Download citation
Download citation
link to html
Protonated crystals of glycine silver nitrate (C4H10Ag2N4O10) undergo a displacive kind of structural phase transition to a ferroelectric phase at 218 K. Glycine silver nitrate (GSN) is a light-sensitive crystal. Single-crystal X-ray diffraction investigations are difficult to perform on these crystals due to the problem of crystal deterioration on prolonged exposure to X-rays. To circumvent this problem, single-crystal neutron diffraction investigations were performed. We report here the crystal structure of GSN in a ferroelectric phase. The final R value for the refined structure at 150 K is 0.059. A comparison of the low-temperature structure with the room-temperature structure throws some light on the mechanism of the structural phase change in this crystal. We have attempted to explain the structural transition in GSN within the framework of the vibronic theory of ferroelectricity, suggesting that the second-order Jahn-Teller (pseudo-Jahn-Teller) behavior of the Ag+ ion in GSN leads to structural distortion at low temperature (218 K).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2052519213024573/bp5051sup1.cif
Contains datablocks gsnltc, gsnrt

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052519213024573/bp5051gsnltcsup2.hkl
Contains datablock gsnltc

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052519213024573/bp5051gsnrtsup3.hkl
Contains datablock gsnrt

Experimental top

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1.

Results and discussion top

Computing details top

For both compounds, data collection: HKLgen; cell refinement: Rafin; data reduction: TriCs_ccl. Program(s) used to solve structure: SHELXL97 (Sheldrick, 1997) for gsnltc; SHELXS97 (Sheldrick, 1990) for gsnrt. For both compounds, program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP; software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1]
[Figure 2]
[Figure 3]
[Figure 4]
[Figure 5]
[Figure 6]
(gsnltc) Glycine Silver Nitrate top
Crystal data top
C4H10Ag2N2O4·2(NO3)F(000) = 24
Mr = 489.90Dx = 2.858 Mg m3
Monoclinic, P21Neutron radiation, λ = 1.17610 Å
a = 5.451 (2) ÅCell parameters from 25 reflections
b = 19.493 (1) Åθ = 6.3–30°
c = 5.441 (2) ŵ = 13.50 mm1
β = 100.12 (5)°T = 150 K
V = 569.1 (3) Å3Transparent, transparent
Z = 26 × 2 × 1 mm
Data collection top
Four circle
diffractometer
1090 reflections with I > 2σ(I)
Radiation source: spalation sourceRint = 0.013
Graphite monochromatorθmax = 47.8°, θmin = 6.3°
Absorption correction: integration
?
h = 66
Tmin = ?, Tmax = ?k = 220
1116 measured reflectionsl = 60
1093 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.059 w = 1/[σ2(Fo2) + (0.1358P)2 + 0.0119P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.157(Δ/σ)max = 0.001
S = 1.20Δρmax = 0.16 e Å3
1093 reflectionsΔρmin = 0.13 e Å3
272 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 6.0 (7)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 10 (10)
Crystal data top
C4H10Ag2N2O4·2(NO3)V = 569.1 (3) Å3
Mr = 489.90Z = 2
Monoclinic, P21Neutron radiation, λ = 1.17610 Å
a = 5.451 (2) ŵ = 13.50 mm1
b = 19.493 (1) ÅT = 150 K
c = 5.441 (2) Å6 × 2 × 1 mm
β = 100.12 (5)°
Data collection top
Four circle
diffractometer
1093 independent reflections
Absorption correction: integration
?
1090 reflections with I > 2σ(I)
Tmin = ?, Tmax = ?Rint = 0.013
1116 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.059H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.157Δρmax = 0.16 e Å3
S = 1.20Δρmin = 0.13 e Å3
1093 reflectionsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
272 parametersAbsolute structure parameter: 10 (10)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.4213 (10)0.4128 (3)0.9219 (9)0.0173 (11)
O20.6744 (9)0.4337 (3)0.6494 (8)0.0149 (11)
C10.6096 (8)0.4403 (2)0.8509 (8)0.0137 (9)
H1C20.6658 (16)0.5161 (6)1.1435 (17)0.031 (2)
H2C20.891 (2)0.4495 (6)1.1705 (19)0.035 (2)
C20.7804 (8)0.4851 (2)1.0399 (7)0.0150 (10)
N10.9492 (6)0.52952 (17)0.9293 (6)0.0161 (8)
H1N11.0309 (17)0.5055 (5)0.800 (2)0.028 (2)
H2N10.855 (2)0.5710 (6)0.8394 (18)0.034 (2)
H3N11.0926 (16)0.5500 (5)1.0633 (16)0.027 (2)
N20.4523 (6)0.21014 (16)0.1072 (6)0.0151 (8)
H1N20.5975 (18)0.1944 (6)0.0251 (19)0.035 (2)
H2N20.526 (2)0.2357 (6)0.238 (2)0.038 (2)
H3N20.3671 (17)0.1668 (5)0.196 (2)0.034 (2)
C40.2702 (7)0.2534 (2)0.0023 (7)0.0130 (9)
H1C40.377 (2)0.2865 (6)0.137 (2)0.037 (3)
H2C40.1585 (19)0.2191 (6)0.0988 (18)0.033 (2)
C30.1033 (7)0.2961 (2)0.1868 (8)0.0119 (9)
O30.1684 (9)0.3055 (2)0.3919 (9)0.0148 (10)
O40.0830 (9)0.3227 (3)0.1148 (9)0.0189 (12)
N30.1853 (5)0.18050 (17)0.4537 (5)0.0149 (7)
O50.3390 (9)0.2305 (3)0.4465 (10)0.0208 (11)
O60.1381 (10)0.1557 (3)0.2572 (11)0.0225 (11)
O70.0767 (10)0.1576 (3)0.6523 (12)0.0261 (12)
N40.6826 (6)0.05352 (16)0.4977 (6)0.0161 (7)
O80.5817 (9)0.0744 (3)0.7049 (10)0.0191 (11)
O90.8376 (9)0.0052 (3)0.4837 (9)0.0185 (11)
O100.6294 (9)0.0789 (3)0.3088 (10)0.0236 (13)
Ag10.1053 (9)0.3514 (3)0.6960 (9)0.0178 (11)
Ag20.4037 (8)0.3856 (3)0.3437 (9)0.0168 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.020 (2)0.018 (3)0.015 (2)0.0120 (19)0.0068 (17)0.0007 (19)
O20.016 (2)0.020 (3)0.010 (2)0.0082 (19)0.0079 (16)0.0078 (18)
C10.0174 (19)0.011 (2)0.0106 (18)0.0031 (15)0.0037 (14)0.0012 (15)
H1C20.023 (4)0.046 (7)0.028 (5)0.013 (4)0.016 (4)0.016 (4)
H2C20.031 (5)0.044 (6)0.027 (5)0.001 (4)0.006 (4)0.013 (5)
C20.021 (2)0.019 (2)0.0040 (17)0.0036 (17)0.0008 (16)0.0039 (17)
N10.0241 (16)0.0108 (17)0.0127 (15)0.0022 (14)0.0010 (13)0.0009 (14)
H1N10.029 (5)0.021 (5)0.038 (6)0.007 (4)0.014 (4)0.006 (4)
H2N10.053 (6)0.025 (5)0.023 (4)0.001 (5)0.006 (4)0.016 (4)
H3N10.026 (4)0.032 (5)0.021 (4)0.016 (4)0.001 (3)0.012 (4)
N20.0150 (14)0.0128 (17)0.0179 (16)0.0080 (13)0.0040 (14)0.0022 (14)
H1N20.036 (5)0.035 (6)0.028 (5)0.008 (4)0.011 (4)0.001 (4)
H2N20.048 (6)0.028 (5)0.044 (6)0.004 (5)0.022 (5)0.009 (5)
H3N20.033 (5)0.024 (6)0.042 (6)0.001 (4)0.002 (4)0.003 (4)
C40.0140 (18)0.011 (2)0.0128 (19)0.0084 (16)0.0006 (15)0.0011 (17)
H1C40.045 (6)0.032 (6)0.027 (5)0.011 (5)0.011 (4)0.009 (5)
H2C40.039 (5)0.037 (6)0.023 (4)0.005 (5)0.005 (4)0.014 (4)
C30.0123 (18)0.012 (2)0.0109 (19)0.0033 (15)0.0008 (13)0.0001 (15)
O30.018 (2)0.011 (2)0.015 (2)0.0025 (17)0.0002 (17)0.0043 (18)
O40.021 (2)0.021 (3)0.013 (2)0.007 (2)0.0020 (17)0.001 (2)
N30.0110 (12)0.0179 (15)0.0153 (14)0.0010 (11)0.0009 (10)0.0034 (12)
O50.017 (2)0.019 (3)0.024 (3)0.005 (2)0.0023 (17)0.000 (2)
O60.032 (3)0.020 (3)0.016 (2)0.005 (2)0.0066 (19)0.002 (2)
O70.026 (2)0.023 (3)0.028 (3)0.001 (2)0.003 (2)0.012 (2)
N40.0198 (14)0.0145 (16)0.0128 (14)0.0009 (10)0.0006 (11)0.0013 (11)
O80.020 (2)0.014 (2)0.021 (3)0.0015 (18)0.0018 (18)0.0061 (19)
O90.020 (2)0.023 (3)0.010 (2)0.005 (2)0.0043 (15)0.0031 (19)
O100.017 (2)0.035 (3)0.019 (3)0.000 (2)0.0038 (19)0.003 (2)
Ag10.021 (2)0.021 (3)0.012 (2)0.0084 (19)0.0027 (18)0.0036 (19)
Ag20.012 (2)0.022 (3)0.016 (2)0.0037 (19)0.0026 (15)0.0017 (19)
Geometric parameters (Å, º) top
O1—C11.276 (7)O4—Ag22.313 (7)
O1—Ag12.273 (7)O4—Ag1ii2.370 (7)
O1—Ag2i2.373 (6)N3—O71.222 (7)
O2—C11.216 (6)N3—O61.241 (7)
O2—Ag22.227 (7)N3—O51.281 (7)
C1—C21.534 (5)N4—O101.220 (7)
C2—N11.467 (5)N4—O81.234 (6)
N2—C41.503 (5)N4—O91.258 (6)
C4—C31.500 (5)Ag1—O4i2.370 (7)
C3—O31.243 (7)Ag1—Ag22.804 (6)
C3—O41.262 (7)Ag2—O1ii2.373 (6)
O3—Ag12.213 (7)
C1—O1—Ag1129.1 (4)O7—N3—O5121.2 (5)
C1—O1—Ag2i123.9 (4)O6—N3—O5120.3 (4)
Ag1—O1—Ag2i104.5 (3)O10—N4—O8120.1 (5)
C1—O2—Ag2117.3 (4)O10—N4—O9120.5 (4)
O2—C1—O1127.2 (5)O8—N4—O9119.3 (4)
O2—C1—C2115.2 (4)O3—Ag1—O1164.7 (3)
O1—C1—C2117.5 (4)O3—Ag1—O4i118.8 (3)
N1—C2—C1114.3 (3)O1—Ag1—O4i76.5 (2)
C3—C4—N2113.7 (3)O3—Ag1—Ag288.9 (2)
O3—C3—O4126.2 (5)O1—Ag1—Ag276.64 (18)
O3—C3—C4117.6 (4)O4i—Ag1—Ag2147.9 (2)
O4—C3—C4116.1 (4)O2—Ag2—O4164.7 (3)
C3—O3—Ag1118.0 (4)O2—Ag2—O1ii119.6 (3)
C3—O4—Ag2128.6 (4)O4—Ag2—O1ii75.7 (2)
C3—O4—Ag1ii125.1 (4)O2—Ag2—Ag188.7 (2)
Ag2—O4—Ag1ii103.3 (3)O4—Ag2—Ag176.56 (19)
O7—N3—O6118.5 (5)O1ii—Ag2—Ag1147.2 (2)
Symmetry codes: (i) x, y, z+1; (ii) x, y, z1.
(gsnrt) Glycine Silver Nitrate top
Crystal data top
C4H10Ag2N2O4·2(NO3)F(000) = 19
Mr = 244.95Dx = 2.861 Mg m3
Monoclinic, P21/aNeutron radiation, λ = 1.17610 Å
a = 5.451 (5) ÅCell parameters from 25 reflections
b = 19.493 (9) Åθ = 3.4–28.6°
c = 5.541 (2) ŵ = 13.38 mm1
β = 100.20 (6)°T = 293 K
V = 579.5 (6) Å3Transparent, transparent
Z = 46 × 2 × 1 mm
Data collection top
Four circle
diffractometer
Rint = 0.028
Radiation source: spallation sourceθmax = 28.7°, θmin = 3.5°
Graphite monochromatorh = 24
333 measured reflectionsk = 015
224 independent reflectionsl = 44
210 reflections with I > 2σ(I)
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.158H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.406 w = 1/[σ2(Fo2) + (0.2P)2]
where P = (Fo2 + 2Fc2)/3
S = 2.17(Δ/σ)max < 0.001
224 reflectionsΔρmax = 0.10 e Å3
62 parametersΔρmin = 0.09 e Å3
12 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 11 (6)
Crystal data top
C4H10Ag2N2O4·2(NO3)V = 579.5 (6) Å3
Mr = 244.95Z = 4
Monoclinic, P21/aNeutron radiation, λ = 1.17610 Å
a = 5.451 (5) ŵ = 13.38 mm1
b = 19.493 (9) ÅT = 293 K
c = 5.541 (2) Å6 × 2 × 1 mm
β = 100.20 (6)°
Data collection top
Four circle
diffractometer
210 reflections with I > 2σ(I)
333 measured reflectionsRint = 0.028
224 independent reflectionsθmax = 28.7°
Refinement top
R[F2 > 2σ(F2)] = 0.15812 restraints
wR(F2) = 0.406H atoms treated by a mixture of independent and constrained refinement
S = 2.17Δρmax = 0.10 e Å3
224 reflectionsΔρmin = 0.09 e Å3
62 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag0.160 (5)0.0164 (10)0.175 (4)0.062 (9)*
O10.174 (5)0.0475 (10)0.390 (4)0.056 (9)*
O20.424 (5)0.0626 (11)0.124 (5)0.073 (10)*
N10.687 (3)0.1603 (6)0.406 (2)0.062 (8)*
C10.358 (5)0.0736 (10)0.323 (4)0.078 (10)*
C20.523 (4)0.1146 (8)0.524 (3)0.055 (8)*
O30.164 (7)0.2098 (12)0.171 (5)0.085 (11)*
O40.080 (7)0.2132 (13)0.229 (5)0.100 (11)*
O50.097 (6)0.1358 (12)0.034 (5)0.083 (10)*
N20.051 (5)0.1851 (8)0.033 (4)0.085 (9)*
H1N0.615 (15)0.199 (2)0.295 (10)0.14 (2)*
H2N0.819 (9)0.1812 (18)0.538 (8)0.084 (15)*
H3N0.795 (7)0.139 (2)0.297 (6)0.079 (14)*
H1C0.401 (10)0.138 (3)0.613 (10)0.14 (2)*
H2C0.589 (15)0.081 (2)0.657 (9)0.14 (2)*
Geometric parameters (Å, º) top
Ag—O22.16 (3)O2—C11.24 (2)
Ag—O1i2.32 (3)N1—C21.491 (17)
Ag—O1ii2.49 (3)C1—C21.512 (19)
Ag—Agi2.89 (6)O3—N21.269 (18)
O1—C11.233 (19)O4—N21.25 (2)
O1—Agi2.32 (3)O5—N21.246 (18)
O1—Agiii2.49 (3)
O2—Ag—O1i161.7 (16)C1—O2—Ag119 (2)
O2—Ag—O1ii119.9 (15)O1—C1—O2125 (2)
O1i—Ag—O1ii78.3 (12)O1—C1—C2113 (2)
O2—Ag—Agi88.3 (13)O2—C1—C2121 (2)
O1i—Ag—Agi74.0 (11)C1—C2—N1107.7 (14)
O1ii—Ag—Agi146.0 (15)O5—N2—O4121 (3)
C1—O1—Agi131.0 (19)O5—N2—O3120 (2)
C1—O1—Agiii124.3 (19)O4—N2—O3119 (2)
Agi—O1—Agiii101.7 (12)
Symmetry codes: (i) x, y, z; (ii) x, y, z1; (iii) x, y, z+1.

Experimental details

(gsnltc)(gsnrt)
Crystal data
Chemical formulaC4H10Ag2N2O4·2(NO3)C4H10Ag2N2O4·2(NO3)
Mr489.90244.95
Crystal system, space groupMonoclinic, P21Monoclinic, P21/a
Temperature (K)150293
a, b, c (Å)5.451 (2), 19.493 (1), 5.441 (2)5.451 (5), 19.493 (9), 5.541 (2)
β (°) 100.12 (5) 100.20 (6)
V3)569.1 (3)579.5 (6)
Z24
Radiation typeNeutron, λ = 1.17610 ÅNeutron, λ = 1.17610 Å
µ (mm1)13.5013.38
Crystal size (mm)6 × 2 × 16 × 2 × 1
Data collection
DiffractometerFour circle
diffractometer
Four circle
diffractometer
Absorption correctionIntegration
No. of measured, independent and
observed [I > 2σ(I)] reflections
1116, 1093, 1090 333, 224, 210
Rint0.0130.028
θmax (°)47.828.7
(sin θ/λ)max1)0.6300.408
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.157, 1.20 0.158, 0.406, 2.17
No. of reflections1093224
No. of parameters27262
No. of restraints112
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.16, 0.130.10, 0.09
Absolute structureFlack H D (1983), Acta Cryst. A39, 876-881?
Absolute structure parameter10 (10)?

Computer programs: HKLgen, Rafin, TriCs_ccl, SHELXL97 (Sheldrick, 1997), SHELXS97 (Sheldrick, 1990), ORTEP.

 

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds