Download citation
Download citation
link to html
A classical elpasolite-type structure is considered with respect to dynamically disordered ammonium fluoro-(oxo­fluoro-)metallates. Single-crystal X-ray diffraction data from high quality (NH4)3HfF7 and (NH4)3Ti(O2)F5 samples enabled the refinement of the ligand and cationic positions in the cubic Fm \bar 3 m (Z = 4) structure. Electron-density atomic profiles show that the ligand atoms are distributed in a mixed (split) position instead of 24e. One of the ammonium groups is disordered near 8c so that its central atom (N1) forms a tetrahedron with vertexes in 32f. However, a center of another group (N2) remains in the 4b site, whereas its H atoms (H2) occupy the 96k positions instead of 24e and, together with the H3 atom in the 32f position, they form eight spatial orientations of the ammonium group. It is a common feature of all ammonium fluoroelpasolites with orientational disorder of structural units of a dynamic nature.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2052520616017534/bp5091sup1.cif
Contains datablocks I, II, publ

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520616017534/bp5091Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520616017534/bp5091IIsup3.hkl
Contains datablock II

CCDC references: 1514174; 1514175

Computing details top

For both compounds, data collection: Bruker APEX2; cell refinement: Bruker SAINT; data reduction: Bruker SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2014); molecular graphics: Bruker SHELXTL; software used to prepare material for publication: Bruker SHELXTL.

(I) ammonium heptafluorohafnate top
Crystal data top
(H12N3HfF7)Mo Kα radiation, λ = 0.71073 Å
Mr = 365.62Cell parameters from 6673 reflections
Cubic, Fm3mθ = 3.8–46.1°
a = 9.3964 (1) ŵ = 12.65 mm1
V = 829.63 (3) Å3T = 296 K
Z = 4Octahedron, colourless
F(000) = 6720.25 × 0.23 × 0.22 mm
Dx = 2.927 Mg m3
Data collection top
Bruker APEX-II CCD
diffractometer
293 reflections with I > 2σ(I)
Detector resolution: 8.33 pixels mm-1Rint = 0.019
ω scansθmax = 52.5°, θmin = 3.8°
Absorption correction: multi-scan
Bruker SADABS
h = 2019
Tmin = 0.593, Tmax = 0.750k = 2019
8194 measured reflectionsl = 2020
293 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.009H-atom parameters not refined
wR(F2) = 0.019 w = 1/[σ2(Fo2) + (0.0032P)2 + 0.6486P]
where P = (Fo2 + 2Fc2)/3
S = 1.19(Δ/σ)max = 0.005
293 reflectionsΔρmax = 1.14 e Å3
22 parametersΔρmin = 0.67 e Å3
0 restraintsExtinction correction: SHELXL-2014/7 (Sheldrick 2014, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.01226 (12)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Hf0.00000.00000.00000.02423 (2)
N10.2588 (4)0.2588 (4)0.2588 (4)0.0436 (7)0.25
N20.50000.50000.50000.0558 (9)
F10.00000.00000.2089 (2)0.0765 (9)0.5
F20.00000.0637 (6)0.2067 (6)0.0520 (15)0.0833
F30.00000.1290 (6)0.1891 (6)0.0484 (12)0.0833
H110.20380.20380.20380.086*0.25
H120.20380.31280.31280.086*0.0833
H130.31280.31280.20380.086*0.0833
H140.31280.20380.31280.086*0.0833
H20.59300.48140.48140.065*0.125
H30.44450.44450.44450.065*0.125
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hf0.02423 (2)0.02423 (2)0.02423 (2)0.0000.0000.000
N10.0436 (7)0.0436 (7)0.0436 (7)0.0005 (12)0.0005 (12)0.0005 (12)
N20.0558 (9)0.0558 (9)0.0558 (9)0.0000.0000.000
F10.1063 (14)0.1063 (14)0.0170 (6)0.0000.0000.000
F20.062 (3)0.065 (3)0.0293 (18)0.0000.0000.0139 (19)
F30.041 (2)0.059 (3)0.044 (2)0.0000.0000.0276 (17)
Geometric parameters (Å, º) top
Hf—F11.963 (2)F1—F2ii2.826 (4)
Hf—F1i1.963 (2)F1—F3xi2.912 (4)
Hf—F1ii1.963 (2)F1—F3ix2.912 (4)
Hf—F22.032 (5)F1—F3x2.912 (4)
Hf—F2iii2.032 (5)F1—F3ii2.912 (4)
Hf—F32.151 (5)N1—N1xii0.234 (10)
Hf—F3iii2.151 (5)N1—F3xiii2.584 (4)
F1—F2iv2.374 (6)N1—F3xiv2.620 (3)
F1—F2v2.374 (6)N1—H110.8952
F2—F3vi2.484 (8)N1—H120.8843
F3—F3vii2.425 (10)N1—H130.8843
F1—F1i2.776 (3)N1—H140.8843
F1—F1viii2.776 (3)N2—F1xv2.735 (2)
F1—F2ix2.826 (4)N2—F2xvi2.820 (6)
F1—F2x2.826 (4)N2—H20.9081
F1—F2xi2.826 (4)N2—H30.9033
F1—Hf—F1i90.0F1ii—Hf—F1v90.0
F1—Hf—F1ii90.0F1i—Hf—F1xvii90.0
F1i—Hf—F1ii180.0F1ii—Hf—F1xvii90.0
F1—Hf—F1viii90.0F1ii—Hf—F272.88 (17)
F1i—Hf—F1viii90.0F1i—Hf—F2iii72.88 (17)
F1ii—Hf—F1viii90.0F2xviii—Hf—F3xix72.8 (2)
F1—Hf—F1v90.0F2vii—Hf—F3iv72.8 (2)
F1i—Hf—F1v90.0F3iv—Hf—F3xx68.6 (3)
Symmetry codes: (i) y, z, x; (ii) y, z, x; (iii) z, y, x; (iv) x, z, y; (v) z, x, y; (vi) x, z, y; (vii) x, y, z; (viii) z, x, y; (ix) z, y, x; (x) z, y, x; (xi) y, z, x; (xii) x, y+1/2, z+1/2; (xiii) z, y+1/2, x+1/2; (xiv) y, x+1/2, z+1/2; (xv) y+1/2, z+1, x+1/2; (xvi) z+1, y+1/2, x+1/2; (xvii) x, y, z; (xviii) x, y, z; (xix) x, z, y; (xx) x, z, y.
(II) pentafluorooxotitanium top
Crystal data top
(H12N3TiO2F5)Mo Kα radiation, λ = 0.71073 Å
Mr = 229.03Cell parameters from 7086 reflections
Cubic, Fm3mθ = 3.8–37.6°
a = 9.2327 (1) ŵ = 1.14 mm1
V = 787.02 (3) Å3T = 296 K
Z = 4Octahedron, colourless
F(000) = 4640.24 × 0.23 × 0.22 mm
Dx = 1.933 Mg m3
Data collection top
Bruker APEX-II CCD
diffractometer
190 reflections with I > 2σ(I)
Detector resolution: 8.33 pixels mm-1Rint = 0.020
w scansθmax = 43.1°, θmin = 3.8°
Absorption correction: multi-scan
Bruker SADABS
h = 1717
Tmin = 0.695, Tmax = 0.749k = 1717
9680 measured reflectionsl = 1517
190 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.014Hydrogen site location: difference Fourier map
wR(F2) = 0.040H-atom parameters not refined
S = 1.03 w = 1/[σ2(Fo2) + (0.0333P)2 + 0.0481P]
where P = (Fo2 + 2Fc2)/3
190 reflections(Δ/σ)max = 0.050
24 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.33 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ti10.00000.00000.00000.02239 (3)
N10.2593 (2)0.2593 (2)0.2593 (2)0.0439 (4)0.25
N20.50000.50000.50000.0592 (6)
O10.1808 (4)0.1142 (3)0.00000.0660 (9)0.0833
F10.20425 (11)0.01404 (17)0.01404 (17)0.0462 (4)0.125
F20.2000 (3)0.0602 (3)0.00000.0498 (8)0.0833
H110.20490.20490.20490.098*0.25
H120.20490.31490.31490.098*0.0833
H130.31490.20490.31490.098*0.0833
H140.31490.31490.20490.098*0.0833
H20.59300.48140.48140.044*0.125
H30.44450.44450.44450.098*0.125
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ti10.02239 (3)0.02239 (3)0.02239 (3)0.0000.0000.000
N10.0439 (4)0.0439 (4)0.0439 (4)0.0058 (6)0.0058 (6)0.0058 (6)
N20.0592 (6)0.0592 (6)0.0592 (6)0.0000.0000.000
O10.0615 (15)0.096 (2)0.0406 (14)0.0518 (12)0.0000.000
F10.0186 (3)0.0600 (5)0.0600 (5)0.0024 (4)0.0024 (4)0.007 (2)
F20.0268 (8)0.0619 (17)0.0608 (17)0.0129 (9)0.0000.000
Geometric parameters (Å, º) top
Ti1—F11.8946 (10)N2—F1xiii2.7367 (10)
Ti1—F1i1.8947 (10)N2—F1xiv2.7367 (10)
N1—N1ii0.243 (6)N2—F1ii2.7367 (10)
N1—N1iii0.243 (6)N2—H20.8923
N1—N1iv0.243 (6)N2—H30.8875
N1—O1v2.613 (3)O1—O1xv1.491 (4)
N1—O1vi2.613 (3)F2—O1xvi2.362 (5)
N1—O1vii2.613 (3)F1—F2xvi2.386 (3)
N1—O1viii2.613 (3)F1—F2xvii2.386 (3)
N1—O1ix2.613 (3)F1—O1xviii2.707 (3)
N1—O1x2.613 (3)F1—O1xix2.707 (3)
N1—O1xi2.6530 (19)F1—F1xx2.6732 (15)
N1—H110.8701F1—F1xxi2.6731 (15)
N1—H120.8828F1—F1xxii2.484 (3)
N1—H130.8827F1—F2xxiii2.816 (2)
N1—H140.8827F1—F2xxiv2.816 (2)
N2—F1xii2.7367 (10)F2—F2xxv2.611 (4)
F1—Ti1—F1xxvi81.90 (10)F1—Ti1—F1xx89.732 (7)
Symmetry codes: (i) y, z, x; (ii) x, y+1/2, z+1/2; (iii) x+1/2, y, z+1/2; (iv) x+1/2, y+1/2, z; (v) z+1/2, y+1/2, x; (vi) x, z+1/2, y+1/2; (vii) y+1/2, z+1/2, x; (viii) z+1/2, x, y+1/2; (ix) x, y+1/2, z+1/2; (x) y+1/2, x, z+1/2; (xi) z+1/2, y, x+1/2; (xii) y+1/2, z+1/2, x+1; (xiii) y+1/2, z+1/2, x; (xiv) x+1, y+1/2, z+1/2; (xv) x, z, y; (xvi) y, x, z; (xvii) y, z, x; (xviii) z, y, x; (xix) z, x, y; (xx) y, z, x; (xxi) z, x, y; (xxii) z, x, y; (xxiii) z, y, x; (xxiv) z, x, y; (xxv) z, y, x; (xxvi) y, z, x.
 

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds