Download citation
Download citation
link to html
The title compound, tripotassium sodium tritin octaselenide, K3NaSn3Se8, has a molecular (zero-dimensional) structure containing trimeric [Sn3Se8]4- units which consist of three edge-sharing SnSe4 tetrahedra. The [Sn3Se8]4- anions and the tetrahedrally coordinated Na+ cations are arranged in an alternating fashion along the c axis to form SiS2-like chains, which are then separated by eight-coordinate K+ cations. The Sn-Se bond distances are normal, being in the range 2.477 (1)-2.612 (1) Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100010106/br1296sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100010106/br1296Isup2.hkl
Contains datablock I

Comment top

In recent years, a number of intermetallic compounds in the A—Sn—Se system have been detected and structurally characterized. These include A4SnSe4 (A is Na or K; Klepp, 1992a) with isolated SnSe4 tetrahedra, K4Sn2Se6 (Eisenmann & Hansa, 1993a) and K4Sn3Se8 (Sheldrick, 1988) with dimers and trimers of edge-sharing tetrahedra, Na2SnSe3 (Klepp, 1995) with one-dimensional chains of corner-sharing SnSe4 tetrahedra, K2Sn2Se5 (Klepp, 1992b) with chains of edge-sharing SnSe5-bipyramids which are connected via apical Se atoms to form an infinite anionic framework, and K2Sn4Se8 (Klepp & Fabian, 1992) containing layers of corner-sharing SnIVSe4-tetrahedra which are connected by SnII atoms to form an open three-dimensional network. During our investigation of the quaternary K—Ni—Sn—Se system using the molten alkali-metal polychalcogenide flux method, we unexpectedly obtained single crystals of the title new trimeric compound, K3NaSn3Se8. In this paper we report its crystal structure determination.

The crystal structure of K3NaSn3Se8 projected approximately on the ab plane is shown in Fig. 1. Interestingly, Na+ cations and [Sn3Se8]4− anions are aligned in an alternating fashion along the [001] direction to form a chainlike structure. These chains are then separated by K+ cations. The [NaSn3Se8]3− chain (Fig. 2), which looks very similar to those observed in KFeS2 (Boon & MacGillavry, 1942) and K2MnSn2Se6 (Chen et al., 2000), may be described as a substitutional variant of the SiS2-type (Peters & Krebs, 1982). However, because Na—Se interactions are ionic in character, it is more appropriate to describe the title compound as having a molecular (zero-dimensional) structure containing highly charged trimeric [Sn3Se8]4− units which consist of three edge-sharing SnSe4 tetrahedra. In the [Sn3Se8]4− unit, the central atom Sn1 has a site symmetry of −42m, giving a single Sn—Se bond distance [4 × 2.517 (1) Å], while the external atom Sn2 lies on a twofold axis, resulting in two sets of bond lengths [Sn2—Se1 2 × 2.612 (1) and Sn2—Se2 2 × 2.477 (1) Å]. The terminal Sn2—Se2 bonds are markedly shorter than the bridging Sn—Se1 bonds, as expected, and both are close to those observed in discrete di- and tritetrahedral species, K4Sn2Se6 (Eisenmann & Hansa, 1993a) and K4Sn3Se8 (Sheldrick, 1988). The Se—Sn—Se angles range from 97.01 (5) to 116.04 (3)° for Sn1 and 92.42 (6) to 114.16 (7)° for Sn2, with their respective smallest angles being associated with the constrained Sn2Se2 four-membered rings.

There are two crystallographically independent K+ ions and one unique Na+ ion surrounding the [Sn3Se8]4− anions. Each K+ is coordinated by eight Se atoms in a square antiprismatic arrangement, with K—Se distances of 3.333 (2)–3.5955 (8) Å, which are comparable with those observed in K2MnSn2Se6 [3.352 (2)–3.642 (3) Å; Chen et al., 2000 query?]. In contrast, each Na+ is four-coordinate to Se atoms, with shorter Na—Se distances of 4 × 2.895 (1) Å. Tetrahedrally coordinated Na+ is rare. Several limited examples include Na2Se (Na—Se 2.948 Å; Zintl et al., 1934) and Na6Sn2Se7 [Na—Se 2.880 (6)–2.926 (7) Å; Eisenmann & Hansa, 1993b).

It is noted that K4Sn3Se8 is related to the title compound in its stoichiometry but differs in its structure. This compound crystallizes in the orthorhombic space group Ccca. The adjacent [Sn3Se8]4− groups are not arranged into linear arrays as in K3NaSn3Se8, but are shifted with respect to each other by (a+b)/2. As a result, no tetrahedral voids are formed and the trimers are separated by six- and eight-coordinate K+ cations. To the best of our knowledge, K3NaSn3Se8 represents a new structure type and it is also the first structurally characterized A—Sn—Q ternary chalcogenide containing mixed alkali metal cations.

Thermal analysis via differential scanning calorimetry showed that K3NaSn3Se8 melts congruently at about 741 K. The optical diffuse reflectance spectrum of K3NaSn3Se8 displays a steep absorption edge with an estimated band gap of about 2.2 eV, confirming its expected semiconducting nature.

Experimental top

Single crystals of the title compound were extracted from an experiment attempting to prepare K—Ni—Sn—Se quaternary chalcogenides. K2Se (0.080 g, 0.5 mmol), Ni (0.015 g, 0.25 mmol), Sn (0.060 g; 0.5 mmol) and Se (0.158 g, 2 mmol) were weighed in a glove box under an atmosphere of argon. The mixture was introduced into a thin-walled Pyrex tube and sealed under vacuum (about 10−3 Torr; 1 Torr = 133.322 Pa). The tube was gradually heated to 773 K, where it was kept for 6 d, then cooled at a rate of 4 K h−1 to 423 K. Several orange block-like crystals were observed after washing the reaction product with dimethylformamide and anhydrous ethanol and drying with anhydrous diethyl ether. Structural refinements indicated the composition of these crystals to be K3NaSn3Se8. The sodium constituent may come from the impure potassium resource. Subsequently, direct reaction of a stoichiometric mixture of K2Se, Na2Se, Sn, and Se at 723 K for one week yielded an almost single phase polycrystalline sample with small amounts of Se and SnSe2 impurities that were confirmed by powder X-ray analysis.

Refinement top

Direct phase determination yielded the positions of the Sn and Se atoms. The K and Na atoms were located from the subsequent difference Fourier synthesis. All atoms were refined anisotropically. The highest residual electronic density peaks were located 0.74 Å from the Sn2 atoms.

Computing details top

Data collection: CAD-4-PC Software (Enraf-Nonius, 1992); cell refinement: CAD-4-PC Software; data reduction: XCAD4/PC (Harms, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SCHAKAL92 (Keller, 1992); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The unit cell of K3NaSn3Se8 projected approximately along the c axis. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A fragment of the [NaSn3Se8]3− chain, with Na—Se interactions indicated by dashed lines. Displacement ellipsoids are drawn at the 50% probability level.
Potassium sodium tin selenide top
Crystal data top
K3NaSn3Se8Dx = 4.155 Mg m3
Mr = 1128.04Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P4/nbmCell parameters from 25 reflections
Hall symbol: -P 4a 2bθ = 7.2–13.9°
a = 8.121 (1) ŵ = 20.96 mm1
c = 13.672 (3) ÅT = 293 K
V = 901.7 (3) Å3Block-like, orange
Z = 20.10 × 0.08 × 0.05 mm
F(000) = 980
Data collection top
Enraf-Nonius CAD4
diffractometer
387 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.039
Graphite monochromatorθmax = 26.0°, θmin = 3.0°
ω scansh = 010
Absorption correction: ψ-scan
(Kopfman & Huber, 1968)
k = 010
Tmin = 0.121, Tmax = 0.348l = 016
879 measured reflections3 standard reflections every 150 reflections
491 independent reflections intensity decay: 1.5%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Calculated w = 1/[σ2(Fo2) + 12P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.071(Δ/σ)max < 0.001
S = 1.23Δρmax = 1.83 e Å3
491 reflectionsΔρmin = 0.75 e Å3
27 parametersExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0026 (2)
Crystal data top
K3NaSn3Se8Z = 2
Mr = 1128.04Mo Kα radiation
Tetragonal, P4/nbmµ = 20.96 mm1
a = 8.121 (1) ÅT = 293 K
c = 13.672 (3) Å0.10 × 0.08 × 0.05 mm
V = 901.7 (3) Å3
Data collection top
Enraf-Nonius CAD4
diffractometer
387 reflections with I > 2σ(I)
Absorption correction: ψ-scan
(Kopfman & Huber, 1968)
Rint = 0.039
Tmin = 0.121, Tmax = 0.3483 standard reflections every 150 reflections
879 measured reflections intensity decay: 1.5%
491 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02927 parameters
wR(F2) = 0.0710 restraints
S = 1.23Δρmax = 1.83 e Å3
491 reflectionsΔρmin = 0.75 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn13/41/41/20.0204 (4)
Sn23/41/40.24580 (7)0.0196 (3)
Se10.91418 (11)0.08582 (11)0.37801 (8)0.0222 (3)
Se20.56892 (11)0.06892 (11)0.14732 (8)0.0225 (4)
K11/41/400.0396 (15)
K21/41/40.2773 (3)0.0309 (9)
Na3/41/400.033 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.0258 (6)0.0258 (6)0.0095 (6)000
Sn20.0233 (4)0.0233 (4)0.0121 (5)0.0052 (5)00
Se10.0250 (4)0.0250 (4)0.0165 (5)0.0037 (5)0.0002 (3)0.0002 (3)
Se20.0244 (4)0.0244 (4)0.0187 (6)0.0039 (5)0.0012 (3)0.0012 (3)
K10.041 (2)0.041 (2)0.036 (3)000
K20.0268 (12)0.0268 (12)0.039 (2)000
Na0.046 (4)0.046 (4)0.007 (4)000
Geometric parameters (Å, º) top
Sn1—Se1i2.517 (1)K1—Se2xiii3.5955 (8)
Sn1—Se1ii2.517 (1)K1—K2xiv3.792 (4)
Sn1—Se12.517 (1)K1—K23.792 (4)
Sn1—Se1iii2.517 (1)K1—Naxv4.0605 (5)
Sn2—Se22.477 (1)K1—Na4.0605 (5)
Sn2—Se2ii2.477 (1)K2—Se1ii3.333 (2)
Sn2—Se1ii2.612 (1)K2—Se1xvi3.333 (2)
Sn2—Se12.612 (1)K2—Se1xvii3.333 (2)
Sn2—Na3.3606 (12)K2—Se1xviii3.333 (2)
Sn2—K2iv4.0833 (7)K2—Se23.468 (2)
Sn2—K2v4.0833 (7)K2—Se2xiii3.468 (2)
Sn2—K24.0833 (7)K2—Se2viii3.468 (2)
Sn2—K2vi4.0833 (7)K2—Se2xii3.468 (2)
Se1—K2vi3.3332 (18)K2—Sn2xviii4.0833 (7)
Se1—K2v3.3332 (18)K2—Sn2xvii4.0833 (7)
Se2—K2vi3.468 (2)Na—Se22.895 (1)
Se2—K1vii3.5955 (8)Na—Se2ii2.895 (1)
K1—Se23.5955 (8)Na—Se2x2.895 (1)
K1—Se2viii3.5955 (8)Na—Se2xix2.895 (1)
K1—Se2ix3.5955 (8)Na—Sn2x3.3606 (12)
K1—Se2x3.5955 (8)Na—K1xv4.0605 (5)
K1—Se2xi3.5955 (8)Na—K1v4.0605 (5)
K1—Se2vii3.5955 (8)Na—K1vii4.0605 (5)
K1—Se2xii3.5955 (8)
Se1i—Sn1—Se1ii116.04 (3)Se2xi—K1—Se2xiii131.72 (4)
Se1i—Sn1—Se1116.04 (3)Se2vii—K1—Se2xiii87.83 (4)
Se1ii—Sn1—Se197.01 (5)Se2xii—K1—Se2xiii71.710 (16)
Se1i—Sn1—Se1iii97.01 (5)Se1ii—K2—Se1xvi80.18 (5)
Se1ii—Sn1—Se1iii116.04 (3)Se1ii—K2—Se1xvii131.21 (13)
Se1—Sn1—Se1iii116.04 (3)Se1xvi—K2—Se1xvii80.18 (5)
Se2—Sn2—Se2ii114.16 (7)Se1ii—K2—Se1xviii80.18 (5)
Se2—Sn2—Se1ii112.09 (2)Se1xvi—K2—Se1xviii131.21 (13)
Se2ii—Sn2—Se1ii112.09 (2)Se1xvii—K2—Se1xviii80.18 (5)
Se2—Sn2—Se1112.09 (2)Se1ii—K2—Se2xiii149.01 (4)
Se2ii—Sn2—Se1112.09 (2)Se1xvi—K2—Se2xiii130.77 (3)
Se1ii—Sn2—Se192.42 (6)Se1xvii—K2—Se2xiii64.28 (3)
Sn1—Se1—Sn285.28 (4)Se1xviii—K2—Se2xiii76.72 (3)
Se2viii—K1—Se2ix154.56 (4)Se1ii—K2—Se2viii64.28 (3)
Se2viii—K1—Se271.710 (16)Se1xvi—K2—Se2viii76.72 (3)
Se2ix—K1—Se2131.72 (4)Se1xvii—K2—Se2viii149.01 (4)
Se2viii—K1—Se2x74.01 (3)Se1xviii—K2—Se2viii130.77 (3)
Se2ix—K1—Se2x111.86 (3)Se2xiii—K2—Se2viii118.35 (12)
Se2—K1—Se2x87.83 (4)Se1ii—K2—Se2xii130.77 (3)
Se2viii—K1—Se2xi87.83 (4)Se1xvi—K2—Se2xii64.28 (3)
Se2ix—K1—Se2xi71.710 (16)Se1xvii—K2—Se2xii76.72 (3)
Se2—K1—Se2xi154.56 (4)Se1xviii—K2—Se2xii149.01 (4)
Se2x—K1—Se2xi71.710 (16)Se2xiii—K2—Se2xii74.78 (5)
Se2viii—K1—Se2vii131.72 (4)Se2viii—K2—Se2xii74.78 (5)
Se2ix—K1—Se2vii71.710 (16)Se1ii—K2—Se276.72 (3)
Se2—K1—Se2vii74.01 (3)Se1xvi—K2—Se2149.01 (4)
Se2x—K1—Se2vii71.710 (16)Se1xvii—K2—Se2130.77 (3)
Se2xi—K1—Se2vii111.86 (3)Se1xviii—K2—Se264.28 (3)
Se2viii—K1—Se2xii71.710 (16)Se2xiii—K2—Se274.78 (5)
Se2ix—K1—Se2xii87.83 (4)Se2viii—K2—Se274.78 (5)
Se2—K1—Se2xii111.86 (3)Se2xii—K2—Se2118.35 (12)
Se2x—K1—Se2xii131.72 (4)Se2ii—Na—Se2x118.95 (3)
Se2xi—K1—Se2xii74.01 (3)Se2ii—Na—Se291.83 (5)
Se2vii—K1—Se2xii154.56 (4)Se2x—Na—Se2118.95 (3)
Se2viii—K1—Se2xiii111.86 (3)Se2ii—Na—Se2xix118.95 (3)
Se2ix—K1—Se2xiii74.01 (3)Se2x—Na—Se2xix91.83 (5)
Se2—K1—Se2xiii71.710 (16)Se2—Na—Se2xix118.95 (3)
Se2x—K1—Se2xiii154.56 (4)
Symmetry codes: (i) y+1, x1/2, z+1; (ii) x+3/2, y+1/2, z; (iii) y+1/2, x+1, z+1; (iv) x+1/2, y+1, z; (v) x+1, y, z; (vi) x+1/2, y, z; (vii) x+1, y, z; (viii) y+1/2, x, z; (ix) y, x1/2, z; (x) y+1/2, x+1, z; (xi) x1/2, y+1/2, z; (xii) x+1/2, y+1/2, z; (xiii) y, x+1/2, z; (xiv) x+1/2, y, z; (xv) x+1, y+1, z; (xvi) y, x+3/2, z; (xvii) x1, y, z; (xviii) y+1/2, x1, z; (xix) y+1, x1/2, z.

Experimental details

Crystal data
Chemical formulaK3NaSn3Se8
Mr1128.04
Crystal system, space groupTetragonal, P4/nbm
Temperature (K)293
a, c (Å)8.121 (1), 13.672 (3)
V3)901.7 (3)
Z2
Radiation typeMo Kα
µ (mm1)20.96
Crystal size (mm)0.10 × 0.08 × 0.05
Data collection
DiffractometerEnraf-Nonius CAD4
diffractometer
Absorption correctionψ-scan
(Kopfman & Huber, 1968)
Tmin, Tmax0.121, 0.348
No. of measured, independent and
observed [I > 2σ(I)] reflections
879, 491, 387
Rint0.039
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.071, 1.23
No. of reflections491
No. of parameters27
Calculated w = 1/[σ2(Fo2) + 12P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.83, 0.75

Computer programs: CAD-4-PC Software (Enraf-Nonius, 1992), CAD-4-PC Software, XCAD4/PC (Harms, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SCHAKAL92 (Keller, 1992), SHELXL97.

Selected geometric parameters (Å, º) top
Sn1—Se1i2.517 (1)K1—Se2ix3.5955 (8)
Sn1—Se1ii2.517 (1)K1—Se2x3.5955 (8)
Sn1—Se12.517 (1)K2—Se1ii3.333 (2)
Sn1—Se1iii2.517 (1)K2—Se1xi3.333 (2)
Sn2—Se22.477 (1)K2—Se1xii3.333 (2)
Sn2—Se2ii2.477 (1)K2—Se1xiii3.333 (2)
Sn2—Se1ii2.612 (1)K2—Se23.468 (2)
Sn2—Se12.612 (1)K2—Se2x3.468 (2)
K1—Se23.5955 (8)K2—Se2iv3.468 (2)
K1—Se2iv3.5955 (8)K2—Se2ix3.468 (2)
K1—Se2v3.5955 (8)Na—Se22.895 (1)
K1—Se2vi3.5955 (8)Na—Se2ii2.895 (1)
K1—Se2vii3.5955 (8)Na—Se2vi2.895 (1)
K1—Se2viii3.5955 (8)Na—Se2xiv2.895 (1)
Se1i—Sn1—Se1ii116.04 (3)Se2—Sn2—Se2ii114.16 (7)
Se1i—Sn1—Se1116.04 (3)Se2—Sn2—Se1ii112.09 (2)
Se1ii—Sn1—Se197.01 (5)Se2ii—Sn2—Se1ii112.09 (2)
Se1i—Sn1—Se1iii97.01 (5)Se2—Sn2—Se1112.09 (2)
Se1ii—Sn1—Se1iii116.04 (3)Se2ii—Sn2—Se1112.09 (2)
Se1—Sn1—Se1iii116.04 (3)Se1ii—Sn2—Se192.42 (6)
Symmetry codes: (i) y+1, x1/2, z+1; (ii) x+3/2, y+1/2, z; (iii) y+1/2, x+1, z+1; (iv) y+1/2, x, z; (v) y, x1/2, z; (vi) y+1/2, x+1, z; (vii) x1/2, y+1/2, z; (viii) x+1, y, z; (ix) x+1/2, y+1/2, z; (x) y, x+1/2, z; (xi) y, x+3/2, z; (xii) x1, y, z; (xiii) y+1/2, x1, z; (xiv) y+1, x1/2, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds