calculated positions, and the planarity of the phenyl ring and the naphthalene residue was restrained.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.3811 (9)0.5299 (3)0.8182 (3)0.074 (2)*
N10.4054 (12)0.1384 (7)0.4964 (8)0.063 (2)*
N20.2439 (15)0.5384 (9)0.5196 (8)0.063 (2)*
N30.2760 (15)0.5956 (9)0.5977 (7)0.063 (2)*
C10.3643 (13)0.2355 (9)0.4987 (9)0.063 (2)*
C20.4113 (14)0.2870 (8)0.5875 (8)0.063 (2)*
C30.3731 (14)0.3865 (9)0.5961 (8)0.063 (2)*
C40.2856 (11)0.4439 (5)0.5191 (9)0.063 (2)*
C50.1450 (15)0.4436 (8)0.3467 (9)0.063 (2)*
C60.1001 (14)0.3913 (9)0.2627 (8)0.063 (2)*
C70.1409 (12)0.2894 (9)0.2549 (8)0.063 (2)*
C80.2274 (17)0.2371 (8)0.3316 (9)0.063 (2)*
C90.2744 (15)0.2891 (8)0.4183 (7)0.063 (2)*
C100.2342 (18)0.3928 (9)0.4268 (8)0.063 (2)*
C110.2413 (18)0.6960 (8)0.5910 (9)0.063 (2)*
C120.1678 (19)0.7394 (9)0.5069 (9)0.063 (2)*
C130.1325 (16)0.8416 (8)0.5044 (8)0.063 (2)*
C140.1703 (15)0.9008 (8)0.5864 (9)0.063 (2)*
C150.2454 (15)0.8596 (6)0.6702 (8)0.063 (2)*
C160.2817 (19)0.7541 (9)0.6733 (9)0.063 (2)*
H100.37960.09170.43890.05*
H110.46990.10590.55850.05*
H220.47830.24420.64620.05*
H230.41350.42270.66590.05*
H240.25470.15830.32250.05*
H250.10570.24730.18850.05*
H260.03310.43230.20140.05*
H270.11480.52220.35320.05*
H280.33670.71860.73880.05*
H290.27880.90350.73470.05*
H300.14260.98210.58210.05*
H310.07530.87660.43810.05*
H320.13580.69310.44250.05*
H330.32940.56460.66170.05*
Geometric parameters (Å, º) top
N1—C11.329 (15)C6—H261.098
N1—H101.022C7—C81.388 (16)
N1—H111.048C7—H251.098
N2—N31.337 (16)C8—C91.415 (16)
N2—C41.295 (14)C8—H241.078
N3—C111.362 (16)C9—C101.419 (16)
N3—H331.034C11—C121.380 (17)
C1—C21.436 (16)C11—C161.399 (17)
C1—C91.445 (15)C12—C131.385 (16)
C2—C31.362 (16)C12—H321.101
C2—H221.083C13—C141.401 (16)
C3—C41.429 (15)C13—H311.090
C3—H231.107C14—C151.368 (16)
C4—C101.481 (16)C14—H301.102
C5—C61.383 (16)C15—C161.430 (15)
C5—C101.422 (16)C15—H291.086
C5—H271.076C16—H281.079
C6—C71.396 (17)
H10—N1—H11116C7—C8—H24118
C1—N1—H11118C7—C8—C9119 (1)
C1—N1—H10126C9—C8—H24123
N3—N2—C4122 (1)C1—C9—C8119 (1)
N2—N3—H33121C8—C9—C10121 (1)
N2—N3—C11119 (1)C1—C9—C10120 (1)
C11—N3—H33120C5—C10—C9119 (1)
N1—C1—C9123 (1)C4—C10—C9118.7 (9)
N1—C1—C2117 (1)C4—C10—C5122 (1)
C2—C1—C9120 (1)N3—C11—C16117 (1)
C1—C2—H22118N3—C11—C12122 (1)
C1—C2—C3120 (1)C12—C11—C16121 (1)
C3—C2—H22122C11—C12—H32120
C2—C3—H23117C11—C12—C13119 (1)
C2—C3—C4122 (1)C13—C12—H32120
C4—C3—H23120C12—C13—H31120
N2—C4—C3127.4 (9)C12—C13—C14121 (1)
C3—C4—C10119 (1)C14—C13—H31120
N2—C4—C10114.1 (9)C13—C14—H30119
C10—C5—H27119C13—C14—C15121 (1)
C6—C5—H27122C15—C14—H30120
C6—C5—C10119 (1)C14—C15—H29123
C5—C6—H26118C14—C15—C16118.7 (9)
C5—C6—C7121 (1)C16—C15—H29118
C7—C6—H26120C11—C16—C15119 (1)
C6—C7—H25122C15—C16—H28121
C6—C7—C8121 (1)C11—C16—H28120
C8—C7—H25117
Hydrogen-bond geometry (Å, º) top
D—H···AH···AD···AD—H···A
N1—H10···Cl1i2.343.35 (1)168
N1—H11···Cl1ii2.213.26 (1)175
N3—H33···Cl12.243.24 (1)162
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y1/2, z+3/2.

Experimental details

(I)(II)
Crystal data
Chemical formulaC16H13N3C16H14N3+·Cl
Mr247.29283.76
Crystal system, space groupOrthorhombic, PbcaMonoclinic, P21/c
Temperature (K)293295
a, b, c (Å)26.120 (5), 18.473 (4), 10.379 (3)7.426 (3), 13.305 (4), 14.027 (4)
α, β, γ (°)90, 90, 9090, 95.32 (2), 90
V3)5008 (2)1380 (1)
Z164
Radiation typeMo KαCu Kα, λ = 1.5418 Å
µ (mm1)0.08
Specimen shape, size (mm)0.45 × 0.38 × 0.14Flat_sheet, 25 × 25
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
DRON-3M
diffractometer (Burevestnik, Russia)
Specimen mountingPressed as a thin layer in the specimen holder. Specimen was rotated in its plane
Data collection modeReflection
Data collection methodω scansStep
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4915, 4915, 2908
Rint0.000
θ values (°)θmax = 26.0, θmin = 1.62θmin = 8.5 2θmax = 68.5 2θstep = 0.02
(sin θ/λ)max1)0.616
Refinement
R factors and goodness of fitR[F2 > 2σ(F2)] = 0.053, wR(F2) = 0.118, S = 1.28Rp = 0.042, Rwp = 0.052, Rexp = 0.032, χ2 = 2.560
No. of reflections/data points49153226
No. of parameters443107
No. of restraints010
H-atom treatmentAll H-atom parameters refinedH-atom parameters not refined
Δρmax, Δρmin (e Å3)0.33, 0.15

Computer programs: CAD-4 Software (Enraf-Nonius, 1989), local program, CAD-4 Software, LSPAID (Visser, 1986), PROFIT (Streltsov & Zavodnik, 1989), SHELXS97 (Sheldrick, 1990), MRIA (Zlokazov & Chernyshev, 1992), SHELXL97, MRIA, ORTEP-3 for Windows (Farrugia, 1997), PLUTON92 (Spek, 1992), PARST (Nardelli, 1983).

Selected bond lengths (Å) for (I) top
N1—C11.368 (2)N4—C211.362 (3)
C1—C21.381 (3)C21—C221.369 (3)
C2—C31.383 (3)C22—C231.384 (3)
C3—C41.376 (2)C23—C241.386 (3)
C4—N21.400 (2)C24—N51.412 (3)
N2—N31.270 (2)N5—N61.262 (2)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AH···AD···AD—H···A
N1—H10···Cl1i2.343.35 (1)168
N1—H11···Cl1ii2.213.26 (1)175
N3—H33···Cl12.243.24 (1)162
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y1/2, z+3/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds