Download citation
Download citation
link to html
Single crystals of (NH4)3VOF5 and (NH4)3VO2F4 were obtained from aqueous fluoride solutions and phase transitions in these compounds were investigated using X-ray diffraction, differential scanning microcalorimetry (DSM) and vibrational spectroscopy. The room-temperature (RT) phases of these compounds belong to orthorhombic symmetry [Immm and I222, Z = 6, for (NH4)3VOF5 and (NH4)3VO2F4, respectively] with similar unit-cell parameters and two independent vanadium atoms. Above RT [at 350 and 440 K for (NH4)3VOF5 and (NH4)3VO2F4, respectively], the compounds undergo reversible phase transitions into high-symmetry dynamically disordered elpasolite-like (Fm{\bar 3}m, Z = 4) structures with six and 12 spatial orientations of the vanadium octahedron for (NH4)3VOF5 and (NH4)3VO2F4, respectively. The ligand atoms are distributed in a mixed (split) position of 24e + 96j, one of the ammonium groups is disordered on the tetrahedron 32f site, but another one forms eight spatial orientations due to disorder of its hydrogen atoms in the 96j position. DSM and spectroscopic data enable the phase transition from high temperature to room temperature to be connected with the transition from isotropic orientations of the octahedron to its two different dynamic states.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2052520617012422/bp5101sup1.cif
Contains datablocks global, I, II, III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520617012422/bp5101Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520617012422/bp5101IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520617012422/bp5101IIIsup4.hkl
Contains datablock III

CCDC references: 1571199; 1571200; 1571201

Computing details top

For all structures, data collection: Bruker APEX2; cell refinement: Bruker SAINT; data reduction: Bruker SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2014); molecular graphics: Bruker SHELXTL; software used to prepare material for publication: Bruker SHELXTL.

pentafluorooxovanadium (I) top
Crystal data top
H12N3VOF5Mo Kα radiation, λ = 0.71073 Å
Mr = 216.07Cell parameters from 841 reflections
Cubic, Fm3mθ = 3.9–27.3°
a = 9.0522 (4) ŵ = 1.38 mm1
V = 741.76 (10) Å3T = 365 K
Z = 4Prizm, blue
F(000) = 4360.30 × 0.25 × 0.12 mm
Dx = 1.935 Mg m3
Data collection top
Bruker APEX-II CCD
diffractometer
96 reflections with I > 2σ(I)
Detector resolution: 8.33 pixels mm-1Rint = 0.019
ω scansθmax = 34.5°, θmin = 3.9°
Absorption correction: multi-scan
Bruker SADABS
h = 1410
k = 1413
1457 measured reflectionsl = 1412
111 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: difference Fourier map
wR(F2) = 0.099H-atom parameters not refined
S = 1.01 w = 1/[σ2(Fo2) + (0.0869P)2]
where P = (Fo2 + 2Fc2)/3
111 reflections(Δ/σ)max = 0.023
17 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.45 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
V10.02888 (7)0.00000.00000.0251 (2)0.1666
N10.2620 (4)0.2620 (4)0.2620 (4)0.0550 (8)0.25
N20.50000.50000.50000.0943 (18)
F10.00000.00000.2040 (3)0.0993 (15)0.3333
F20.00000.0541 (4)0.1941 (4)0.156 (2)0.1667
H110.20800.20800.20800.098*0.25
H120.20800.31600.31600.098*0.0833
H140.31600.20800.31600.098*0.0833
H130.31600.31600.20800.098*0.0833
H20.58800.46700.50000.046*0.125
H30.44600.44600.44600.098*0.125
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
V10.0226 (5)0.02636 (16)0.02636 (16)0.0000.0000.000
N10.0550 (8)0.0550 (8)0.0550 (8)0.0069 (12)0.0069 (12)0.0069 (12)
N20.0943 (18)0.0943 (18)0.0943 (18)0.0000.0000.000
F10.142 (2)0.142 (2)0.0145 (8)0.0000.0000.000
F20.077 (2)0.322 (6)0.0688 (14)0.0000.0000.101 (2)
Geometric parameters (Å, º) top
V1—V1i0.3697 (8)N1—F1xvii3.092 (4)
V1—V1ii0.5228 (12)N1—H110.8462
V1—F1iii1.586 (3)N1—H120.8468
V1—F21.843 (3)N1—H140.8468
V1—F2iv1.843 (3)N1—H130.8468
V1—F2ii1.843 (3)N2—F1xviii2.679 (3)
V1—F2v1.843 (3)N2—F1xvi2.679 (3)
V1—F1vi2.108 (3)N2—F2xix2.812 (3)
N1—N1vii0.306 (10)N2—F2x2.812 (3)
N1—N1viii0.306 (10)N2—H20.8508
N1—N1ix0.306 (10)N2—H30.8467
N1—F2ix2.792 (5)F1—F2xx2.596 (2)
N1—F2x2.792 (5)F1—F2i2.596 (2)
N1—F2xi2.888 (3)F1—F2xxi2.596 (2)
N1—F2xii2.888 (3)F1—F2xxii2.596 (2)
N1—F2xiii2.925 (2)F2—F1vi2.596 (2)
N1—F2xiv2.925 (2)F2—F2xxiii2.579 (4)
N1—F2xv3.089 (6)F2—F1iii2.596 (2)
N1—F2v3.089 (6)F2—F2xxiv2.579 (4)
N1—F1xvi3.092 (4)
F1iii—V1—F2iv98.16 (2)V1ii—V1—F2xxiii81.84 (2)
F1iii—V1—F2v98.16 (2)F2—V1—F2xxiv88.846 (6)
F1iii—V1—F2xxiv98.16 (2)F2ii—V1—F2xxiv88.847 (6)
F1iii—V1—F2xxv98.16 (2)F2iv—V1—F2xxv88.847 (6)
V1ii—V1—F2v81.84 (2)F2v—V1—F2xxv88.847 (6)
V1ii—V1—F2xxiv81.84 (2)F2—V1—F2ii163.69 (5)
V1ii—V1—F2xxv81.84 (2)F2iv—V1—F2v163.69 (5)
Symmetry codes: (i) y, z, x; (ii) x, y, z; (iii) z, x, y; (iv) x, z, y; (v) x, z, y; (vi) z, x, y; (vii) x, y+1/2, z+1/2; (viii) x+1/2, y, z+1/2; (ix) x+1/2, y+1/2, z; (x) z, y+1/2, x+1/2; (xi) z+1/2, y, x+1/2; (xii) x+1/2, z+1/2, y; (xiii) z+1/2, y+1/2, x; (xiv) x, z+1/2, y+1/2; (xv) z, y, x; (xvi) y+1/2, z, x+1/2; (xvii) z, x+1/2, y+1/2; (xviii) y+1/2, z+1, x+1/2; (xix) z+1, y+1/2, x+1/2; (xx) z, y, x; (xxi) z, y, x; (xxii) y, z, x; (xxiii) x, z, y; (xxiv) x, z, y; (xxv) x, y, z.
pentafluorooxovanadium (II) top
Crystal data top
H12N3VOF5Dx = 1.973 Mg m3
Mr = 216.07Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, ImmmCell parameters from 2148 reflections
a = 6.2986 (3) Åθ = 3.9–27.4°
b = 9.1638 (4) ŵ = 1.41 mm1
c = 18.9044 (8) ÅT = 296 K
V = 1091.15 (8) Å3Prizm, blue
Z = 60.19 × 0.19 × 0.13 mm
F(000) = 654
Data collection top
Bruker APEX-II CCD
diffractometer
837 reflections with I > 2σ(I)
Detector resolution: 8.33 pixels mm-1Rint = 0.024
ω scansθmax = 30.4°, θmin = 2.2°
Absorption correction: multi-scan
Bruker SADABS
h = 88
k = 1313
6473 measured reflectionsl = 2625
967 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.046Secondary atom site location: difference Fourier map
wR(F2) = 0.142 w = 1/[σ2(Fo2) + (0.0874P)2 + 2.385P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.004
967 reflectionsΔρmax = 0.77 e Å3
78 parametersΔρmin = 0.39 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
V10.02726 (11)0.00000.31798 (3)0.02161 (14)0.5
F10.2123 (3)0.00000.25757 (9)0.0617 (5)
F20.2094 (3)0.00000.39761 (8)0.0593 (5)
F30.00000.20751 (18)0.32597 (11)0.0701 (6)
V20.0198 (2)0.01273 (17)0.00000.0276 (2)0.25
F40.00000.00000.1007 (2)0.0631 (18)0.5
F50.00000.2063 (4)0.00000.0426 (10)0.5
F60.3011 (6)0.00000.00000.0448 (11)0.5
F70.1076 (19)0.00000.0902 (5)0.114 (4)0.25
F80.1933 (7)0.1432 (5)0.0281 (4)0.088 (3)0.25
N10.00000.2671 (2)0.17157 (11)0.0385 (5)
N20.00000.50000.36277 (18)0.0414 (7)
N30.50000.0692 (7)0.50000.0432 (14)0.5
N40.0578 (6)0.2037 (4)0.50000.0365 (10)0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
V10.0200 (4)0.0244 (2)0.0204 (2)0.0000.0005 (2)0.000
F10.0442 (8)0.0976 (13)0.0434 (8)0.0000.0187 (7)0.000
F20.0515 (8)0.0908 (12)0.0357 (7)0.0000.0229 (6)0.000
F30.1131 (17)0.0214 (6)0.0759 (12)0.0000.0000.0060 (7)
V20.0200 (4)0.0310 (5)0.0318 (4)0.0080 (16)0.0000.000
F40.135 (5)0.039 (2)0.0151 (16)0.0000.0000.000
F50.0341 (17)0.0256 (15)0.068 (3)0.0000.0000.000
F60.0226 (15)0.0354 (17)0.076 (3)0.0000.0000.000
F70.121 (8)0.184 (11)0.039 (4)0.0000.035 (4)0.000
F80.043 (2)0.057 (2)0.164 (8)0.0191 (19)0.024 (3)0.025 (3)
N10.0373 (9)0.0371 (9)0.0411 (9)0.0000.0000.0029 (8)
N20.0489 (15)0.0347 (13)0.0407 (14)0.0000.0000.000
N30.044 (3)0.044 (3)0.042 (3)0.0000.0000.000
N40.047 (2)0.0326 (15)0.0298 (15)0.0069 (13)0.0000.000
Geometric parameters (Å, º) top
V1—V1i0.3434 (13)F7—F8v2.647 (10)
V1—F11.6317 (17)F8—F8iii2.624 (9)
V1—F21.8928 (16)F8—F8iv2.656 (10)
V1—F1i1.8923 (17)N1—F3i2.970 (3)
V1—F31.9153 (16)N1—F7i2.970 (6)
V1—F3i1.9153 (16)N1—F2viii3.101 (2)
V1—F2i2.1186 (16)N1—F1viii3.104 (2)
V2—F5ii1.778 (4)N2—F7viii2.627 (11)
V2—F61.776 (4)N2—F7ix2.627 (11)
F4—V2ii1.910 (4)N2—F3i2.7691 (19)
F4—V2iii1.910 (4)N2—F3x2.7691 (19)
F6—V2ii2.025 (4)N2—F6viii2.881 (3)
F5—V2iv2.011 (4)N2—F6xi2.881 (3)
V2—F8v1.704 (5)N2—F1ix2.909 (3)
V2—F71.796 (9)N2—F1viii2.909 (3)
V2—F8ii1.874 (5)N3—N3xii1.269 (13)
V2—F8vi1.875 (5)N3—F5xiii2.057 (7)
F7—V2iv1.887 (9)N3—F2xii2.738 (2)
F8—V2iv2.031 (5)N3—F2xiv2.738 (2)
F1—F1i2.674 (3)N3—F2xv2.738 (2)
F1—F32.6601 (19)N3—F8xiii2.951 (7)
F1—F22.647 (2)N3—F8xvi2.951 (7)
F1—F3i2.6601 (19)N3—F8xvii2.951 (7)
F2—F3i2.6814 (19)N3—F8xviii2.951 (7)
F2—F32.6814 (19)N4—N4xix0.728 (7)
F2—F2i2.638 (3)N4—F8xvii2.170 (6)
F4—F52.682 (4)N4—F8xviii2.170 (6)
F4—F62.687 (4)N4—F8ix2.743 (6)
F5—F62.678 (4)N4—F8xi2.743 (6)
F7—F8vii2.586 (10)N4—F2xv2.854 (3)
F7—F8i2.586 (10)N4—F6viii2.857 (4)
F7—F8vi2.647 (10)N4—F5xiii2.905 (4)
F1—V1—F1i98.46 (12)F5ii—V2—F5172.43 (8)
F1—V1—F396.85 (5)F6—V2—F6ii172.93 (10)
F1—V1—F3i96.85 (5)F5ii—V2—F6ii89.29 (6)
F1—V1—F297.10 (9)F5—V2—F6ii83.15 (5)
F1i—V1—F2i82.40 (8)F4—V2—F6ii86.07 (4)
F3—V1—F2i83.16 (5)F8v—V2—F798.3 (4)
F2—V1—F2i82.04 (10)F7—V2—F8vi92.3 (3)
F1i—V1—F388.63 (4)F7—V2—F8vii84.8 (3)
F2—V1—F389.52 (5)F7i—V2—F8iv84.9 (3)
F1i—V1—F3i88.63 (4)F7vi—V2—F8ii89.6 (4)
F2—V1—F3i89.52 (5)F8v—V2—F7ii92.0 (3)
F1i—V1—F2164.44 (8)F8vi—V2—F7ii86.8 (3)
F3—V1—F3i166.28 (9)F8i—V2—F7ii89.5 (4)
F1—V1—F2i179.14 (9)F8v—V2—F8vi94.2 (3)
F6—V2—F5ii97.78 (7)F8v—V2—F8ii85.6 (3)
F6—V2—F5ii97.78 (7)F8ii—V2—F8iv84.3 (3)
F6—V2—F4ii93.50 (4)F8iii—V2—F8ii95.7 (3)
F5ii—V2—F4ii93.23 (5)F7—V2—F7ii169.76 (10)
F4ii—V2—F4169.75 (9)F8iii—V2—F8iv176.92 (5)
F6—V2—F589.78 (6)F8ii—V2—F8169.56 (9)
F4—V2—F586.27 (5)
Symmetry codes: (i) x, y, z; (ii) x, y, z; (iii) x, y, z; (iv) x, y, z; (v) x, y, z; (vi) x, y, z; (vii) x, y, z; (viii) x+1/2, y+1/2, z+1/2; (ix) x1/2, y+1/2, z+1/2; (x) x, y+1, z; (xi) x1/2, y+1/2, z+1/2; (xii) x+1, y, z+1; (xiii) x+1/2, y+1/2, z+1/2; (xiv) x+1, y, z; (xv) x, y, z+1; (xvi) x+1/2, y+1/2, z+1/2; (xvii) x+1/2, y+1/2, z+1/2; (xviii) x+1/2, y+1/2, z+1/2; (xix) x, y, z+1.
tetrafluorodioxovanadium (III) top
Crystal data top
H12N3VO2F4Dx = 1.965 Mg m3
Mr = 213.07Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, I222Cell parameters from 3096 reflections
a = 6.2738 (3) Åθ = 2.5–29.3°
b = 9.1388 (4) ŵ = 1.41 mm1
c = 18.8424 (8) ÅT = 296 K
V = 1080.33 (8) Å3Plate, orange
Z = 60.20 × 0.20 × 0.12 mm
F(000) = 648
Data collection top
Bruker APEX-II CCD
diffractometer
1348 reflections with I > 2σ(I)
Detector resolution: 8.33 pixels mm-1Rint = 0.020
ω scansθmax = 29.8°, θmin = 2.2°
Absorption correction: multi-scan
Bruker SADABS
h = 87
k = 1212
6313 measured reflectionsl = 2626
1555 independent reflections
Refinement top
Refinement on F2 w = 1/[σ2(Fo2) + (0.0872P)2 + 1.6871P]
where P = (Fo2 + 2Fc2)/3
Least-squares matrix: full(Δ/σ)max = 0.005
R[F2 > 2σ(F2)] = 0.044Δρmax = 0.61 e Å3
wR(F2) = 0.139Δρmin = 0.44 e Å3
S = 0.98Extinction correction: SHELXL-2014/7 (Sheldrick 2014, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1555 reflectionsExtinction coefficient: 0.0046 (12)
118 parametersAbsolute structure: Refined as an inversion twin.
0 restraintsAbsolute structure parameter: 0.45(10)
H-atom parameters not defined
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
V10.0087 (2)0.01860 (7)0.31481 (3)0.02969 (15)0.5
F10.0004 (9)0.79650 (14)0.32561 (10)0.0597 (5)
F20.2090 (2)0.0009 (7)0.25701 (8)0.0561 (4)
F30.2106 (2)0.9989 (5)0.39686 (7)0.0500 (4)
V20.02741 (16)0.02114 (9)0.00513 (9)0.0243 (3)0.25
F40.00000.00000.09907 (19)0.0490 (12)0.5
F50.7038 (5)0.00000.00000.0398 (8)0.5
F60.00000.2051 (3)0.00000.0377 (8)0.5
F70.1872 (13)0.1413 (10)0.0322 (7)0.096 (4)0.25
F80.7995 (11)0.1405 (7)0.0188 (5)0.054 (3)0.25
F90.099 (2)0.020 (2)0.0898 (5)0.124 (4)0.25
N10.0015 (10)0.2701 (2)0.17012 (11)0.0394 (4)
N20.00000.50000.36480 (16)0.0436 (6)
N30.50000.0720 (5)0.50000.0400 (12)0.5
N40.0603 (5)0.2010 (3)0.5003 (6)0.0357 (8)0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
V10.0392 (3)0.0251 (3)0.0248 (2)0.0083 (7)0.0108 (4)0.0052 (2)
F10.0860 (12)0.0220 (5)0.0710 (9)0.0001 (15)0.013 (2)0.0041 (6)
F20.0425 (7)0.0836 (10)0.0421 (7)0.007 (2)0.0165 (6)0.005 (2)
F30.0419 (6)0.0727 (9)0.0355 (6)0.0043 (19)0.0196 (5)0.0048 (19)
V20.0221 (6)0.0208 (7)0.0301 (5)0.0041 (4)0.0075 (8)0.0073 (7)
F40.097 (3)0.0353 (16)0.0144 (12)0.008 (5)0.0000.000
F50.0217 (12)0.0381 (15)0.060 (2)0.0000.0000.010 (4)
F60.0330 (14)0.0215 (12)0.059 (2)0.0000.005 (5)0.000
F70.039 (4)0.072 (4)0.177 (10)0.005 (3)0.040 (4)0.070 (5)
F80.044 (3)0.032 (3)0.084 (7)0.022 (2)0.004 (4)0.015 (3)
F90.152 (10)0.168 (10)0.053 (4)0.055 (11)0.046 (5)0.058 (6)
N10.0381 (8)0.0354 (8)0.0447 (8)0.0010 (17)0.003 (2)0.0007 (7)
N20.0502 (14)0.0406 (12)0.0399 (12)0.000 (3)0.0000.000
N30.046 (3)0.035 (2)0.038 (2)0.0000.006 (7)0.000
N40.046 (2)0.0315 (13)0.0297 (13)0.0071 (11)0.005 (6)0.003 (4)
Geometric parameters (Å, º) top
V1—V1i0.3573 (15)F6—V2xii1.692 (3)
V1—F21.6708 (19)F6—N3xx2.038 (6)
V1—F1ii1.7027 (15)F6—V2i2.077 (3)
V1—F2i1.756 (2)F6—V2xiii2.077 (3)
V1—F3iii2.0067 (18)F6—F9xii2.471 (16)
V1—F1iii2.0407 (14)F7—F8xiv0.965 (14)
V1—F3ii2.0759 (17)F7—F5xv1.582 (9)
F1—F2ii2.610 (6)F7—V2xii1.810 (8)
F1—F2iv2.624 (6)F7—V2xiii1.862 (8)
F1—F32.641 (5)F7—F9xiii1.91 (2)
F1—F3v2.653 (5)F7—V2i2.124 (8)
F1—N22.8085 (16)F7—F4xii2.153 (12)
F1—N1ii2.992 (3)F7—N4xx2.228 (11)
F1—N1vi3.141 (9)F8—F7xiv0.965 (14)
F1—N1vii3.154 (9)F8—F6xvii1.434 (7)
F2—V1i1.756 (2)F8—V2xiv1.561 (7)
F2—F1ii2.610 (6)F8—F9xiv1.844 (18)
F2—F2i2.623 (3)F8—V2xvii1.855 (7)
F2—F1iii2.624 (6)F8—V2xv1.889 (7)
F2—F3iii2.635 (2)F8—V2xviii2.073 (6)
F2—N2viii2.933 (3)F8—N4ix2.114 (7)
F2—N1ix3.103 (6)F8—F4xiv2.349 (8)
F2—N1viii3.104 (6)F9—F9i1.30 (3)
F2—N13.229 (6)F9—V2i1.823 (10)
F3—V1iv2.0067 (18)F9—F8xiv1.844 (18)
F3—V1ii2.0759 (17)F9—V2xiii1.884 (10)
F3—F2iv2.635 (2)F9—F7xiii1.91 (2)
F3—F3v2.643 (3)F9—V2xii1.958 (10)
F3—F1v2.653 (5)F9—F5xv2.103 (11)
F3—N3x2.737 (2)F9—F7xii2.374 (17)
F3—N3iv2.742 (2)N1—F1ii2.992 (3)
F3—N4xi2.824 (8)N1—F3viii3.038 (5)
F3—N4iv2.847 (9)N1—F3xxi3.063 (5)
V2—V2xii0.394 (2)N1—F7xii3.089 (13)
V2—V2xiii0.432 (2)N1—F2xxii3.103 (6)
V2—V2i0.5174 (18)N1—F2vi3.104 (6)
V2—F8xiv1.561 (7)N1—F9i3.119 (19)
V2—F71.644 (9)N1—F1viii3.141 (9)
V2—F91.659 (10)N2—F9vi2.661 (12)
V2—F61.692 (3)N2—F9xxii2.661 (12)
V2—F5xv1.700 (3)N2—F1ii2.8085 (16)
V2—F41.789 (4)N2—F5xxiii2.850 (3)
V2—F7xii1.810 (8)N2—F5xxiv2.850 (3)
F4—F9i0.673 (14)N2—F2xxii2.933 (3)
F4—F90.673 (14)N2—F2vi2.933 (3)
F4—V2i1.789 (4)N2—F7xxiv3.048 (11)
F4—V2xiii1.980 (4)N2—F7xxiii3.048 (11)
F4—V2xii1.980 (4)N3—N3xv1.316 (10)
F4—F7xiii2.153 (12)N3—F6xxiv2.037 (6)
F4—F7xii2.153 (12)N3—F3x2.737 (2)
F4—F8xvi2.349 (8)N3—F3xi2.737 (2)
F4—F8xiv2.349 (8)N3—F3iii2.742 (2)
F5—F81.461 (7)N3—F3xxv2.742 (2)
F5—F8xiii1.461 (7)N3—F8xxvi2.934 (8)
F5—F7xiv1.582 (9)N3—F8xxii2.934 (8)
F5—F7xv1.582 (9)N3—F7ix2.935 (11)
F5—V2xiv1.700 (3)N3—F7xxiv2.935 (11)
F5—V2xv1.700 (3)N4—N4xxvii0.756 (6)
F5—V2xvii2.042 (3)N4—F8xxii2.114 (7)
F5—V2xviii2.042 (3)N4—F7xxiv2.228 (11)
F5—F9xv2.103 (11)N4—F8xxiv2.706 (7)
F5—F9xiv2.103 (11)N4—F7xxii2.814 (10)
F6—F8xix1.434 (7)N4—F3xi2.824 (8)
F6—F8xiv1.434 (7)N4—F3iii2.846 (9)
F6—F71.444 (10)N4—F5xxiii2.877 (3)
F6—F7xii1.444 (10)N4—F6xxiv2.889 (3)
V1i—V1—F298.0 (4)F1ii—V1—F3iii90.94 (19)
V1i—V1—F1ii159.3 (5)F2i—V1—F3iii163.66 (18)
F2—V1—F1ii101.4 (3)V1i—V1—F1iii17.2 (5)
V1i—V1—F2i70.4 (4)F2—V1—F1iii89.4 (3)
F2—V1—F2i99.85 (11)F1ii—V1—F1iii166.97 (12)
F1ii—V1—F2i98.7 (3)F2i—V1—F1iii86.5 (3)
V1i—V1—F3iii96.2 (3)F3iii—V1—F1iii81.47 (18)
F2—V1—F3iii91.08 (10)
Symmetry codes: (i) x, y, z; (ii) x, y+1, z; (iii) x, y1, z; (iv) x, y+1, z; (v) x, y+2, z; (vi) x+1/2, y+1/2, z+1/2; (vii) x1/2, y+1/2, z+1/2; (viii) x+1/2, y1/2, z+1/2; (ix) x+1/2, y+1/2, z+1/2; (x) x+1, y+1, z; (xi) x, y+1, z+1; (xii) x, y, z; (xiii) x, y, z; (xiv) x+1, y, z; (xv) x+1, y, z; (xvi) x1, y, z; (xvii) x+1, y, z; (xviii) x+1, y, z; (xix) x1, y, z; (xx) x+1/2, y+1/2, z1/2; (xxi) x1/2, y+3/2, z+1/2; (xxii) x1/2, y+1/2, z+1/2; (xxiii) x1/2, y+1/2, z+1/2; (xxiv) x+1/2, y+1/2, z+1/2; (xxv) x+1, y1, z+1; (xxvi) x+3/2, y+1/2, z+1/2; (xxvii) x, y, z+1.
 

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds