Download citation
Download citation
link to html
The title compound, C15H13IN2OS, adopts a trans-cis configuration of the 2-methyl­benzoyl and 3-iodo­phenyl groups with respect to the thiono S atom across the thio­urea C-N bonds. The dihedral angle between these two groups is 31.88 (9)°. The crystal structure is stabilized by inter­molecular hydrogen bonds, forming dimers.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807057194/bq2043sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807057194/bq2043Isup2.hkl
Contains datablock I

CCDC reference: 672937

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.026
  • wR factor = 0.062
  • Data-to-parameter ratio = 15.3

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT154_ALERT_1_C The su's on the Cell Angles are Equal (x 10000) 700 Deg. PLAT250_ALERT_2_C Large U3/U1 Ratio for Average U(i,j) Tensor .... 2.11 PLAT790_ALERT_4_C Centre of Gravity not Within Unit Cell: Resd. # 1 C15 H13 I N2 O S
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 3 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

The title compound, (I), adopts a trans-cis configuration with respect to the positions of the 2-methylbenzoyl and 3-iodophenyl groups relative to the thiono S atom, across the thiourea C—N bonds (Fig 1). The bond lengths and angles are in normal ranges and comparable to other thiourea derivatives (Yusof et al., 2006; Razis, Yusof, Kadir & Yamin, 2007; Razis, Yusof & Yamin, 2007). The central thiourea (S1/N1/N2/C9), 2-methylphenyl (C1—C6/C7) and 3-iodophenyl (C10—C15/I1) groups are all planar, with a maximum deviation of 0.037 (3) Å for atom C15 from the least-squares plane. The central thiourea fragment makes dihedral angles of 48.30 (11)° and 19.82 (10)° with 2-methylphenyl and 3-iodophenyl groups, respectively. The two aryl rings are inclined to each other at an angle of 31.88 (9)°.

There are two intramolecular hydrogen bond, N2—H2···O1 and C11—H11···S1 (Table 1), forming two pseudo-six-membered rings, O1···H2—N2—C9—N1—C8—O1 and S1···H11—C11—C10—N2—C9—S1. In the crystal structure, the molecules are linked by intermolecular interaction, N—H···S (symmetry codes as in Table 1) to form dimers (Fig.2).

Related literature top

For related crystal structures, see: Yusof et al. (2006); Razis, Yusof, Kadir & Yamin (2007); Razis, Yusof & Yamin (2007).

Experimental top

To a stirring acetone solution (75 ml) of 2-methylbenzoyl chloride (2.0 g, 13 mmol) and ammoniumthiocyanate (0.98 g, 13 mmol), 3-iodoaniline (2.85 g, 13 mmol) in 40 ml of acetone was added dropwise. The solution mixture was refluxed for 1 h. The resulting solution was poured into a beaker containing some ice blocks. The white precipitate was filtered off and washed with distilled water and cold ethanol before dried under vacuum. Good quality crystals were obtained by recrystallization from DMSO.

Refinement top

After their location in the difference map, all H-atoms were fixed geometrically at ideal positions and allowed to ride on the parent C or N atoms with C—H = 0.93–0.97 Å and N—H = 0.86 Å with Uiso(H)= 1.2 (CH2 and NH) or 1.5Ueq(C)(CH3).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL (Sheldrick, 1997b), PARST (Nardelli, 1995) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. : The molecule of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. Dashed lines indicate hydrogen bonds.
[Figure 2] Fig. 2. : Packing diagram of compound,(I), viewed down the a axis. The dashed lines denote the N—H···S hydrogen bonds.
N-(3-Iodophenyl)-N'-(2-methylbenzoyl)thiourea top
Crystal data top
C15H13IN2OSZ = 2
Mr = 396.23F(000) = 388
Triclinic, P1Dx = 1.737 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.525 (3) ÅCell parameters from 907 reflections
b = 10.249 (5) Åθ = 1.8–25.5°
c = 11.589 (5) ŵ = 2.25 mm1
α = 78.093 (7)°T = 298 K
β = 87.915 (7)°Block, colourless
γ = 88.072 (7)°0.38 × 0.37 × 0.27 mm
V = 757.6 (6) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2800 independent reflections
Radiation source: fine-focus sealed tube2400 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 83.66 pixels mm-1θmax = 25.5°, θmin = 1.8°
ω scanh = 77
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
k = 1212
Tmin = 0.453, Tmax = 0.547l = 1414
7408 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.062 w = 1/[σ2(Fo2) + (0.0209P)2 + 0.5551P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2800 reflectionsΔρmax = 0.53 e Å3
183 parametersΔρmin = 0.65 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0547 (17)
Crystal data top
C15H13IN2OSγ = 88.072 (7)°
Mr = 396.23V = 757.6 (6) Å3
Triclinic, P1Z = 2
a = 6.525 (3) ÅMo Kα radiation
b = 10.249 (5) ŵ = 2.25 mm1
c = 11.589 (5) ÅT = 298 K
α = 78.093 (7)°0.38 × 0.37 × 0.27 mm
β = 87.915 (7)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2800 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2400 reflections with I > 2σ(I)
Tmin = 0.453, Tmax = 0.547Rint = 0.022
7408 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.062H-atom parameters constrained
S = 1.04Δρmax = 0.53 e Å3
2800 reflectionsΔρmin = 0.65 e Å3
183 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.19499 (4)1.47444 (3)0.114013 (19)0.07956 (15)
S10.83545 (13)1.16065 (8)0.03516 (6)0.0592 (2)
O11.0786 (3)0.9391 (2)0.38571 (16)0.0594 (5)
N11.0762 (3)1.0086 (2)0.18631 (19)0.0459 (5)
H11.14211.00030.12250.055*
N20.8230 (3)1.1210 (2)0.27187 (18)0.0459 (5)
H20.89271.09100.33380.055*
C11.3370 (4)0.7106 (3)0.3381 (2)0.0490 (6)
C21.5064 (5)0.6312 (3)0.3186 (3)0.0612 (8)
H2A1.51710.54430.36210.073*
C31.6583 (5)0.6775 (4)0.2370 (3)0.0691 (9)
H31.77020.62230.22590.083*
C41.6453 (5)0.8052 (4)0.1719 (3)0.0653 (8)
H41.74840.83680.11670.078*
C51.4802 (4)0.8863 (3)0.1883 (3)0.0541 (7)
H51.47130.97270.14380.065*
C61.3259 (4)0.8400 (3)0.2712 (2)0.0431 (6)
C71.1734 (5)0.6515 (3)0.4259 (3)0.0661 (8)
H7A1.19190.55630.44470.099*
H7B1.04100.67430.39280.099*
H7C1.18270.68630.49630.099*
C81.1509 (4)0.9319 (3)0.2886 (2)0.0445 (6)
C90.9086 (4)1.0979 (2)0.1716 (2)0.0423 (6)
C100.6356 (4)1.1872 (2)0.2924 (2)0.0401 (5)
C110.5345 (4)1.2804 (3)0.2082 (2)0.0475 (6)
H110.59141.30750.13270.057*
C120.3472 (4)1.3323 (3)0.2393 (2)0.0468 (6)
C130.2607 (4)1.2946 (3)0.3506 (3)0.0533 (7)
H130.13241.32850.36900.064*
C140.3669 (5)1.2061 (3)0.4344 (3)0.0573 (7)
H140.31221.18210.51070.069*
C150.5538 (4)1.1526 (3)0.4060 (2)0.0484 (6)
H150.62521.09330.46330.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0782 (2)0.0951 (2)0.06210 (17)0.05246 (14)0.02494 (11)0.01330 (12)
S10.0753 (5)0.0578 (4)0.0386 (4)0.0319 (4)0.0002 (3)0.0017 (3)
O10.0597 (12)0.0749 (13)0.0417 (11)0.0334 (10)0.0061 (9)0.0127 (9)
N10.0398 (12)0.0527 (13)0.0425 (11)0.0168 (10)0.0022 (9)0.0066 (10)
N20.0425 (12)0.0552 (13)0.0381 (11)0.0214 (10)0.0064 (9)0.0080 (10)
C10.0430 (15)0.0522 (15)0.0535 (15)0.0105 (12)0.0084 (12)0.0156 (12)
C20.0553 (18)0.0521 (17)0.077 (2)0.0206 (14)0.0121 (16)0.0167 (15)
C30.0469 (18)0.078 (2)0.088 (2)0.0262 (16)0.0087 (17)0.0327 (19)
C40.0390 (16)0.085 (2)0.073 (2)0.0083 (15)0.0039 (14)0.0222 (18)
C50.0428 (16)0.0591 (17)0.0593 (17)0.0055 (13)0.0032 (13)0.0108 (14)
C60.0340 (13)0.0500 (14)0.0467 (14)0.0101 (11)0.0058 (11)0.0140 (12)
C70.063 (2)0.0580 (18)0.072 (2)0.0049 (15)0.0038 (16)0.0030 (16)
C80.0377 (14)0.0488 (15)0.0469 (15)0.0107 (11)0.0050 (11)0.0112 (12)
C90.0414 (14)0.0399 (13)0.0430 (14)0.0080 (11)0.0009 (11)0.0041 (11)
C100.0383 (13)0.0415 (13)0.0411 (13)0.0104 (10)0.0047 (10)0.0114 (10)
C110.0479 (15)0.0541 (15)0.0381 (13)0.0188 (12)0.0025 (11)0.0065 (11)
C120.0453 (15)0.0483 (14)0.0482 (15)0.0175 (12)0.0121 (12)0.0145 (12)
C130.0418 (15)0.0550 (16)0.0636 (18)0.0128 (13)0.0035 (13)0.0164 (14)
C140.0611 (19)0.0558 (17)0.0504 (16)0.0109 (14)0.0128 (14)0.0048 (13)
C150.0550 (16)0.0457 (14)0.0411 (14)0.0152 (12)0.0018 (12)0.0038 (11)
Geometric parameters (Å, º) top
I1—C122.086 (3)C4—H40.9300
S1—C91.660 (3)C5—C61.391 (4)
O1—C81.220 (3)C5—H50.9300
N1—C81.376 (3)C6—C81.490 (3)
N1—C91.395 (3)C7—H7A0.9600
N1—H10.8600C7—H7B0.9600
N2—C91.332 (3)C7—H7C0.9600
N2—C101.415 (3)C10—C151.383 (4)
N2—H20.8600C10—C111.386 (3)
C1—C21.390 (4)C11—C121.382 (4)
C1—C61.392 (4)C11—H110.9300
C1—C71.500 (4)C12—C131.374 (4)
C2—C31.371 (5)C13—C141.374 (4)
C2—H2A0.9300C13—H130.9300
C3—C41.371 (5)C14—C151.377 (4)
C3—H30.9300C14—H140.9300
C4—C51.370 (4)C15—H150.9300
C8—N1—C9129.1 (2)C1—C7—H7C109.5
C8—N1—H1115.5H7A—C7—H7C109.5
C9—N1—H1115.5H7B—C7—H7C109.5
C9—N2—C10130.1 (2)O1—C8—N1122.2 (2)
C9—N2—H2114.9O1—C8—C6123.0 (2)
C10—N2—H2114.9N1—C8—C6114.8 (2)
C2—C1—C6117.6 (3)N2—C9—N1114.6 (2)
C2—C1—C7118.8 (3)N2—C9—S1127.5 (2)
C6—C1—C7123.6 (2)N1—C9—S1117.97 (19)
C3—C2—C1121.8 (3)C15—C10—C11120.1 (2)
C3—C2—H2A119.1C15—C10—N2115.2 (2)
C1—C2—H2A119.1C11—C10—N2124.7 (2)
C4—C3—C2120.0 (3)C12—C11—C10118.4 (2)
C4—C3—H3120.0C12—C11—H11120.8
C2—C3—H3120.0C10—C11—H11120.8
C5—C4—C3119.9 (3)C13—C12—C11121.9 (2)
C5—C4—H4120.0C13—C12—I1119.29 (19)
C3—C4—H4120.0C11—C12—I1118.8 (2)
C4—C5—C6120.4 (3)C12—C13—C14118.9 (3)
C4—C5—H5119.8C12—C13—H13120.5
C6—C5—H5119.8C14—C13—H13120.5
C5—C6—C1120.4 (2)C13—C14—C15120.5 (3)
C5—C6—C8118.9 (2)C13—C14—H14119.8
C1—C6—C8120.7 (2)C15—C14—H14119.8
C1—C7—H7A109.5C14—C15—C10120.1 (2)
C1—C7—H7B109.5C14—C15—H15120.0
H7A—C7—H7B109.5C10—C15—H15120.0
C6—C1—C2—C30.1 (5)C10—N2—C9—N1168.7 (2)
C7—C1—C2—C3178.0 (3)C10—N2—C9—S110.0 (4)
C1—C2—C3—C40.1 (5)C8—N1—C9—N27.3 (4)
C2—C3—C4—C50.1 (5)C8—N1—C9—S1171.6 (2)
C3—C4—C5—C60.3 (5)C9—N2—C10—C15156.7 (3)
C4—C5—C6—C10.3 (4)C9—N2—C10—C1123.2 (4)
C4—C5—C6—C8178.7 (3)C15—C10—C11—C123.1 (4)
C2—C1—C6—C50.1 (4)N2—C10—C11—C12176.9 (2)
C7—C1—C6—C5177.7 (3)C10—C11—C12—C130.5 (4)
C2—C1—C6—C8178.8 (3)C10—C11—C12—I1179.3 (2)
C7—C1—C6—C83.4 (4)C11—C12—C13—C142.2 (4)
C9—N1—C8—O13.9 (5)I1—C12—C13—C14176.7 (2)
C9—N1—C8—C6176.1 (2)C12—C13—C14—C152.2 (5)
C5—C6—C8—O1138.0 (3)C13—C14—C15—C100.4 (5)
C1—C6—C8—O140.9 (4)C11—C10—C15—C143.1 (4)
C5—C6—C8—N142.0 (3)N2—C10—C15—C14176.9 (3)
C1—C6—C8—N1139.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O10.861.952.633 (3)136
C11—H11···S10.932.553.155 (3)123
N1—H1···S1i0.862.703.405 (3)140
Symmetry code: (i) x+2, y+2, z.

Experimental details

Crystal data
Chemical formulaC15H13IN2OS
Mr396.23
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)6.525 (3), 10.249 (5), 11.589 (5)
α, β, γ (°)78.093 (7), 87.915 (7), 88.072 (7)
V3)757.6 (6)
Z2
Radiation typeMo Kα
µ (mm1)2.25
Crystal size (mm)0.38 × 0.37 × 0.27
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.453, 0.547
No. of measured, independent and
observed [I > 2σ(I)] reflections
7408, 2800, 2400
Rint0.022
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.062, 1.04
No. of reflections2800
No. of parameters183
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.53, 0.65

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b), PARST (Nardelli, 1995) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O10.861.952.633 (3)136
C11—H11···S10.932.553.155 (3)123
N1—H1···S1i0.862.703.405 (3)140
Symmetry code: (i) x+2, y+2, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds