Download citation
Download citation
link to html
In the title compound, [Mo2O4(C2H4NO2)2(C2H5NO2)], two Mo atoms sit in the same distorted pentagonal bipyramid coordination environment. There are four ligand types: oxo-O, μ2-O, μ2-glycine and chelate glycine. There is an Mo—Mo bond between the two Mo atoms [2.552 (1) Å]. All amino groups participate in hydrogen bonding with O atoms of other mol­ecules, thus connecting the mol­ecules into a three-dimensional structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100006466/br1289sup1.cif
Contains datablocks I, mo2

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100006466/br1289Isup2.hkl
Contains datablock I

CCDC reference: 147638

Comment top

Molybdenum is one of the important transition metals in biological systems (Spence, 1969). It is an integral component of the multinuclear M center of nitrogenases and the active sites of a group of oxotransferases (Hille, 1996). Its unique properties appear to be due to its ability to exist in a number of different oxidation states and to coordiante with a variety of ligands. MoV and MoVI are generally thought to be the most likely oxidation states involved. The crystal structures of MoV and MoVI complexes with amino acids and polycarboxylic acids have been reported as possible model compounds as long as 30 years ago (Cotton et al., 1964; Knox & Prout, 1968; Drew & Kay, 1971; Delbaere & Prout, 1971). But so far, the α-amino acid molybdenum(V) complexes have only been known for a few examples (Knox & Prout, 1968; Bray & Knowles, 1968). In this paper, we report the hydrothermal synthesis and crystal structure of a glycine molybdenum(V) complex, (I). \sch

The asymmetric unit consists of one [MoO(C2H4O2N)]2O2(C2H5O2N) molecule. The molecule consists of two Mo atoms siting in the same distorted pentagonal bipyramid coordination environment. Each Mo is chelated by the N atom and one carboxyl O atom of a glycine molecule. An O atom bonds to each Mo in the form of Mo=O. Two Mo atoms are bridged by two µ2-O and a µ2-glycine with each O of its carboxyl group coordinating to a Mo. The amino group of this µ2-glycine is protonated and does not take part in coordination. There is an Mo—Mo bond between the two Mo atoms [bond length 2.552 (1) Å]. Acoording to bond valence theory (Brown, 1981), the sum of the bond-valences around Mo1 is equal to 4.919 and that around Mo2 is equal to 4.903, which are in good agreement with the valence of MoV. As shown in figure 1, the µ2-glycine and two oxo-O are in the same plane. The amino groups of two chelate glycine molecules are on the same side of this plane and the carboxyl groups are on the other side. The amino group of the µ2-glycine is on this plane and deflect to Mo1. A comparison with binuclear molybdenum L-cysteinate (Knox & Prout, 1969) shows similar Mo—Mo bond lengths, 2.552 (1) Å, in the title compound and 2.569 (2) Å in Knox's compound. There are three kinds of Mo—O bonds in Knox's compound and the average bond lengths are 1.709 (18) Å for terminal oxo, 1.930 (15) Å for µ2-O and 2.295 (16) Å for O of the chelate cysteine. Those in the title compound are 1.688 (2), 1.940 (2) and 2.085 (2) Å, only the third one markedly smaller. Since the N—Mo—O angle in chelate cysteine is 69.9 (6)° and that in chelate glycine is 77.3 (1)°, the increase of Mo—O bond length between the Mo and O of the chelate c ysteine agrees with Freeman's observation that N—M—O angles decrease as the average of the M—O distances increase, owing to the constancy of the N···O contact (Freeman, 1967). An interesting aspect of the title compound is the µ2-amino acid, which is lacking in Knox's compound. So there are four coordination types of ligand in the title compound: oxo-O, µ2-O, µ2-glycine and chelate glycine. All amino groups of the title compound participate in constituting hydrogen bonds with oxygen atoms connecting the molecule into a three-dimensional structure.

Experimental top

(NH4)6Mo7O244H2O (0.40 g, 0.32 mmol), NH2CH2COOH (2.00 g, 26.6 mmol), KOH (0.30 g, 5.3 mmol), N2H4H2SO4 (0.44 g, 3.4 mmol) were added to H2O (10 ml, 0.56 mol) and stirred to give a mixture of pH 3–4. The mixture was sealed in a 25 ml digestion bomb and heated at 373 K for 7 d. Red monoclinic block crystal were separated from red-brown solution and brown precipitation. The chemicals used were all of analytical purity and obtained from commercial sources.

Computing details top

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1994); cell refinement: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1994); data reduction: TEXSAN (Molecular Structure Corporation, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL (Siemens, 1990); software used to prepare material for publication: CIFTAB in SHELXL97.

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing 50% probability displacement ellipsoids.
Di-µ-O-µ-2-aminoacetate-bis[(2-aminoacetate-N,O)oxo-molybdenum(V)] top
Crystal data top
[Mo2O2(C2H4NO2)2(O)2(C2H5NO2)]Z = 2
Mr = 479.08F(000) = 468
Triclinic, P1Dx = 2.418 Mg m3
a = 5.730 (1) ÅMo Kα radiation, λ = 0.71069 Å
b = 10.213 (2) ÅCell parameters from 21 reflections
c = 12.232 (2) Åθ = 5–11°
α = 68.15 (3)°µ = 1.96 mm1
β = 82.08 (3)°T = 293 K
γ = 86.08 (3)°Block, red
V = 657.9 (2) Å30.2 × 0.2 × 0.2 mm
Data collection top
AFC6S
diffractometer
3455 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.025
Graphite monochromatorθmax = 30.0°, θmin = 1.8°
2θ scansh = 88
Absorption correction: psi scan
(Coppens et al., 1965)
k = 140
Tmin = 0.602, Tmax = 0.675l = 1715
4009 measured reflections3 standard reflections every 200 reflections
3811 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086All H-atom parameters refined
S = 1.09Calculated w = 1/[σ2(Fo2) + (0.0367P)2 + 0.8169P]
where P = (Fo2 + 2Fc2)/3
3811 reflections(Δ/σ)max = 0.001
242 parametersΔρmax = 0.64 e Å3
0 restraintsΔρmin = 2.01 e Å3
Crystal data top
[Mo2O2(C2H4NO2)2(O)2(C2H5NO2)]γ = 86.08 (3)°
Mr = 479.08V = 657.9 (2) Å3
Triclinic, P1Z = 2
a = 5.730 (1) ÅMo Kα radiation
b = 10.213 (2) ŵ = 1.96 mm1
c = 12.232 (2) ÅT = 293 K
α = 68.15 (3)°0.2 × 0.2 × 0.2 mm
β = 82.08 (3)°
Data collection top
AFC6S
diffractometer
3455 reflections with I > 2σ(I)
Absorption correction: psi scan
(Coppens et al., 1965)
Rint = 0.025
Tmin = 0.602, Tmax = 0.6753 standard reflections every 200 reflections
4009 measured reflections intensity decay: 1%
3811 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.086All H-atom parameters refined
S = 1.09Δρmax = 0.64 e Å3
3811 reflectionsΔρmin = 2.01 e Å3
242 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo10.25076 (4)0.18704 (2)0.15159 (2)0.01688 (8)
Mo20.41931 (4)0.42230 (2)0.17536 (2)0.01540 (7)
O10.2735 (4)0.4616 (3)0.0610 (2)0.0287 (5)
O20.0651 (5)0.1492 (3)0.0252 (2)0.0314 (5)
O30.1753 (4)0.3791 (2)0.25208 (19)0.0194 (4)
O40.5374 (4)0.2316 (2)0.10568 (19)0.0203 (4)
O50.5103 (4)0.2033 (2)0.31854 (19)0.0218 (4)
O60.6540 (4)0.4095 (2)0.33693 (19)0.0221 (4)
C10.6482 (5)0.3042 (3)0.3660 (2)0.0193 (5)
C20.8240 (6)0.3024 (3)0.4696 (3)0.0245 (6)
N10.8029 (6)0.1706 (3)0.4919 (3)0.0281 (6)
O70.4264 (4)0.6294 (2)0.2992 (2)0.0243 (4)
O80.6566 (5)0.8064 (3)0.4144 (2)0.0346 (6)
C30.6199 (6)0.6975 (3)0.3265 (3)0.0220 (5)
C40.8001 (6)0.6414 (4)0.2395 (3)0.0304 (7)
N20.7620 (4)0.4935 (3)0.1627 (2)0.0187 (4)
O90.0505 (4)0.1105 (2)0.2433 (2)0.0246 (4)
O100.0021 (6)0.0552 (3)0.3128 (3)0.0390 (6)
C50.1054 (6)0.0077 (3)0.2556 (3)0.0247 (6)
C60.3154 (6)0.0886 (3)0.1994 (3)0.0260 (6)
N30.4041 (5)0.0263 (3)0.1226 (3)0.0238 (5)
H1N0.922 (9)0.162 (6)0.547 (5)0.050 (14)*
H2N0.832 (10)0.101 (6)0.437 (5)0.052 (16)*
H3N0.653 (11)0.168 (6)0.509 (5)0.055 (16)*
H4N0.865 (9)0.445 (5)0.177 (4)0.038 (13)*
H5N0.796 (11)0.483 (7)0.091 (6)0.07 (2)*
H6N0.394 (8)0.082 (5)0.057 (4)0.034 (12)*
H7N0.568 (9)0.023 (5)0.134 (4)0.036 (12)*
H10.966 (8)0.312 (5)0.455 (4)0.028 (11)*
H20.773 (8)0.393 (5)0.541 (4)0.029 (11)*
H30.965 (9)0.663 (5)0.274 (4)0.044 (13)*
H40.767 (12)0.692 (7)0.199 (6)0.08 (2)*
H50.258 (8)0.169 (5)0.164 (4)0.031 (11)*
H60.435 (9)0.078 (5)0.264 (5)0.043 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.01725 (12)0.01793 (12)0.01724 (12)0.00054 (8)0.00327 (8)0.00804 (9)
Mo20.01437 (12)0.01816 (12)0.01567 (12)0.00005 (8)0.00222 (8)0.00842 (9)
O10.0236 (11)0.0409 (13)0.0292 (12)0.0027 (10)0.0010 (9)0.0228 (10)
O20.0334 (13)0.0340 (12)0.0263 (12)0.0120 (10)0.0058 (10)0.0119 (10)
O30.0185 (9)0.0217 (9)0.0213 (10)0.0041 (8)0.0066 (8)0.0110 (8)
O40.0205 (10)0.0206 (9)0.0199 (10)0.0001 (8)0.0073 (8)0.0058 (8)
O50.0235 (10)0.0242 (10)0.0192 (10)0.0003 (8)0.0014 (8)0.0109 (8)
O60.0238 (10)0.0251 (10)0.0201 (10)0.0027 (8)0.0007 (8)0.0121 (8)
C10.0207 (13)0.0238 (13)0.0153 (12)0.0039 (10)0.0029 (10)0.0097 (10)
C20.0274 (15)0.0268 (14)0.0186 (13)0.0016 (12)0.0026 (11)0.0098 (11)
N10.0387 (16)0.0270 (13)0.0175 (12)0.0090 (12)0.0008 (11)0.0094 (10)
O70.0244 (11)0.0193 (9)0.0287 (11)0.0010 (8)0.0080 (9)0.0067 (8)
O80.0437 (15)0.0298 (12)0.0253 (12)0.0086 (11)0.0043 (10)0.0027 (10)
C30.0243 (13)0.0227 (13)0.0204 (13)0.0007 (11)0.0027 (10)0.0097 (11)
C40.0261 (16)0.0248 (15)0.0352 (18)0.0075 (12)0.0069 (13)0.0030 (13)
N20.0165 (11)0.0218 (11)0.0201 (11)0.0005 (9)0.0024 (9)0.0105 (9)
O90.0246 (11)0.0233 (10)0.0316 (12)0.0023 (8)0.0126 (9)0.0139 (9)
O100.0572 (17)0.0257 (12)0.0436 (15)0.0006 (11)0.0282 (13)0.0161 (11)
C50.0306 (15)0.0200 (13)0.0245 (14)0.0031 (11)0.0077 (12)0.0075 (11)
C60.0341 (16)0.0207 (13)0.0272 (15)0.0039 (12)0.0088 (13)0.0124 (12)
N30.0300 (14)0.0184 (11)0.0232 (13)0.0016 (10)0.0091 (10)0.0062 (10)
Geometric parameters (Å, º) top
Mo1—O21.682 (2)O5—C11.250 (4)
Mo1—O41.941 (2)O6—C11.256 (3)
Mo1—O31.944 (2)C1—C21.511 (4)
Mo1—O92.077 (2)C2—N11.484 (4)
Mo1—N32.212 (3)O7—C31.286 (4)
Mo1—O52.314 (2)O8—C31.232 (4)
Mo1—Mo22.5515 (7)C3—C41.516 (5)
Mo2—O11.694 (2)C4—N21.464 (4)
Mo2—O41.929 (2)O9—C51.284 (4)
Mo2—O31.945 (2)O10—C51.231 (4)
Mo2—O72.092 (2)C5—C61.507 (5)
Mo2—N22.184 (3)C6—N31.473 (4)
Mo2—O62.273 (2)
O2—Mo1—O4102.07 (11)O1—Mo2—O6168.63 (10)
O2—Mo1—O3106.64 (12)O4—Mo2—O681.33 (9)
O4—Mo1—O396.25 (9)O3—Mo2—O682.44 (9)
O2—Mo1—O998.10 (11)O7—Mo2—O675.49 (9)
O4—Mo1—O9156.22 (10)N2—Mo2—O675.53 (9)
O3—Mo1—O989.85 (9)O1—Mo2—Mo1104.31 (9)
O2—Mo1—N398.94 (13)O4—Mo2—Mo148.95 (6)
O4—Mo1—N387.50 (10)O3—Mo2—Mo148.98 (7)
O3—Mo1—N3152.67 (10)O7—Mo2—Mo1137.26 (7)
O9—Mo1—N376.98 (10)N2—Mo2—Mo1135.44 (7)
O2—Mo1—O5171.50 (11)O6—Mo2—Mo187.05 (6)
O4—Mo1—O580.01 (9)Mo1—O3—Mo281.99 (8)
O3—Mo1—O581.16 (9)Mo2—O4—Mo182.49 (9)
O9—Mo1—O578.25 (9)C1—O5—Mo1120.93 (18)
N3—Mo1—O572.83 (10)C1—O6—Mo2120.57 (19)
O2—Mo1—Mo2102.56 (9)O5—C1—O6126.2 (3)
O4—Mo1—Mo248.55 (7)O5—C1—C2117.9 (3)
O3—Mo1—Mo249.02 (6)O6—C1—C2115.9 (3)
O9—Mo1—Mo2137.73 (7)N1—C2—C1110.3 (3)
N3—Mo1—Mo2134.04 (8)C3—O7—Mo2118.81 (19)
O5—Mo1—Mo285.04 (6)O8—C3—O7123.3 (3)
O1—Mo2—O4105.63 (12)O8—C3—C4120.5 (3)
O1—Mo2—O3105.27 (10)O7—C3—C4116.1 (3)
O4—Mo2—O396.60 (9)N2—C4—C3112.4 (3)
O1—Mo2—O795.94 (12)C4—N2—Mo2111.7 (2)
O4—Mo2—O7154.97 (10)C5—O9—Mo1120.5 (2)
O3—Mo2—O789.67 (9)O10—C5—O9123.0 (3)
O1—Mo2—N295.54 (11)O10—C5—C6119.3 (3)
O4—Mo2—N287.56 (10)O9—C5—C6117.6 (3)
O3—Mo2—N2156.71 (10)N3—C6—C5112.1 (3)
O7—Mo2—N277.71 (10)C6—N3—Mo1111.28 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD···AD—H···A
N1—H1N···O8i3.143 (4)137 (4)
N1—H1N···O10ii3.092 (4)140 (4)
N1—H2N···O10iii2.816 (4)164 (6)
N1—H3N···O8iv2.975 (5)167 (5)
N2—H4N···O3iii2.834 (3)162 (5)
N2—H5N···O1v2.916 (3)149 (6)
N3—H6N···O4vi2.847 (4)165 (5)
Symmetry codes: (i) x+2, y+1, z1; (ii) x+1, y, z1; (iii) x+1, y, z; (iv) x+1, y+1, z1; (v) x+1, y+1, z; (vi) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Mo2O2(C2H4NO2)2(O)2(C2H5NO2)]
Mr479.08
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)5.730 (1), 10.213 (2), 12.232 (2)
α, β, γ (°)68.15 (3), 82.08 (3), 86.08 (3)
V3)657.9 (2)
Z2
Radiation typeMo Kα
µ (mm1)1.96
Crystal size (mm)0.2 × 0.2 × 0.2
Data collection
DiffractometerAFC6S
diffractometer
Absorption correctionPsi scan
(Coppens et al., 1965)
Tmin, Tmax0.602, 0.675
No. of measured, independent and
observed [I > 2σ(I)] reflections
4009, 3811, 3455
Rint0.025
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.086, 1.09
No. of reflections3811
No. of parameters242
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.64, 2.01

Computer programs: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1994), TEXSAN (Molecular Structure Corporation, 1997), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), XP in SHELXTL (Siemens, 1990), CIFTAB in SHELXL97.

Selected bond lengths (Å) top
Mo1—O21.682 (2)Mo2—O11.694 (2)
Mo1—O41.941 (2)Mo2—O41.929 (2)
Mo1—O31.944 (2)Mo2—O31.945 (2)
Mo1—O92.077 (2)Mo2—O72.092 (2)
Mo1—N32.212 (3)Mo2—N22.184 (3)
Mo1—O52.314 (2)Mo2—O62.273 (2)
Mo1—Mo22.5515 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD···AD—H···A
N1—H1N···O8i3.143 (4)137 (4)
N1—H1N···O10ii3.092 (4)140 (4)
N1—H2N···O10iii2.816 (4)164 (6)
N1—H3N···O8iv2.975 (5)167 (5)
N2—H4N···O3iii2.834 (3)162 (5)
N2—H5N···O1v2.916 (3)149 (6)
N3—H6N···O4vi2.847 (4)165 (5)
Symmetry codes: (i) x+2, y+1, z1; (ii) x+1, y, z1; (iii) x+1, y, z; (iv) x+1, y+1, z1; (v) x+1, y+1, z; (vi) x+1, y, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds