Download citation
Download citation
link to html
The title compound, C17H17N3O3S, is an important biologically active heterocyclic compound containing one five-membered and two six-membered planar rings. The five-membered ring is oriented with respect to the six-membered rings at dihedral angles of 88.84 (2) and 78.69 (3)°. The structure is further stabilized by intermolecular N—H...S stacking interactions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807036471/bq2029sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807036471/bq2029Isup2.hkl
Contains datablock I

CCDC reference: 657862

Key indicators

  • Single-crystal X-ray study
  • T = 100 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.035
  • wR factor = 0.099
  • Data-to-parameter ratio = 16.5

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT230_ALERT_2_B Hirshfeld Test Diff for S1 - C1 .. 7.37 su
Alert level C PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ? PLAT154_ALERT_1_C The su's on the Cell Angles are Equal (x 10000) 100 Deg. PLAT180_ALERT_3_C Check Cell Rounding: # of Values Ending with 0 = 6
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 3 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Substituted triazole derivatives display significant biological activity including antimicrobial (Holla et al., 1998), analgesic (Turan-Zitouni et al., 1999), antitumor (Demirbas et al., 2002), antihypertensive (Paulvannan et al., 2000) and antiviral activities (Kritsanida et al., 2002). The biological activity is closely related to the structure, possibly being due to the presence of the —N—C S unit (Omar et al., 1986). We are interested in the synthesis and biological activity of aryloxyacetyl hydrazide derivatives and report here the synthesis and crystal structure of the title compound, (I) (Fig. 1).

The C1S1 bond length [1.6782 (14) Å] compares with 1.6773 (19) Å in 4-(4-chlorophenyl)-3-(furan-2-yl)-1H-1,2,4- triazole-5(4H)-thione (Ozturk et al., 2004a) and 1.668 (5) Å in 4-amino-3-(1,2,3,4,5-pentahydroxypentyl)-1H-1,2,4-triazole- 5(4H)-thione (Zhang et al., 2004). In the triazole ring, the N2 C1 bond [1.3385 (17) Å] shows double-bond character. In the crystal structure, all bond lengths and angles are comparable with those observed in related structures (Ozturk et al., 2004a and 2004b). The triazole ring is planar within 0.002 Å and 2-methoxyphenyl ring is almost perpendicular to this ring while 3,5-dimethoxy-phenyl ring is planar to. It forms inversion related dimers via N—H···S hydrogen bonds. The structure is further stabilized by intermolecular-stacking interactions down the b axis. N2—H2···S1 hydrogen bonds link molecules of title compound into infinite chains extending along the b axis of the unit cell (Fig. 2 and Table 1).

Related literature top

For related literature, see: Demirbas et al. (2002); Holla et al. (1998); Omar et al. (1986); Ozturk et al. (2004a,b); Paulvannan et al. (2000); Turan-Zitouni et al. (1999); Zhang et al. (2004).

For related literature, see: Kritsanida et al. (2002).

Experimental top

The synthesis of the title compound was carried out by refluxing a solution of 1-(3,5-dimethoxybenzoyl)-4-(2-methoxyphenyl)thiosemicarbazide (3.47 g, 10 mmol) in 2 M NaOH for 5 h. Single crystals suitable for X-ray measurements were obtained by recrystallization from an aqueous ethanol solution at room temperature (yield: 80%; m.p. 470–471 K).

Refinement top

The structure was solved by direct methods. H atoms were included in calculated positions with C—H lengths of 0.95(CH), 0.99(CH2) & 0.98(CH3)Å; Uiso(H) values were fixed at 1.2Ueq(C) except for CH3 where it was 1.5Ueq(C).

Structure description top

Substituted triazole derivatives display significant biological activity including antimicrobial (Holla et al., 1998), analgesic (Turan-Zitouni et al., 1999), antitumor (Demirbas et al., 2002), antihypertensive (Paulvannan et al., 2000) and antiviral activities (Kritsanida et al., 2002). The biological activity is closely related to the structure, possibly being due to the presence of the —N—C S unit (Omar et al., 1986). We are interested in the synthesis and biological activity of aryloxyacetyl hydrazide derivatives and report here the synthesis and crystal structure of the title compound, (I) (Fig. 1).

The C1S1 bond length [1.6782 (14) Å] compares with 1.6773 (19) Å in 4-(4-chlorophenyl)-3-(furan-2-yl)-1H-1,2,4- triazole-5(4H)-thione (Ozturk et al., 2004a) and 1.668 (5) Å in 4-amino-3-(1,2,3,4,5-pentahydroxypentyl)-1H-1,2,4-triazole- 5(4H)-thione (Zhang et al., 2004). In the triazole ring, the N2 C1 bond [1.3385 (17) Å] shows double-bond character. In the crystal structure, all bond lengths and angles are comparable with those observed in related structures (Ozturk et al., 2004a and 2004b). The triazole ring is planar within 0.002 Å and 2-methoxyphenyl ring is almost perpendicular to this ring while 3,5-dimethoxy-phenyl ring is planar to. It forms inversion related dimers via N—H···S hydrogen bonds. The structure is further stabilized by intermolecular-stacking interactions down the b axis. N2—H2···S1 hydrogen bonds link molecules of title compound into infinite chains extending along the b axis of the unit cell (Fig. 2 and Table 1).

For related literature, see: Demirbas et al. (2002); Holla et al. (1998); Omar et al. (1986); Ozturk et al. (2004a,b); Paulvannan et al. (2000); Turan-Zitouni et al. (1999); Zhang et al. (2004).

For related literature, see: Kritsanida et al. (2002).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1999); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with 50% probability displacement ellipsoids (arbitrary spheres for H atoms).
[Figure 2] Fig. 2. Crystal packing of (I), showing the formation of hydrogen bonds with the symmetry position -x + 1, -y + 1, -z + 1.
[Figure 3] Fig. 3. The formation of the title compound.
3-(3,5-Dimethoxyphenyl)-4-(2-methoxyphenyl)-1H-1,2,4-triazole-5(4H)-thione top
Crystal data top
C17H17N3O3SZ = 2
Mr = 343.40F(000) = 360
Triclinic, P1Dx = 1.425 Mg m3
Dm = 1.411 Mg m3
Dm measured by not measured
Hall symbol: -P 1Melting point: 470(1) K
a = 8.8950 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.3510 (8) ÅCell parameters from 3874 reflections
c = 10.5510 (9) Åθ = 2.3–28.3°
α = 94.365 (1)°µ = 0.22 mm1
β = 102.452 (1)°T = 100 K
γ = 108.924 (1)°Block, white
V = 800.44 (12) Å30.35 × 0.30 × 0.25 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3963 independent reflections
Radiation source: fine-focus sealed tube3136 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
φ and ω scansθmax = 28.3°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.926, Tmax = 0.946k = 1212
6943 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0582P)2 + 0.033P]
where P = (Fo2 + 2Fc2)/3
3625 reflections(Δ/σ)max < 0.001
220 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C17H17N3O3Sγ = 108.924 (1)°
Mr = 343.40V = 800.44 (12) Å3
Triclinic, P1Z = 2
a = 8.8950 (8) ÅMo Kα radiation
b = 9.3510 (8) ŵ = 0.22 mm1
c = 10.5510 (9) ÅT = 100 K
α = 94.365 (1)°0.35 × 0.30 × 0.25 mm
β = 102.452 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3963 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3136 reflections with I > 2σ(I)
Tmin = 0.926, Tmax = 0.946Rint = 0.031
6943 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.099H-atom parameters constrained
S = 1.09Δρmax = 0.38 e Å3
3625 reflectionsΔρmin = 0.29 e Å3
220 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.55056 (15)0.34243 (15)0.35976 (13)0.0149 (3)
C20.65598 (15)0.41748 (15)0.19148 (13)0.0147 (3)
C30.67625 (16)0.17140 (15)0.27023 (13)0.0145 (3)
C40.84064 (16)0.19625 (15)0.33053 (13)0.0159 (3)
C50.89278 (17)0.07165 (16)0.33995 (14)0.0196 (3)
H51.00410.08640.38040.024*
C60.77988 (17)0.07507 (16)0.28931 (14)0.0213 (3)
H60.81530.16040.29610.026*
C70.61750 (17)0.09936 (15)0.22939 (14)0.0202 (3)
H70.54240.20010.19460.024*
C80.56524 (16)0.02510 (15)0.22058 (13)0.0178 (3)
H80.45360.00980.18060.021*
C91.10474 (16)0.37350 (17)0.44617 (14)0.0206 (3)
H9A1.10600.31940.52220.031*
H9B1.16140.48370.47630.031*
H9C1.16080.33670.38760.031*
C100.72473 (15)0.42325 (15)0.07657 (13)0.0154 (3)
C110.75431 (16)0.30133 (15)0.01694 (13)0.0161 (3)
H110.73750.20920.05330.019*
C120.80932 (16)0.31619 (15)0.09758 (13)0.0161 (3)
C130.83678 (16)0.45016 (15)0.15064 (13)0.0175 (3)
H130.87430.45900.22840.021*
C140.80850 (16)0.57224 (15)0.08796 (13)0.0175 (3)
C150.75216 (16)0.56080 (15)0.02409 (13)0.0167 (3)
H150.73220.64440.06530.020*
C160.85664 (19)0.18902 (18)0.28188 (14)0.0243 (3)
H16A0.76740.21060.34010.037*
H16B0.85740.08850.31490.037*
H16C0.96200.26780.27940.037*
C170.81545 (19)0.82927 (16)0.08535 (15)0.0247 (3)
H17A0.70100.80060.08000.037*
H17B0.83980.91280.13710.037*
H17C0.88880.86300.00340.037*
N10.62267 (13)0.30080 (12)0.26679 (10)0.0138 (2)
N20.54324 (13)0.47840 (13)0.33425 (11)0.0164 (2)
H20.50090.53160.37900.020*
N30.60780 (14)0.52693 (13)0.23210 (11)0.0168 (2)
O10.93818 (11)0.34536 (11)0.37661 (10)0.0195 (2)
O20.83196 (12)0.18925 (11)0.15200 (9)0.0186 (2)
O30.83978 (13)0.70006 (11)0.14709 (10)0.0231 (2)
S10.48847 (4)0.24514 (4)0.47744 (3)0.01896 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0121 (6)0.0142 (6)0.0167 (6)0.0049 (5)0.0009 (5)0.0004 (5)
C20.0132 (6)0.0118 (6)0.0171 (6)0.0037 (5)0.0011 (5)0.0025 (5)
C30.0165 (6)0.0135 (6)0.0159 (6)0.0076 (5)0.0046 (5)0.0037 (5)
C40.0164 (6)0.0144 (6)0.0158 (6)0.0044 (5)0.0036 (5)0.0015 (5)
C50.0175 (6)0.0193 (7)0.0222 (7)0.0085 (5)0.0020 (5)0.0031 (6)
C60.0245 (7)0.0163 (7)0.0265 (7)0.0112 (6)0.0061 (6)0.0054 (6)
C70.0211 (7)0.0117 (6)0.0261 (7)0.0040 (5)0.0054 (6)0.0029 (5)
C80.0158 (6)0.0157 (7)0.0213 (7)0.0049 (5)0.0044 (5)0.0031 (5)
C90.0154 (6)0.0217 (7)0.0209 (7)0.0053 (5)0.0005 (5)0.0000 (6)
C100.0119 (6)0.0153 (6)0.0166 (6)0.0031 (5)0.0018 (5)0.0020 (5)
C110.0145 (6)0.0135 (6)0.0187 (7)0.0036 (5)0.0030 (5)0.0040 (5)
C120.0129 (6)0.0153 (6)0.0188 (7)0.0049 (5)0.0016 (5)0.0011 (5)
C130.0164 (6)0.0186 (7)0.0164 (6)0.0046 (5)0.0040 (5)0.0047 (5)
C140.0162 (6)0.0147 (6)0.0198 (7)0.0044 (5)0.0013 (5)0.0058 (5)
C150.0165 (6)0.0127 (6)0.0200 (7)0.0056 (5)0.0023 (5)0.0017 (5)
C160.0311 (8)0.0261 (8)0.0211 (7)0.0145 (6)0.0104 (6)0.0043 (6)
C170.0302 (8)0.0138 (7)0.0296 (8)0.0075 (6)0.0056 (6)0.0066 (6)
N10.0135 (5)0.0118 (5)0.0159 (5)0.0046 (4)0.0030 (4)0.0024 (4)
N20.0185 (6)0.0149 (5)0.0184 (6)0.0079 (4)0.0069 (5)0.0029 (4)
N30.0181 (6)0.0149 (6)0.0179 (6)0.0059 (4)0.0052 (5)0.0034 (4)
O10.0142 (5)0.0144 (5)0.0253 (5)0.0043 (4)0.0014 (4)0.0017 (4)
O20.0230 (5)0.0164 (5)0.0198 (5)0.0089 (4)0.0088 (4)0.0038 (4)
O30.0321 (6)0.0154 (5)0.0249 (5)0.0092 (4)0.0101 (4)0.0092 (4)
S10.0240 (2)0.01631 (18)0.02032 (19)0.00884 (14)0.00978 (14)0.00527 (13)
Geometric parameters (Å, º) top
C1—N21.3385 (17)C10—C111.3862 (19)
C1—N11.3785 (16)C10—C151.4084 (18)
C1—S11.6782 (14)C11—C121.3982 (19)
C2—N31.3083 (17)C11—H110.9500
C2—N11.3905 (16)C12—O21.3712 (16)
C2—C101.4680 (18)C12—C131.3820 (19)
C3—C81.3830 (18)C13—C141.3953 (19)
C3—C41.3974 (18)C13—H130.9500
C3—N11.4374 (16)C14—O31.3667 (16)
C4—O11.3651 (15)C14—C151.3786 (19)
C4—C51.3896 (19)C15—H150.9500
C5—C61.3928 (19)C16—O21.4337 (16)
C5—H50.9500C16—H16A0.9800
C6—C71.3817 (19)C16—H16B0.9800
C6—H60.9500C16—H16C0.9800
C7—C81.3885 (18)C17—O31.4289 (17)
C7—H70.9500C17—H17A0.9800
C8—H80.9500C17—H17B0.9800
C9—O11.4324 (15)C17—H17C0.9800
C9—H9A0.9800N2—N31.3674 (15)
C9—H9B0.9800N2—H20.8800
C9—H9C0.9800
N2—C1—N1103.64 (11)C12—C11—H11120.6
N2—C1—S1128.55 (10)O2—C12—C13123.48 (12)
N1—C1—S1127.81 (10)O2—C12—C11115.21 (12)
N3—C2—N1110.19 (11)C13—C12—C11121.30 (13)
N3—C2—C10121.30 (12)C12—C13—C14118.86 (13)
N1—C2—C10128.40 (11)C12—C13—H13120.6
C8—C3—C4121.02 (12)C14—C13—H13120.6
C8—C3—N1120.42 (11)O3—C14—C15123.94 (12)
C4—C3—N1118.48 (11)O3—C14—C13114.70 (12)
O1—C4—C5125.09 (12)C15—C14—C13121.35 (12)
O1—C4—C3115.70 (11)C14—C15—C10118.93 (12)
C5—C4—C3119.22 (12)C14—C15—H15120.5
C4—C5—C6119.21 (12)C10—C15—H15120.5
C4—C5—H5120.4O2—C16—H16A109.5
C6—C5—H5120.4O2—C16—H16B109.5
C7—C6—C5121.47 (12)H16A—C16—H16B109.5
C7—C6—H6119.3O2—C16—H16C109.5
C5—C6—H6119.3H16A—C16—H16C109.5
C6—C7—C8119.30 (13)H16B—C16—H16C109.5
C6—C7—H7120.3O3—C17—H17A109.5
C8—C7—H7120.3O3—C17—H17B109.5
C3—C8—C7119.77 (12)H17A—C17—H17B109.5
C3—C8—H8120.1O3—C17—H17C109.5
C7—C8—H8120.1H17A—C17—H17C109.5
O1—C9—H9A109.5H17B—C17—H17C109.5
O1—C9—H9B109.5C1—N1—C2107.79 (11)
H9A—C9—H9B109.5C1—N1—C3122.33 (11)
O1—C9—H9C109.5C2—N1—C3128.97 (11)
H9A—C9—H9C109.5C1—N2—N3113.65 (11)
H9B—C9—H9C109.5C1—N2—H2123.2
C11—C10—C15120.65 (13)N3—N2—H2123.2
C11—C10—C2123.83 (12)C2—N3—N2104.73 (11)
C15—C10—C2115.44 (12)C4—O1—C9116.91 (10)
C10—C11—C12118.89 (12)C12—O2—C16116.63 (11)
C10—C11—H11120.6C14—O3—C17116.86 (11)
C8—C3—C4—O1179.51 (12)C11—C10—C15—C140.21 (19)
N1—C3—C4—O12.65 (17)C2—C10—C15—C14176.68 (11)
C8—C3—C4—C50.3 (2)N2—C1—N1—C20.68 (13)
N1—C3—C4—C5177.14 (12)S1—C1—N1—C2178.90 (9)
O1—C4—C5—C6179.63 (13)N2—C1—N1—C3170.67 (11)
C3—C4—C5—C60.1 (2)S1—C1—N1—C38.90 (18)
C4—C5—C6—C70.3 (2)N3—C2—N1—C10.41 (14)
C5—C6—C7—C80.6 (2)C10—C2—N1—C1176.69 (12)
C4—C3—C8—C70.6 (2)N3—C2—N1—C3169.53 (12)
N1—C3—C8—C7177.40 (12)C10—C2—N1—C314.2 (2)
C6—C7—C8—C30.8 (2)C8—C3—N1—C181.84 (16)
N3—C2—C10—C11169.74 (12)C4—C3—N1—C195.05 (15)
N1—C2—C10—C116.2 (2)C8—C3—N1—C2110.45 (15)
N3—C2—C10—C157.04 (18)C4—C3—N1—C272.67 (17)
N1—C2—C10—C15177.05 (12)N1—C1—N2—N30.75 (14)
C15—C10—C11—C121.05 (19)S1—C1—N2—N3178.82 (9)
C2—C10—C11—C12175.56 (11)N1—C2—N3—N20.04 (14)
C10—C11—C12—O2178.55 (11)C10—C2—N3—N2176.55 (11)
C10—C11—C12—C130.99 (19)C1—N2—N3—C20.51 (14)
O2—C12—C13—C14179.44 (12)C5—C4—O1—C93.58 (19)
C11—C12—C13—C140.07 (19)C3—C4—O1—C9176.19 (11)
C12—C13—C14—O3179.68 (11)C13—C12—O2—C1611.41 (18)
C12—C13—C14—C150.8 (2)C11—C12—O2—C16168.12 (11)
O3—C14—C15—C10179.80 (12)C15—C14—O3—C171.57 (19)
C13—C14—C15—C100.75 (19)C13—C14—O3—C17178.94 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···S1i0.882.453.2624 (12)154
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC17H17N3O3S
Mr343.40
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)8.8950 (8), 9.3510 (8), 10.5510 (9)
α, β, γ (°)94.365 (1), 102.452 (1), 108.924 (1)
V3)800.44 (12)
Z2
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.35 × 0.30 × 0.25
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.926, 0.946
No. of measured, independent and
observed [I > 2σ(I)] reflections
6943, 3963, 3136
Rint0.031
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.099, 1.09
No. of reflections3625
No. of parameters220
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.29

Computer programs: SMART (Bruker, 1998), SMART, SAINT (Bruker, 1999), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1999), SHELXTL.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···S1i0.882.453.2624 (12)154.1
Symmetry code: (i) x+1, y+1, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds