Download citation
Download citation
link to html
The heterofused carbazole unit of the title compound, C15H13N3O2, is not planar. The planar pyrazole ring forms dihedral angles of 2.52 (8)°, 3.18 (7)° and 2.22 (6)° with the pyrrole ring, the benzene ring and the attached carboxyl­ate group respectively. The cyclo­hexene ring adopts a half-chair conformation. In the crystal structure, the mol­ecules are stabilized by inter­molecular N—H...O and O—H...N hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807020491/bq2014sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807020491/bq2014Isup2.hkl
Contains datablock I

CCDC reference: 647730

Key indicators

  • Single-crystal X-ray study
  • T = 160 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.054
  • wR factor = 0.152
  • Data-to-parameter ratio = 19.5

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT094_ALERT_2_C Ratio of Maximum / Minimum Residual Density .... 2.25 PLAT250_ALERT_2_C Large U3/U1 Ratio for Average U(i,j) Tensor .... 2.13
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

The emerging importance towards the various strategies applied to prepare carbazoles and its derivatives were due to their diverse pharmacological properties (Bhattacharayya et al., 1987; Chakraborty et al., 1991; Chakraborty, 1993; Hewlins et al., 1984). Development of new methods for the synthesis of functionalized carbazoles in particular, is attracting organic chemists due to the discovery of many carbazole alkaloids with varied pharmacological properties (Pinder, 1990; Danish, & Rajendra Prasad, 2004; Ebenezer Martin, & Rajendra Prasad, 2006a; Balamurali, & Rajendra Prasad, 2001; Joule, 1984; Kapil, 1971). Identification of promising antineoplastic activity of ellipticine, tetracyclic compounds of the pyridocarbazole type, have stimulated considerable interest in the field of fused systems (Haider, 2002). In addition, pyridocarbazoles were reported to elicit anti-HIV properties (Hirata et al., 1999; Wang et al., 2005).

At this context, we planned to utilize an intermediate, methyl 2-(1-oxo-2,3,4,9-tetrahydro-1H-carbazol-2-yl)-2-oxoacetate (1) to construct newer fused carbazole. The reaction of (1) with hydrazine hydrate yielded pyrazolocarbazole, either methyl 2,4,5,10-tetrahydropyrazolo[3,4-a]carbazole-3-carboxylate (2) or methyl 1,4,5,10-tetrahydropyrazolo[3,4-a]carbazole-3-carboxylate (3) (Ebenezer Martin & Rajendra Prasad, 2006b). We present here the X-ray crystal and molecular structure of (2).

The molecular structure of (I), with atomic numbering scheme, is shown in Fig. 1. The pyrazolocarbazole unit is not planar. The carboxylate group at position 3 has a 2.22 (6)° tilt with that of the pyrazole ring. The cyclohexene ring adopts a half-chair conformation. Molecules are linked by intermolecular N—H···O and O—H···N hydrogen bonds. The N2—H2···O31 forms an infinite chain. The O3—H3···N1 and N10—H10···O2 hydrogen bonds between the heterofused carbazole units and the acetic acid solvent molecules form a 9-membered ring closure networks (Fig. 2).

Related literature top

For related literature, see: Balamurali & Rajendra Prasad (2001); Bhattacharayya & Chakraborty (1987); Chakraborty (1993); Chakraborty & Roy (1991); Danish & Rajendra Prasad (2004); Ebenezer & Rajendra Prasad (2006a,b); Haider (2002); Hewlins et al. (1984); Hirata et al. (1999); Joule (1984); Kapil (1971); Pinder (1990); Wang et al. (2005).

Experimental top

The methyl 2-(1-oxo-2,3,4,9-tetrahydro-1H-carbazol-2-yl)-2-oxoacetate (243 mg, 0.001 mol) in glacial acetic acid (15 ml) was added hydrazine hydrate (0.1 ml, 0.002 mol) and refluxed on oil bath for 1 h. The reaction was monitored by TLC. After the completion of the reaction it was poured into crushed ice. The precipitate was filtered, washed with water and dried. It was purified by column chromatography over silica gel using petroleum ether: ethyl acetate (85:15) as eluant. The product was characterized as (I). The yield of the isolated product was 181 g (68%).

Refinement top

H atoms bonded to N2,N10 and O3 were located in a difference map and refined isotropically. Other H atoms were positioned geometrically and allowed to ride on their parent atoms, with C–H = 0.95–0.99 Å and Uiso(H) = 1.2–1.5 times Ueq(C).

Structure description top

The emerging importance towards the various strategies applied to prepare carbazoles and its derivatives were due to their diverse pharmacological properties (Bhattacharayya et al., 1987; Chakraborty et al., 1991; Chakraborty, 1993; Hewlins et al., 1984). Development of new methods for the synthesis of functionalized carbazoles in particular, is attracting organic chemists due to the discovery of many carbazole alkaloids with varied pharmacological properties (Pinder, 1990; Danish, & Rajendra Prasad, 2004; Ebenezer Martin, & Rajendra Prasad, 2006a; Balamurali, & Rajendra Prasad, 2001; Joule, 1984; Kapil, 1971). Identification of promising antineoplastic activity of ellipticine, tetracyclic compounds of the pyridocarbazole type, have stimulated considerable interest in the field of fused systems (Haider, 2002). In addition, pyridocarbazoles were reported to elicit anti-HIV properties (Hirata et al., 1999; Wang et al., 2005).

At this context, we planned to utilize an intermediate, methyl 2-(1-oxo-2,3,4,9-tetrahydro-1H-carbazol-2-yl)-2-oxoacetate (1) to construct newer fused carbazole. The reaction of (1) with hydrazine hydrate yielded pyrazolocarbazole, either methyl 2,4,5,10-tetrahydropyrazolo[3,4-a]carbazole-3-carboxylate (2) or methyl 1,4,5,10-tetrahydropyrazolo[3,4-a]carbazole-3-carboxylate (3) (Ebenezer Martin & Rajendra Prasad, 2006b). We present here the X-ray crystal and molecular structure of (2).

The molecular structure of (I), with atomic numbering scheme, is shown in Fig. 1. The pyrazolocarbazole unit is not planar. The carboxylate group at position 3 has a 2.22 (6)° tilt with that of the pyrazole ring. The cyclohexene ring adopts a half-chair conformation. Molecules are linked by intermolecular N—H···O and O—H···N hydrogen bonds. The N2—H2···O31 forms an infinite chain. The O3—H3···N1 and N10—H10···O2 hydrogen bonds between the heterofused carbazole units and the acetic acid solvent molecules form a 9-membered ring closure networks (Fig. 2).

For related literature, see: Balamurali & Rajendra Prasad (2001); Bhattacharayya & Chakraborty (1987); Chakraborty (1993); Chakraborty & Roy (1991); Danish & Rajendra Prasad (2004); Ebenezer & Rajendra Prasad (2006a,b); Haider (2002); Hewlins et al. (1984); Hirata et al. (1999); Joule (1984); Kapil (1971); Pinder (1990); Wang et al. (2005).

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme and displacement ellipsoids drawn at the 50% probability level. H atoms involved in hydrogen bonding are labelled.
[Figure 2] Fig. 2. The packing of (I), viewed down the a axis. Dashed lines indicate hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted.
Methyl 2,4,5,10-tetrahydropyrazolo[3,4-a]carbazole-3-carboxylate acetic acid solvate top
Crystal data top
C15H13N3O2·C2H4O2Z = 2
Mr = 327.34F(000) = 344
Triclinic, P1Dx = 1.396 Mg m3
Hall symbol: -P 1Melting point: 512(1) K
a = 7.1379 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.0450 (4) ÅCell parameters from 4376 reflections
c = 11.5179 (4) Åθ = 2.0–30.0°
α = 117.252 (1)°µ = 0.10 mm1
β = 100.046 (2)°T = 160 K
γ = 95.486 (2)°Block, colourless
V = 778.75 (5) Å30.3 × 0.2 × 0.13 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
3773 reflections with I > 2σ(I)
Radiation source: Nonius FR590 sealed tube generatorRint = 0.054
Horizontally mounted graphite crystal monochromatorθmax = 30.0°, θmin = 2.1°
Detector resolution: 9 pixels mm-1h = 1010
φ and ω scans with κ offsetsk = 1515
24031 measured reflectionsl = 1615
4507 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.152H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0862P)2 + 0.2457P]
where P = (Fo2 + 2Fc2)/3
4507 reflections(Δ/σ)max = 0.001
231 parametersΔρmax = 0.55 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C15H13N3O2·C2H4O2γ = 95.486 (2)°
Mr = 327.34V = 778.75 (5) Å3
Triclinic, P1Z = 2
a = 7.1379 (2) ÅMo Kα radiation
b = 11.0450 (4) ŵ = 0.10 mm1
c = 11.5179 (4) ÅT = 160 K
α = 117.252 (1)°0.3 × 0.2 × 0.13 mm
β = 100.046 (2)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
3773 reflections with I > 2σ(I)
24031 measured reflectionsRint = 0.054
4507 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.152H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.55 e Å3
4507 reflectionsΔρmin = 0.24 e Å3
231 parameters
Special details top

Experimental. Solvent used: Cooling Device: Oxford Cryosystems Cryostream 700 Crystal mount: glued on a glass fibre Mosaicity (°.): 0.939 (2) Frames collected: 486 Seconds exposure per frame: 127 Degrees rotation per frame: 1.7 Crystal-Detector distance (mm): 30.0

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O310.34994 (16)0.82581 (10)0.39653 (10)0.0314 (3)
O320.20500 (14)0.68331 (9)0.17749 (9)0.0264 (3)
N10.43529 (15)1.12962 (10)0.28289 (10)0.0206 (3)
N20.42196 (16)1.04370 (11)0.33625 (10)0.0217 (3)
N100.36245 (16)1.21943 (11)0.06189 (11)0.0219 (3)
C30.32604 (17)0.91281 (12)0.24179 (12)0.0196 (3)
C3A0.27148 (16)0.91219 (12)0.12022 (11)0.0173 (3)
C40.15818 (18)0.80167 (12)0.01701 (12)0.0209 (3)
C50.15172 (19)0.84277 (13)0.12920 (12)0.0228 (3)
C5A0.21838 (17)0.99373 (12)0.08205 (11)0.0183 (3)
C5B0.21568 (17)1.06733 (13)0.15717 (12)0.0197 (3)
C60.1484 (2)1.02927 (15)0.29372 (13)0.0264 (4)
C70.1741 (2)1.12956 (16)0.33302 (15)0.0323 (4)
C80.2638 (2)1.26784 (16)0.23907 (15)0.0325 (4)
C90.3301 (2)1.30847 (14)0.10401 (14)0.0280 (4)
C9A0.30722 (18)1.20748 (13)0.06413 (13)0.0214 (3)
C10A0.31031 (17)1.08946 (12)0.04899 (11)0.0179 (3)
C110.34203 (17)1.04983 (12)0.15214 (11)0.0179 (3)
C310.29712 (18)0.80540 (13)0.28174 (12)0.0219 (3)
C320.1711 (3)0.57044 (15)0.20758 (16)0.0375 (4)
O20.39202 (19)0.54902 (11)0.70226 (11)0.0403 (3)
O30.33632 (16)0.61547 (11)0.54596 (10)0.0326 (3)
C10.1918 (2)0.38672 (15)0.48456 (15)0.0355 (4)
C20.31737 (19)0.52438 (13)0.58875 (13)0.0250 (3)
H20.482 (3)1.070 (2)0.422 (2)0.036 (5)*
H4A0.023420.776940.012850.0251*
H4B0.215480.717660.042020.0251*
H5A0.233100.789990.188310.0274*
H5B0.016530.813410.184720.0274*
H60.086250.936230.358020.0317*
H70.130161.104370.425340.0387*
H80.279221.334560.268880.0389*
H90.389391.402280.040330.0336*
H100.436 (3)1.298 (2)0.139 (2)0.043 (5)*
H32A0.295110.559740.250300.0561*
H32B0.110440.484030.123890.0561*
H32C0.084930.591210.268920.0561*
H1A0.061790.381370.500820.0532*
H1B0.182550.377070.394710.0532*
H1C0.249080.311750.490050.0532*
H30.412 (4)0.706 (3)0.613 (3)0.077 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O310.0460 (6)0.0263 (5)0.0190 (4)0.0040 (4)0.0014 (4)0.0140 (4)
O320.0369 (5)0.0179 (4)0.0204 (4)0.0042 (4)0.0002 (4)0.0102 (3)
N10.0278 (5)0.0163 (5)0.0155 (5)0.0004 (4)0.0011 (4)0.0082 (4)
N20.0305 (5)0.0175 (5)0.0143 (5)0.0014 (4)0.0002 (4)0.0085 (4)
N100.0267 (5)0.0175 (5)0.0181 (5)0.0035 (4)0.0014 (4)0.0096 (4)
C30.0236 (6)0.0172 (5)0.0165 (5)0.0003 (4)0.0022 (4)0.0086 (4)
C3A0.0189 (5)0.0154 (5)0.0156 (5)0.0003 (4)0.0027 (4)0.0069 (4)
C40.0248 (6)0.0170 (5)0.0154 (5)0.0031 (4)0.0002 (4)0.0065 (4)
C50.0310 (6)0.0174 (5)0.0142 (5)0.0011 (4)0.0006 (4)0.0061 (4)
C5A0.0195 (5)0.0174 (5)0.0162 (5)0.0001 (4)0.0012 (4)0.0084 (4)
C5B0.0197 (5)0.0216 (5)0.0174 (5)0.0004 (4)0.0009 (4)0.0112 (4)
C60.0291 (6)0.0290 (7)0.0185 (6)0.0010 (5)0.0013 (5)0.0132 (5)
C70.0363 (7)0.0390 (8)0.0237 (6)0.0004 (6)0.0014 (5)0.0214 (6)
C80.0353 (7)0.0361 (8)0.0321 (7)0.0014 (6)0.0006 (6)0.0258 (6)
C90.0315 (7)0.0241 (6)0.0289 (7)0.0033 (5)0.0002 (5)0.0174 (5)
C9A0.0216 (6)0.0222 (6)0.0208 (6)0.0003 (4)0.0010 (4)0.0131 (5)
C10A0.0202 (5)0.0164 (5)0.0152 (5)0.0009 (4)0.0002 (4)0.0083 (4)
C110.0204 (5)0.0163 (5)0.0155 (5)0.0011 (4)0.0021 (4)0.0078 (4)
C310.0266 (6)0.0192 (5)0.0177 (5)0.0003 (4)0.0016 (4)0.0095 (5)
C320.0542 (9)0.0213 (6)0.0342 (8)0.0051 (6)0.0025 (7)0.0165 (6)
O20.0606 (7)0.0225 (5)0.0254 (5)0.0078 (5)0.0083 (5)0.0109 (4)
O30.0442 (6)0.0228 (5)0.0222 (5)0.0078 (4)0.0027 (4)0.0103 (4)
C10.0420 (8)0.0213 (6)0.0267 (7)0.0074 (5)0.0018 (6)0.0043 (5)
C20.0290 (6)0.0184 (5)0.0209 (6)0.0006 (4)0.0028 (5)0.0060 (5)
Geometric parameters (Å, º) top
O31—C311.2157 (16)C5B—C9A1.419 (2)
O32—C311.3284 (17)C6—C71.384 (3)
O32—C321.449 (2)C7—C81.404 (2)
O2—C21.2127 (17)C8—C91.382 (2)
O3—C21.313 (2)C9—C9A1.394 (2)
O3—H30.97 (3)C10A—C111.4338 (18)
N1—C111.3455 (15)C4—H4B0.9900
N1—N21.3508 (18)C4—H4A0.9900
N2—C31.3612 (18)C5—H5B0.9900
N10—C9A1.3765 (18)C5—H5A0.9900
N10—C10A1.380 (2)C6—H60.9500
N2—H20.90 (2)C7—H70.9500
N10—H100.93 (2)C8—H80.9500
C3—C311.466 (2)C9—H90.9500
C3—C3A1.3831 (17)C32—H32C0.9800
C3A—C111.406 (2)C32—H32B0.9800
C3A—C41.4969 (17)C32—H32A0.9800
C4—C51.5487 (19)C1—C21.500 (2)
C5—C5A1.493 (2)C1—H1A0.9800
C5A—C10A1.3736 (16)C1—H1B0.9800
C5A—C5B1.432 (2)C1—H1C0.9800
C5B—C61.4048 (18)
O2···N10i2.8480 (17)C11···C5Avi3.3978 (17)
O3···C2ii3.2828 (18)C31···C7vii3.598 (2)
O3···N1i2.7183 (16)C31···C8vi3.373 (2)
O31···N2i2.8181 (14)C2···H5Aiv3.0900
O31···N22.8207 (18)C2···H10i2.93 (2)
O32···C43.0568 (17)C5A···H4Avii3.0900
O2···H8iii2.6100C5B···H4Avii2.8900
O2···H5Aiv2.8200C6···H7viii3.0700
O2···H32Aii2.7200C7···H7viii3.0600
O2···H10i1.92 (2)C9A···H4Avii2.6600
O3···H1Av2.8100C10A···H5Bvii3.0400
O31···H32A2.5800C10A···H4Avii2.9900
O31···H22.64 (2)C11···H5Bvii3.0900
O31···H2i1.95 (2)C11···H3i2.90 (3)
O31···H32C2.6600C31···H2i3.07 (2)
O32···H4B2.7400H1A···O3v2.8100
N1···O3i2.7183 (16)H1B···H5Bix2.4200
N1···N103.1117 (17)H2···C31i3.07 (2)
N2···O312.8207 (18)H2···O312.64 (2)
N2···O31i2.8181 (14)H2···O31i1.95 (2)
N2···C6vi3.3060 (19)H3···N2i2.65 (4)
N10···N13.1117 (17)H3···N1i1.76 (3)
N10···O2i2.8480 (17)H3···C11i2.90 (3)
N1···H3i1.76 (3)H4A···N10vii2.7200
N2···H3i2.65 (4)H4A···C5Avii3.0900
N10···H4Avii2.7200H4A···C9Avii2.6600
C2···O3ii3.2828 (18)H4A···C10Avii2.9900
C2···C2ii3.5195 (19)H4A···H32Bix2.5500
C3···C5Bvi3.5874 (18)H4A···C5Bvii2.8900
C3···C9Avi3.5846 (18)H4B···O322.7400
C3A···C9Avi3.4443 (18)H5A···O2x2.8200
C3A···C5Bvi3.5836 (17)H5A···C2x3.0900
C3A···C5Bvii3.5920 (17)H5B···H1Bix2.4200
C4···O323.0568 (17)H5B···C11vii3.0900
C5A···C11vi3.3978 (17)H5B···C10Avii3.0400
C5A···C10Avi3.5737 (18)H6···H7viii2.5100
C5B···C3Avii3.5920 (17)H7···C7viii3.0600
C5B···C3Avi3.5836 (17)H7···C6viii3.0700
C5B···C3vi3.5874 (18)H7···H6viii2.5100
C5B···C11vi3.5257 (18)H7···H7viii2.4800
C6···N2vi3.3060 (19)H8···O2xi2.6100
C7···C31vii3.598 (2)H9···H9xii2.2400
C8···C31vi3.373 (2)H10···C2i2.93 (2)
C9A···C3vi3.5846 (18)H10···O2i1.92 (2)
C9A···C3Avi3.4443 (18)H32A···O312.5800
C10A···C10Avi3.5439 (18)H32A···O2ii2.7200
C10A···C5Avi3.5737 (18)H32B···H4Aix2.5500
C11···C5Bvi3.5257 (18)H32C···O312.6600
C31—O32—C32115.61 (11)O31—C31—C3124.08 (13)
C2—O3—H3115 (2)O32—C31—C3111.81 (11)
N2—N1—C11104.48 (11)O31—C31—O32124.11 (14)
N1—N2—C3111.79 (10)C3A—C4—H4A109.00
C9A—N10—C10A107.60 (11)C3A—C4—H4B109.00
N1—N2—H2122.3 (16)C5—C4—H4B109.00
C3—N2—H2125.5 (16)H4A—C4—H4B108.00
C9A—N10—H10125.8 (14)C5—C4—H4A109.00
C10A—N10—H10126.2 (14)C4—C5—H5B108.00
N2—C3—C31119.39 (11)C5A—C5—H5A108.00
C3A—C3—C31132.85 (12)C5A—C5—H5B108.00
N2—C3—C3A107.76 (12)H5A—C5—H5B107.00
C3—C3A—C11103.67 (11)C4—C5—H5A108.00
C4—C3A—C11123.81 (11)C5B—C6—H6121.00
C3—C3A—C4132.48 (13)C7—C6—H6121.00
C3A—C4—C5114.64 (12)C8—C7—H7119.00
C4—C5—C5A115.76 (10)C6—C7—H7119.00
C5—C5A—C5B129.99 (11)C9—C8—H8119.00
C5—C5A—C10A123.74 (12)C7—C8—H8119.00
C5B—C5A—C10A106.14 (12)C8—C9—H9121.00
C6—C5B—C9A118.86 (14)C9A—C9—H9121.00
C5A—C5B—C9A106.79 (11)O32—C32—H32A109.00
C5A—C5B—C6134.34 (14)O32—C32—H32B109.00
C5B—C6—C7118.90 (14)H32A—C32—H32B109.00
C6—C7—C8121.27 (14)H32A—C32—H32C109.00
C7—C8—C9121.10 (17)H32B—C32—H32C109.00
C8—C9—C9A117.89 (15)O32—C32—H32C109.00
N10—C9A—C9129.59 (13)O2—C2—C1122.75 (15)
C5B—C9A—C9121.97 (12)O3—C2—C1113.74 (12)
N10—C9A—C5B108.44 (13)O2—C2—O3123.51 (14)
N10—C10A—C5A111.01 (11)C2—C1—H1A109.00
N10—C10A—C11127.96 (11)C2—C1—H1B109.00
C5A—C10A—C11121.03 (13)C2—C1—H1C109.00
N1—C11—C3A112.30 (11)H1A—C1—H1B109.00
C3A—C11—C10A119.70 (10)H1A—C1—H1C109.00
N1—C11—C10A128.01 (13)H1B—C1—H1C109.00
C32—O32—C31—O310.8 (2)C4—C5—C5A—C5B174.14 (12)
C32—O32—C31—C3179.64 (13)C4—C5—C5A—C10A10.59 (18)
C11—N1—N2—C31.00 (14)C10A—C5A—C5B—C6178.22 (15)
N2—N1—C11—C3A1.05 (14)C5—C5A—C5B—C9A176.44 (13)
N2—N1—C11—C10A179.08 (12)C5B—C5A—C10A—C11178.67 (11)
N1—N2—C3—C31179.77 (11)C10A—C5A—C5B—C9A0.53 (14)
N1—N2—C3—C3A0.60 (15)C5—C5A—C5B—C62.3 (2)
C9A—N10—C10A—C11178.46 (12)C5B—C5A—C10A—N101.18 (14)
C10A—N10—C9A—C5B0.99 (15)C5—C5A—C10A—N10177.41 (12)
C9A—N10—C10A—C5A1.38 (15)C5—C5A—C10A—C112.44 (19)
C10A—N10—C9A—C9179.06 (14)C9A—C5B—C6—C70.2 (2)
C31—C3—C3A—C41.4 (2)C5A—C5B—C6—C7178.45 (14)
C31—C3—C3A—C11178.96 (14)C5A—C5B—C9A—N100.29 (14)
N2—C3—C3A—C110.06 (13)C5A—C5B—C9A—C9179.76 (13)
C3A—C3—C31—O322.4 (2)C6—C5B—C9A—C90.8 (2)
N2—C3—C31—O311.8 (2)C6—C5B—C9A—N10179.26 (12)
N2—C3—C3A—C4177.63 (13)C5B—C6—C7—C80.7 (2)
C3A—C3—C31—O31177.14 (14)C6—C7—C8—C90.2 (2)
N2—C3—C31—O32178.66 (11)C7—C8—C9—C9A0.8 (2)
C3—C3A—C11—N10.70 (14)C8—C9—C9A—N10178.82 (14)
C3—C3A—C11—C10A179.41 (11)C8—C9—C9A—C5B1.2 (2)
C11—C3A—C4—C59.58 (18)N10—C10A—C11—N12.5 (2)
C3—C3A—C4—C5173.26 (13)C5A—C10A—C11—C3A2.53 (18)
C4—C3A—C11—N1178.55 (11)N10—C10A—C11—C3A177.65 (12)
C4—C3A—C11—C10A1.57 (18)C5A—C10A—C11—N1177.33 (12)
C3A—C4—C5—C5A13.28 (16)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y+1, z+1; (iii) x, y1, z+1; (iv) x, y, z+1; (v) x, y+1, z+1; (vi) x+1, y+2, z; (vii) x, y+2, z; (viii) x, y+2, z1; (ix) x, y+1, z; (x) x, y, z1; (xi) x, y+1, z1; (xii) x+1, y+3, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O31i0.90 (2)1.95 (2)2.8181 (14)163 (2)
O3—H3···N1i0.97 (3)1.76 (3)2.7183 (16)172 (3)
N10—H10···O2i0.93 (2)1.92 (2)2.8480 (17)175 (2)
Symmetry code: (i) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC15H13N3O2·C2H4O2
Mr327.34
Crystal system, space groupTriclinic, P1
Temperature (K)160
a, b, c (Å)7.1379 (2), 11.0450 (4), 11.5179 (4)
α, β, γ (°)117.252 (1), 100.046 (2), 95.486 (2)
V3)778.75 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.3 × 0.2 × 0.13
Data collection
DiffractometerNonius KappaCCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
24031, 4507, 3773
Rint0.054
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.152, 1.05
No. of reflections4507
No. of parameters231
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.55, 0.24

Computer programs: COLLECT (Nonius, 2000), DENZO-SMN (Otwinowski & Minor, 1997), DENZO-SMN and SCALEPACK (Otwinowski & Minor, 1997), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O31i0.90 (2)1.95 (2)2.8181 (14)163 (2)
O3—H3···N1i0.97 (3)1.76 (3)2.7183 (16)172 (3)
N10—H10···O2i0.93 (2)1.92 (2)2.8480 (17)175 (2)
Symmetry code: (i) x+1, y+2, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds