Download citation
Download citation
link to html
The title compound, decasodium diglycine di­hydro­geno­do­tetra­conta­do­deca­tung­state(10-) octa­cosa­hydrate, consists of a centrosymmetric paratungstate [H2W12O42]10- anion, ten Na+ cations, two zwitterionic glycine molecules and 28 water molecules of crystallization. Two glycine carboxylate O atoms coordinate three different Na+ cations, while the amino N atom forms hydrogen bonds with the paratungstate anion through both terminal and bridging O atoms.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270199014419/br1268sup1.cif
Contains datablocks yamase, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270199014419/br1268Isup2.hkl
Contains datablock I

CCDC reference: 142736

Comment top

The recent discovery of biological activities of polyoxometallates (Yamase, Fujita & Fukushima, 1988; Yamase, 1994) led us to focus on the interaction behaviour of polyoxometallates with biomolecules. With regard to the complexation of polyoxomolybdates with amino acids or peptides, Na2[Mo8O26(lysineH2)2]·8H2O (Inoue & Yamase, 1995) and [Mo4O12(glycylglycylglycine)2]·9H2O (Yamase, Inoue, Naruke & Fukaya, 1999) have been obtained from aqueous molybdate solutions (pH 3) containing lysine and glycylglycylglycine, respectively. The former consists of a γ-type octamolybdate coordinated by two lysine ligands through their carboxylate O atoms. The latter consists of a polymeric [Mo4O12]\infinity chain attached by glycylglycylglycine ligands through both carboxylate O atoms. For the extension of our investigation on the polyoxomolybdate-based complexes to polyoxotungstate-based ones, we recently prepared the title compound, (I), from aqueous tungstate solution in the presence of glycine at pH 7.1.

Fig. 1 shows an ORTEPII (Johnson, 1976) drawing of the [H2W12O42]10− anion, which is isostructural with those of known paratungstate salts, for instance, Na10[H2W12O42].20H2O (Evans & Rollins, 1976) and Na10[H2W12O42].26H2O (Cruywagen et al., 1986). The two protons in the centrosymmetric [H2W12O42]10− anion are attached to triply bridging O5 and O5i atoms, as shown by their low bond valence sum (1.09) (Brown, 1980). W—O distances and O—W—O angles are essentially similar to those of other paratungstate compounds.

Since the negative charge of the [H2W12O42]10− anion is completely compensated by Na+ cations, the glycine molecule seems to be zwitterionic. Fig. 2 (top) is a packing diagram of (I). Each of all the Na+ cations is octahedrally coordinated by six O atoms belonging to the [H2W12O42]10− anions, crystallization water molecules, or carboxylate O atoms (Table 1). As shown in Fig. 2 (bottom), four NaO6 octahedra, including Na1, Na2 and their symmetry-related Na atoms, are linearly connected by edge-sharing and linked by the glycine molecules through carboxylate O33 and O35 atoms [with distances of Na1···O33 2.41 (1), Na1···O35 2.37 (1) and Na2···O33 2.46 (1) Å] to form a polymeric [(glycine)2Na4O14]\infinity chain running along the b axis. Furthermore, as shown in Fig. 2 (top), the amino N1 of the glycine is hydrogen bonded to a neighbouring [H2W12O42]10− anion at its terminal [O7, O13] and bridging [O16, O18] atoms, with N···O distances of 2.85 (2), 3.16 (2), 3.04 (2) and 2.98 (2) Å, respectively (Table 2).

In conclusion, unlike the polyoxomolybdate-amino acid complexes, in the title compound the glycine molecule interacts with the paratungstate anion by N···O hydrogen bonding without any direct coordination of the carboxylate O atoms to the W centre.

Experimental top

An aqueous solution containing Na2WO4·2H2O (12.0 g) and glycine (1.0 g) was stirred for 10 min at pH 10. H3PO4 (85%, 0.28 ml) was added and the solution stirred for another 15 min at pH 9. A slow dropwise addition of HCl (12 M, 3.5 ml) to the solution with stirring gradually led to the formation of a white precipitate. The solution was filtered after stirring for 4 h. Colourless single crystals of (I) were obtained from the filtrate (at pH 7.1) after a few days.

Refinement top

Since the large positive (3.86 e Å−3) and negative (−4.63 e Å−3) difference Fourier peaks are located at short distances from W2 (1.04 Å) and W6 (0.90 Å), respectively, these peaks can be attributed to ghosts of the heavy W atoms.

Computing details top

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1988); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 1989); program(s) used to solve structure: SHELXS86 (Sheldrick, 1985); program(s) used to refine structure: TEXSAN; molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: TEXSAN.

Figures top
[Figure 1] Fig. 1. ORTEPII (Johnson, 1976) plot of the [H2W12O42]10− anion. Symmetry code: (i) −x, −y, −1 − z. Displacement ellipsoids are drawn at the 50% probabilty level.
[Figure 2] Fig. 2. ORTEPII (Johnson, 1976) drawings of the unit-cell packing viewed parallel to the a axis (top) and the {(glycine)2Na4O14}\infinity chain (bottom). Na···O and N···O hydrogen bonds are denoted by thin solid and broken lines, respectively. C and N atoms of glycine are represented by filled and shaded circles, respectively. Displacement ellipsoids are drawn at the 50% probabilty level.
(I) top
Crystal data top
Na10(H2W12O42)·2C2H5NO2·28H2OZ = 1
Mr = 3764.65Dx = 3.664 Mg m3
Triclinic, P1Mo Kα radiation, λ = 0.7107 Å
a = 11.86 (1) ÅCell parameters from 25 reflections
b = 12.60 (1) Åθ = 10.0–12.5°
c = 13.02 (2) ŵ = 20.36 mm1
α = 74.3 (1)°T = 298 K
β = 79.6 (1)°Plate, colourless
γ = 66.0 (1)°0.12 × 0.12 × 0.05 mm
V = 1706 (8) Å3
Data collection top
Rigaku AFC-5S
diffractometer
Rint = 0.055
ω–2θ scansθmax = 27.5°
Absorption correction: ψ scan
(North, Phillips & Mathews, 1968)
h = 015
Tmin = 0.108, Tmax = 0.369k = 1416
8194 measured reflectionsl = 1616
7818 independent reflections3 standard reflections every 100 reflections
7188 reflections with F2 > σ(F2) intensity decay: 5.9%
Refinement top
Refinement on FH-atom parameters not defined
R[F2 > 2σ(F2)] = 0.051 w = 1/[σ2(Fo) + 0.00036|Fo|2]
wR(F2) = 0.063(Δ/σ)max = 0.001
S = 1.98Δρmax = 3.86 e Å3
7188 reflectionsΔρmin = 4.63 e Å3
260 parameters
Crystal data top
Na10(H2W12O42)·2C2H5NO2·28H2Oγ = 66.0 (1)°
Mr = 3764.65V = 1706 (8) Å3
Triclinic, P1Z = 1
a = 11.86 (1) ÅMo Kα radiation
b = 12.60 (1) ŵ = 20.36 mm1
c = 13.02 (2) ÅT = 298 K
α = 74.3 (1)°0.12 × 0.12 × 0.05 mm
β = 79.6 (1)°
Data collection top
Rigaku AFC-5S
diffractometer
7188 reflections with F2 > σ(F2)
Absorption correction: ψ scan
(North, Phillips & Mathews, 1968)
Rint = 0.055
Tmin = 0.108, Tmax = 0.3693 standard reflections every 100 reflections
8194 measured reflections intensity decay: 5.9%
7818 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.051260 parameters
wR(F2) = 0.063H-atom parameters not defined
S = 1.98Δρmax = 3.86 e Å3
7188 reflectionsΔρmin = 4.63 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
W10.75539 (5)0.50445 (5)0.61159 (4)0.0096 (1)
W20.51645 (5)0.42682 (5)0.72593 (4)0.0085 (1)
W30.79446 (5)0.20305 (5)0.59269 (4)0.0097 (1)
W40.46896 (5)0.70252 (5)0.57356 (4)0.0080 (1)
W50.43760 (5)0.87885 (5)0.28950 (4)0.0114 (1)
W60.71520 (5)0.67256 (5)0.33326 (4)0.0102 (1)
Na11.0332 (6)0.5538 (6)0.1716 (5)0.025 (2)
Na21.0067 (7)0.8522 (6)0.0351 (5)0.032 (2)
Na30.1387 (6)1.1040 (7)0.4424 (6)0.034 (2)
Na40.3179 (6)1.0175 (6)0.6566 (5)0.026 (2)
Na50.3968 (6)0.3278 (6)1.0399 (5)0.026 (2)
O10.6451 (8)0.6586 (8)0.6177 (7)0.010 (2)*
O20.5428 (8)0.7436 (8)0.4330 (8)0.012 (2)*
O30.4095 (9)0.8353 (9)0.6135 (8)0.019 (2)*
O40.4537 (8)0.6003 (8)0.7131 (8)0.012 (2)*
O50.5797 (7)0.5115 (7)0.5625 (7)0.007 (2)*
O60.7795 (8)0.5602 (8)0.4585 (8)0.012 (2)*
O70.8254 (9)0.5991 (8)0.2388 (8)0.015 (2)*
O80.7696 (9)0.7800 (9)0.3374 (9)0.020 (2)*
O90.5911 (8)0.7796 (8)0.2328 (8)0.015 (2)*
O100.8853 (9)0.5023 (9)0.6543 (8)0.017 (2)*
O110.6819 (8)0.4391 (8)0.7391 (8)0.014 (2)*
O120.8168 (8)0.3471 (8)0.5774 (7)0.011 (2)*
O130.9020 (9)0.1467 (9)0.4912 (8)0.018 (2)*
O140.8802 (9)0.1231 (9)0.7047 (9)0.019 (2)*
O150.7066 (8)0.0964 (8)0.6104 (8)0.012 (2)*
O160.6626 (8)0.3064 (8)0.4679 (8)0.012 (2)*
O170.6209 (8)0.2770 (8)0.6912 (8)0.012 (2)*
O180.3832 (8)0.4408 (8)0.6673 (8)0.014 (2)*
O190.4814 (9)0.3865 (9)0.8601 (9)0.021 (2)*
O200.4803 (9)0.9861 (9)0.3164 (8)0.016 (2)*
O210.3675 (10)0.9501 (10)0.1700 (9)0.024 (2)*
O220.498 (1)0.121 (1)1.025 (1)0.048 (4)*
O230.577 (1)0.328 (1)1.097 (1)0.037 (3)*
O240.219 (1)0.328 (1)0.979 (1)0.036 (3)*
O250.296 (1)0.530 (1)1.066 (1)0.054 (4)*
O260.117 (1)1.146 (1)0.260 (1)0.053 (4)*
O270.037 (1)1.310 (1)0.432 (1)0.040 (3)*
O280.3309 (10)1.1058 (10)0.4723 (9)0.025 (2)*
O290.1296 (10)0.9999 (10)0.6248 (9)0.025 (2)*
O300.295 (1)0.932 (1)0.840 (1)0.049 (4)*
O310.792 (1)0.898 (1)0.007 (1)0.054 (4)*
O321.044 (1)0.977 (1)0.121 (1)0.036 (3)*
O330.936 (1)0.341 (1)0.0094 (10)0.029 (3)*
O340.995 (1)0.748 (1)0.2117 (9)0.027 (3)*
O351.008 (1)0.398 (1)0.1215 (10)0.028 (3)*
O361.220 (1)0.811 (1)0.080 (1)0.048 (4)*
O370.338 (1)0.238 (1)1.219 (1)0.045 (3)*
N10.847 (1)0.358 (1)0.287 (1)0.019 (3)*
C10.940 (1)0.361 (1)0.099 (1)0.020 (3)*
C20.841 (2)0.333 (2)0.187 (2)0.031 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
W10.0097 (2)0.0112 (3)0.0097 (3)0.0062 (2)0.0003 (2)0.0019 (2)
W20.0115 (2)0.0103 (3)0.0051 (2)0.0064 (2)0.0020 (2)0.0017 (2)
W30.0089 (2)0.0100 (3)0.0102 (3)0.0041 (2)0.0006 (2)0.0023 (2)
W40.0093 (2)0.0088 (2)0.0063 (3)0.0045 (2)0.0015 (2)0.0019 (2)
W50.0133 (3)0.0107 (3)0.0097 (3)0.0062 (2)0.0010 (2)0.0001 (2)
W60.0117 (2)0.0117 (3)0.0082 (3)0.0072 (2)0.0034 (2)0.0021 (2)
Na10.026 (3)0.034 (4)0.019 (3)0.017 (3)0.001 (3)0.006 (3)
Na20.046 (4)0.031 (4)0.019 (4)0.019 (3)0.003 (3)0.005 (3)
Na30.035 (4)0.039 (4)0.024 (4)0.013 (3)0.003 (3)0.000 (3)
Na40.028 (3)0.022 (3)0.029 (4)0.009 (3)0.006 (3)0.006 (3)
Na50.028 (3)0.035 (4)0.019 (3)0.018 (3)0.001 (3)0.002 (3)
Geometric parameters (Å, º) top
W1—O101.718 (9)W6—O22.203 (9)
W1—O11.864 (9)O33—C11.26 (2)
W1—O111.875 (10)O35—C11.20 (2)
W1—O61.936 (10)N1—C21.43 (2)
W1—O121.962 (9)C1—C21.56 (2)
W1—O52.249 (8)Na1—O72.35 (1)
W2—O191.71 (1)Na1—O352.37 (1)
W2—O181.802 (9)Na1—O33ii2.41 (1)
W2—O171.914 (9)Na1—O10iii2.44 (1)
W2—O41.972 (9)Na1—O342.49 (1)
W2—O112.070 (9)Na1—O25iv3.10 (2)
W2—O52.253 (9)Na2—O322.30 (1)
W3—O131.74 (1)Na2—O342.33 (1)
W3—O141.76 (1)Na2—O312.44 (2)
W3—O121.892 (9)Na2—O33ii2.46 (1)
W3—O151.957 (9)Na2—O32v2.50 (1)
W3—O172.210 (9)Na2—O362.52 (2)
W3—O162.213 (9)Na3—O262.32 (2)
W4—O31.72 (1)Na3—O272.35 (2)
W4—O16i1.794 (9)Na3—O292.39 (1)
W4—O21.913 (10)Na3—O282.39 (1)
W4—O41.949 (10)Na3—O13vi2.62 (1)
W4—O12.079 (9)Na3—O15i2.63 (1)
W4—O52.257 (8)Na4—O32.28 (1)
W5—O211.74 (1)Na4—O8vii2.35 (1)
W5—O201.755 (9)Na4—O302.35 (2)
W5—O91.894 (10)Na4—O282.36 (1)
W5—O15i1.924 (9)Na4—O292.45 (1)
W5—O17i2.276 (9)Na4—O20vii2.46 (1)
W5—O22.311 (9)Na5—O242.38 (1)
W6—O81.736 (10)Na5—O232.38 (1)
W6—O71.768 (10)Na5—O372.41 (2)
W6—O61.888 (9)Na5—O192.42 (1)
W6—O91.956 (10)Na5—O252.42 (2)
W6—O18i2.183 (9)Na5—O222.43 (2)
N1···O72.85 (2)O25···O33i2.77 (2)
N1···O18i2.98 (2)O26···O35vi3.07 (2)
N1···O27viii2.98 (2)O26···O37xii3.19 (2)
N1···O163.04 (2)O26···O273.21 (2)
N1···O133.16 (2)O28···O37xii3.27 (2)
N1···O26viii3.26 (2)O28···O293.30 (2)
O22···O30ix3.02 (2)O29···O32xi3.26 (2)
O22···O373.18 (2)O30···O32xi2.77 (2)
O22···O22x3.28 (3)O30···O31vii3.07 (2)
O23···O30ix2.94 (2)O30···O36xi3.23 (2)
O23···O25ix3.00 (2)O32···O34v3.21 (2)
O23···O253.28 (2)O32···O32v3.26 (3)
O23···O36iii3.30 (2)O32···O36v3.26 (2)
O24···O35xi2.81 (2)O33···O352.21 (2)
O24···O31i2.86 (2)O33···O34ii3.22 (2)
O24···O33xi3.26 (2)O34···O363.17 (2)
O10—W1—O1101.0 (4)O3—W4—O497.7 (4)
O10—W1—O11102.0 (4)O3—W4—O193.5 (4)
O10—W1—O6101.4 (4)O3—W4—O5163.3 (4)
O10—W1—O12101.4 (4)O16i—W4—O296.6 (4)
O10—W1—O5177.2 (4)O16i—W4—O491.5 (4)
O1—W1—O1192.1 (4)O16i—W4—O1162.4 (4)
O1—W1—O688.0 (4)O16i—W4—O589.5 (4)
O1—W1—O12157.3 (4)O2—W4—O4156.0 (4)
O1—W1—O577.0 (3)O2—W4—O182.9 (4)
O11—W1—O6156.2 (4)O2—W4—O586.0 (4)
O11—W1—O1286.6 (4)O4—W4—O182.6 (4)
O11—W1—O576.2 (4)O4—W4—O571.5 (3)
O6—W1—O1284.3 (4)O1—W4—O572.8 (3)
O6—W1—O580.7 (3)O21—W5—O20103.3 (5)
O12—W1—O580.7 (3)O21—W5—O998.0 (5)
O19—W2—O18103.5 (5)O21—W5—O15i100.1 (5)
O19—W2—O17102.1 (5)O21—W5—O17i91.8 (4)
O19—W2—O498.1 (4)O21—W5—O2166.2 (4)
O19—W2—O1196.1 (4)O20—W5—O9100.8 (4)
O19—W2—O5165.0 (4)O20—W5—O15i95.9 (4)
O18—W2—O1795.3 (4)O20—W5—O17i162.9 (4)
O18—W2—O491.2 (4)O20—W5—O288.8 (4)
O18—W2—O11160.0 (4)O9—W5—O15i151.8 (4)
O18—W2—O587.5 (4)O9—W5—O17i84.8 (4)
O17—W2—O4156.6 (4)O9—W5—O272.9 (4)
O17—W2—O1184.1 (4)O15i—W5—O17i73.2 (3)
O17—W2—O586.6 (4)O15i—W5—O285.0 (4)
O4—W2—O1182.2 (4)O17i—W5—O277.3 (3)
O4—W2—O571.2 (3)O8—W6—O7101.2 (5)
O11—W2—O572.5 (3)O8—W6—O699.1 (4)
O13—W3—O14100.4 (5)O8—W6—O994.6 (4)
O13—W3—O1299.5 (4)O8—W6—O18i170.6 (4)
O13—W3—O1595.7 (4)O8—W6—O294.6 (4)
O13—W3—O17163.7 (4)O7—W6—O697.9 (4)
O13—W3—O1687.1 (4)O7—W6—O996.6 (4)
O14—W3—O1297.0 (4)O7—W6—O18i86.7 (4)
O14—W3—O1595.4 (4)O7—W6—O2162.5 (4)
O14—W3—O1793.3 (4)O6—W6—O9157.7 (4)
O14—W3—O16171.8 (4)O6—W6—O18i84.7 (4)
O12—W3—O15158.3 (4)O6—W6—O287.0 (4)
O12—W3—O1787.4 (4)O9—W6—O18i79.3 (4)
O12—W3—O1684.9 (4)O9—W6—O274.4 (4)
O15—W3—O1774.1 (4)O18i—W6—O277.0 (3)
O15—W3—O1680.5 (4)O35—C1—O33127 (1)
O17—W3—O1678.8 (3)O35—C1—C2118 (1)
O3—W4—O16i103.8 (4)O33—C1—C2114 (1)
O3—W4—O2102.2 (4)N1—C2—C1112 (1)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z; (iii) x+2, y+1, z+1; (iv) x+1, y, z1; (v) x+2, y+2, z; (vi) x1, y+1, z; (vii) x+1, y+2, z+1; (viii) x+1, y1, z; (ix) x+1, y+1, z+2; (x) x+1, y, z+2; (xi) x1, y, z+1; (xii) x, y+1, z1.

Experimental details

Crystal data
Chemical formulaNa10(H2W12O42)·2C2H5NO2·28H2O
Mr3764.65
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)11.86 (1), 12.60 (1), 13.02 (2)
α, β, γ (°)74.3 (1), 79.6 (1), 66.0 (1)
V3)1706 (8)
Z1
Radiation typeMo Kα
µ (mm1)20.36
Crystal size (mm)0.12 × 0.12 × 0.05
Data collection
DiffractometerRigaku AFC-5S
diffractometer
Absorption correctionψ scan
(North, Phillips & Mathews, 1968)
Tmin, Tmax0.108, 0.369
No. of measured, independent and
observed [F2 > σ(F2)] reflections
8194, 7818, 7188
Rint0.055
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.063, 1.98
No. of reflections7188
No. of parameters260
No. of restraints?
H-atom treatmentH-atom parameters not defined
Δρmax, Δρmin (e Å3)3.86, 4.63

Computer programs: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1988), MSC/AFC Diffractometer Control Software, TEXSAN (Molecular Structure Corporation, 1989), SHELXS86 (Sheldrick, 1985), TEXSAN, ORTEPII (Johnson, 1976).

Selected interatomic distances (Å) top
Na1—O72.35 (1)Na3—O282.39 (1)
Na1—O352.37 (1)Na3—O13v2.62 (1)
Na1—O33i2.41 (1)Na3—O15vi2.63 (1)
Na1—O10ii2.44 (1)Na4—O32.28 (1)
Na1—O342.49 (1)Na4—O8vii2.35 (1)
Na1—O25iii3.10 (2)Na4—O302.35 (2)
Na2—O322.30 (1)Na4—O282.36 (1)
Na2—O342.33 (1)Na4—O292.45 (1)
Na2—O312.44 (2)Na4—O20vii2.46 (1)
Na2—O33i2.46 (1)Na5—O242.38 (1)
Na2—O32iv2.50 (1)Na5—O232.38 (1)
Na2—O362.52 (2)Na5—O372.41 (2)
Na3—O262.32 (2)Na5—O192.42 (1)
Na3—O272.35 (2)Na5—O252.42 (2)
Na3—O292.39 (1)Na5—O222.43 (2)
N1···O72.85 (2)N1···O163.04 (2)
N1···O18vi2.98 (2)N1···O133.16 (2)
N1···O27viii2.98 (2)N1···O26viii3.26 (2)
Symmetry codes: (i) x+2, y+1, z; (ii) x+2, y+1, z+1; (iii) x+1, y, z1; (iv) x+2, y+2, z; (v) x1, y+1, z; (vi) x+1, y+1, z+1; (vii) x+1, y+2, z+1; (viii) x+1, y1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds