research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL SCIENCE
CRYSTAL ENGINEERING
MATERIALS
ISSN: 2052-5206

Asymmetric rotations and dimerization driven by normal to modulated phase transition in 4-bi­phenylcarb­oxy coupled L-phenylalaninate

crossmark logo

aDepartment of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, India, and bInstitute of Crystallography, RWTH Aachen University, Jägerstraße 17-19, 52066 Aachen, Germany
*Correspondence e-mail: somnathdey226@gmail.com

Edited by A. J. Blake, Edinburgh, United Kingdom (Received 8 November 2022; accepted 9 January 2023; online 2 March 2023)

Amongst the derivatives of 4-biphenylcarboxylic acid and amino acid esters, the crystal structure of 4-biphenylcarboxy-(L)-phenylalaninate is unusual owing to its monoclinic symmetry within a pseudo-orthorhombic crystal system. The distortion is described by a disparate rotational property around the chiral centers (φchiral ≃ −129° and 58°) of the two molecules in the asymmetric unit. Each of these molecules comprises planar biphenyl moieties (φbiphenyl = 0°). Using temperature-dependent single-crystal X-ray diffraction experiments we show that the compound undergoes a phase transition below T ∼ 124 K that is characterized by a commensurate modulation wavevector, q = δ(101), δ = ½. The (3+1)-dimensional modulated structure at T = 100 K suggests that the phase transition drives the biphenyl moieties towards noncoplanar conformations with significant variation of internal torsion angle (φmaxbiphenyl ≤ 20°). These intramolecular rotations lead to dimerization of the molecular stacks that are described predominantly by distortions in intermolecular tilts (θmax ≤ 20°) and small variations in intermolecular distances (Δdmax ≃ 0.05 Å) between biphenyl molecules. Atypical of modulated structures and superstructures of biphenyl and other polyphenyls, the rotations of individual molecules are asymmetric (Δφbiphenyl ≈ 5°) while φbiphenyl of one independent molecule is two to four times larger than the other. Crystal-chemical analysis and phase relations in superspace suggest multiple competing factors involving intramolecular steric factors, intermolecular H—C⋯C—H contacts and weak C—H⋯O hydrogen bonds that govern the distinctively unequal torsional properties of the molecules.

1. Introduction

Molecular biphenyl has been investigated extensively for its stability and conformation in different thermodynamic states. At ambient conditions, the differences in the conjugation states of the π electrons are governed primarily by the twist about the central C—C single bond in the order 40°–45° in gas phase, 20°–25° in solution and 0° (mutually coplanar) in solid state in centrosymmetric monoclinic space group P21/a (Bastiansen, 1949[Bastiansen, O. (1949). Acta Chem. Scand. 3, 408-414.]; Suzuki, 1959[Suzuki, H. (1959). Bull. Chem. Soc. Jpn, 32, 1340-1350.]; Trotter, 1961[Trotter, J. (1961). Acta Cryst. 14, 1135-1140.]; Hargreaves & Rizvi, 1962[Hargreaves, A. & Rizvi, S. H. (1962). Acta Cryst. 15, 365-373.]).

The planar conformation due to constraints from intermolecular interactions is energetically unfavorable and steric hindrance between the ortho hydrogen atoms is compensated for by out-of-plane dynamic disorder and in-plane displacements of those hydrogen atoms away from each other (Hargreaves & Rizvi, 1962[Hargreaves, A. & Rizvi, S. H. (1962). Acta Cryst. 15, 365-373.]; Casalone et al., 1968[Casalone, G., Mariani, C., Mugnoli, A. & Simonetta, M. (1968). Mol. Phys. 15, 339-348.]; Charbonneau & Delugeard, 1976[Charbonneau, G.-P. & Delugeard, Y. (1976). Acta Cryst. B32, 1420-1423.]; Charbonneau & Delugeard, 1977[Charbonneau, G. P. & Delugeard, Y. (1977). Acta Cryst. B33, 1586-1588.]; Busing, 1983[Busing, W. R. (1983). Acta Cryst. A39, 340-347.]; Lenstra et al., 1994[Lenstra, A. T. H., Van Alsenoy, C., Verhulst, K. & Geise, H. J. (1994). Acta Cryst. B50, 96-106.]). A recent study has also suggested the role of intramolecular exchange energy between single-bonded carbon atoms in stabilizing the planar conformation (Popelier et al., 2019[Popelier, P. L. A., Maxwell, P. I., Thacker, J. C. R. & Alkorta, I. (2019). Theor. Chem. Acc. 138, 12.]).

Absorption and fluorescence studies showed additional bands in their spectra at low temperatures (Hochstrasser et al., 1973[Hochstrasser, R. M., McAlpine, R. D. & Whiteman, J. D. (1973). J. Chem. Phys. 58, 5078-5088.]; Wakayama, 1981[Wakayama, N. I. (1981). Chem. Phys. Lett. 83, 413-417.]).

Temperature-dependent Raman spectroscopy and Brillouin scattering experiments both suggested two phase transitions at Tc1 = 42 K and Tc2 = 17 K (Friedman et al., 1974[Friedman, P. S., Kopelman, R. & Prasad, P. N. (1974). Chem. Phys. Lett. 24, 15-17.]; Bree & Edelson, 1977[Bree, A. & Edelson, M. (1977). Chem. Phys. Lett. 46, 500-504.], 1978[Bree, A. & Edelson, M. (1978). Chem. Phys. Lett. 55, 319-322.]; Ecolivet et al., 1983[Ecolivet, C., Sanquer, M., Pellegrin, J. & DeWitte, J. (1983). J. Chem. Phys. 78, 6317-6324.]). The phase transition at Tc1 is continuous and governed by a soft mode associated with the torsion about the central C—C single bond followed by discontinuous changes at Tc2.

Inelastic neutron scattering experiments on its deuterated form confirmed the phase transitions with the appearance of additional satellite reflections (Cailleau et al., 1979[Cailleau, H., Moussa, F. & Mons, J. (1979). Solid State Commun. 31, 521-524.]). The modulation wavevector q was determined to be qI = [{\delta}_{a}{\bf a}^{*}\,+\,{{1} \over {2}}(1-{\delta}_{b}){\bf b}^{*}] and qII = [{{1} \over {2}}(1-{\delta}_{b}){\bf b}^{*}] at the intermediate- and low-temperature phases, respectively. The wavevectors were found to vary with temperature, suggesting the incommensurate nature of the modulation (Cailleau et al., 1979[Cailleau, H., Moussa, F. & Mons, J. (1979). Solid State Commun. 31, 521-524.]).

The modulated structure of low-temperature phase II was described within a noncentrosymmetric superspace group Pa(0σ20)0 (de Wolff, 1974[Wolff, P. M. de (1974). Acta Cryst. A30, 777-785.]; Stokes et al., 2011[Stokes, H. T., Campbell, B. J. & van Smaalen, S. (2011). Acta Cryst. A67, 45-55.]; van Smaalen et al., 2013[Smaalen, S. van, Campbell, B. J. & Stokes, H. T. (2013). Acta Cryst. A69, 75-90.]) and found to be essentially associated with a small modulation of translation and a rotation (ω) normal to the mean molecular plane, and a significant torsion angle (φ) between the phenyl rings (Baudour & Sanquer, 1983[Baudour, J. L. & Sanquer, M. (1983). Acta Cryst. B39, 75-84.]; Petricek et al., 1985[Petricek, V., Coppens, P. & Becker, P. (1985). Acta Cryst. A41, 478-483.]; Pinheiro & Abakumov, 2015[Pinheiro, C. B. & Abakumov, A. M. (2015). IUCrJ, 2, 137-154.]; Schoenleber, 2011[Schoenleber, A. (2011). Z. Kristallogr. 226, 499-517.]).

Theoretical studies have suggested that competition between intramolecular and intermolecular forces drives the phase transition towards the incommensurately modulated states (Ishibashi, 1981[Ishibashi, Y. (1981). J. Phys. Soc. Jpn, 50, 1255-1258.]; Benkert et al., 1987[Benkert, C., Heine, V. & Simmons, E. H. (1987). J. Phys. C Solid State Phys. 20, 3337-3354.]; Benkert & Heine, 1987[Benkert, C. & Heine, V. (1987). Phys. Rev. Lett. 58, 2232-2234.]; Parlinski et al., 1989[Parlinski, K., Schranz, W. & Kabelka, H. (1989). Phys. Rev. B, 39, 488-494.]).

The fundamental property of flexibility in conformations has made biphenyl an excellent candidate to tune multifaceted properties in materials.

Twisting between the rings has been demonstrated to regulate conductivity of single molecule biphenyl–dithiol junctions (Vonlanthen et al., 2009[Vonlanthen, D., Mishchenko, A., Elbing, M., Neuburger, M., Wandlowski, T. & Mayor, M. (2009). Angew. Chem. Int. Ed. 48, 8886-8890.]; Mishchenko et al., 2010[Mishchenko, A., Vonlanthen, D., Meded, V., Bürkle, M., Li, C., Pobelov, I. V., Bagrets, A., Viljas, J. K., Pauly, F., Evers, F., Mayor, M. & Wandlowski, T. (2010). Nano Lett. 10, 156-163.]; Bürkle et al., 2012[Bürkle, M., Viljas, J. K., Vonlanthen, D., Mishchenko, A., Schön, G., Mayor, M., Wandlowski, T. & Pauly, F. (2012). Phys. Rev. B, 85, 075417.]; Jeong et al., 2020[Jeong, H., Li, H. B., Domulevicz, L. & Hihath, J. (2020). Adv. Funct. Mater. 30, 2000615.]), tune thermopower as a function of the twist angle (Bürkle et al., 2012[Bürkle, M., Viljas, J. K., Vonlanthen, D., Mishchenko, A., Schön, G., Mayor, M., Wandlowski, T. & Pauly, F. (2012). Phys. Rev. B, 85, 075417.]), degeneracy of energy states on substrates (Cranney et al., 2007[Cranney, M., Comtet, G., Dujardin, G., Kim, J. W., Kampen, T. U., Horn, K., Mamatkulov, M., Stauffer, L. & Sonnet, P. (2007). Phys. Rev. B, 76, 075324.]) and theoretically suggest wide band gap semiconducting properties of its derivatives (Khatua et al., 2020[Khatua, R., Sahoo, S. R., Sharma, S. & Sahu, S. (2020). Synth. Met. 267, 116474.]). On the other hand, biphenyl derivatives have also been reported to influence and increase the efficiency of photophysical properties (Oniwa et al., 2013[Oniwa, K., Kanagasekaran, T., Jin, T., Akhtaruzzaman, M., Yamamoto, Y., Tamura, H., Hamada, I., Shimotani, H., Asao, N., Ikeda, S. & Tanigaki, K. (2013). J. Mater. Chem. C, 1, 4163-4170.]; Wei et al., 2016[Wei, J., Liang, B., Duan, R., Cheng, Z., Li, C., Zhou, T., Yi, Y. & Wang, Y. (2016). Angew. Chem. Int. Ed. 55, 15589-15593.]).

Planar biphenyl molecules in the solid state favor maximum intramolecular conjugation of π electrons as well as increasing the probability of interactions between delocalized electrons that could aid in optimal stacking of molecules.

A coupling reaction mechanism (Seechurn et al., 2012[Johansson Seechurn, C. C. C., Kitching, M. O., Colacot, T. J. & Snieckus, V. (2012). Angew. Chem. Int. Ed. 51, 5062-5085.]) was successfully employed to synthesize 4-biphenylcarboxy protected amino acid esters of L-serine, L-tyrosine, L-alanine, L-leucine and L-phenylalanine via the formation of peptide-type linker O=C—NH groups (Sasmal et al., 2019b[Sasmal, S., Podder, D., Debnath, M., Nandi, S. K. & Haldar, D. (2019b). ChemistrySelect, 4, 10302-10306.],a[Sasmal, S., Nandi, S. K., Kumar, S. & Haldar, D. (2019a). ChemistrySelect, 4, 11172-11176.]).

In the solid state, the compounds crystallize either in noncentrosymmetric space group P212121 or the monoclinic subgroup P21 (Sasmal et al., 2019b[Sasmal, S., Podder, D., Debnath, M., Nandi, S. K. & Haldar, D. (2019b). ChemistrySelect, 4, 10302-10306.],a[Sasmal, S., Nandi, S. K., Kumar, S. & Haldar, D. (2019a). ChemistrySelect, 4, 11172-11176.]). Crystal packing in these systems is determined by ππ stacking between the biphenyl fragments and strong linear hydrogen bonds between the amino acid ester moieties.

We presumed that the biphenyl moieties in these chemically coupled systems could influence the bioactive amino acid esters and vice versa with respect to evolution or suppression of translational and rotational degrees of freedom in their crystal structures at some thermodynamic condition.

Reanalyzing all their crystal structures, the system of 4-biphenylcarboxy-(L)-phenylalaninate attracted our attention because the structure appeared to be similar to the L-tyrosine analog albeit the monoclinic distortion [Table 1[link], Sasmal et al. (2019a[Sasmal, S., Nandi, S. K., Kumar, S. & Haldar, D. (2019a). ChemistrySelect, 4, 11172-11176.])] and two crystallographically-independent formula units [Z′ = 2 (Steed & Steed, 2015[Steed, K. M. & Steed, J. W. (2015). Chem. Rev. 115, 2895-2933.]), Fig. 1[link](a)] in the crystal structure of the former.

Table 1
Temperature dependence of unit-cell parameters and the components of the modulation wavevector, σ1 and σ3

See Table S1 in supporting information for reflections used.

T (K) a (Å) b (Å) c (Å) β (°) σ1 σ3 V3)
200 5.0560 (3) 8.6622 (4) 42.242 (3) 90.349 (4)     1850.00 (18)
160 5.0479 (2) 8.6330 (4) 42.1525 (15) 90.513 (3)     1836.87 (13)
150 5.0498 (7) 8.6161 (8) 42.136 (11) 90.607 (11)     1833.2 (5)
140 5.0484 (6) 8.6093 (7) 42.145 (10) 90.661 (10)     1831.6 (5)
130 5.0451 (7) 8.6014 (8) 42.120 (11) 90.713 (11)     1827.6 (6)
128 5.0446 (7) 8.6002 (8) 42.113 (11) 90.723 (11)     1826.9 (6)
126 5.0440 (6) 8.5992 (7) 42.114 (10) 90.720 (9)     1826.5 (5)
124 5.0443 (6) 8.5978 (7) 42.100 (10) 90.733 (9) 0.499 (9) 0.51 (7) 1825.7 (5)
122 5.0440 (7) 8.5970 (7) 42.100 (10) 90.745 (10) 0.498 (6) 0.49 (4) 1825.5 (5)
120 5.0433 (7) 8.5984 (7) 42.100 (10) 90.746 (10) 0.497 (5) 0.52 (3) 1825.5 (5)
118 5.0441 (7) 8.5958 (8) 42.092 (11) 90.764 (10) 0.500 (4) 0.50 (3) 1824.8 (5)
116 5.0432 (6) 8.5926 (7) 42.087 (9) 90.775 (9) 0.500 (4) 0.51 (3) 1823.6 (5)
114 5.0422 (6) 8.5923 (7) 42.090 (10) 90.787 (10) 0.500 (4) 0.53 (3) 1823.3 (5)
100 5.0377 (2) 8.5898 (3) 42.0432 (14) 90.884 (3) 0.5 0.5 1819.11 (11)
†Sasmal et al. (2019a[Sasmal, S., Nandi, S. K., Kumar, S. & Haldar, D. (2019a). ChemistrySelect, 4, 11172-11176.]).
[Figure 1]
Figure 1
(a) Two independent formula units of 4-biphenylcarboxy-(L)-phenylalaninate (C23H21NO3) with atomic labels of non-hydrogen atoms (a and b for molecule A and B, respectively) in phase I at T = 160 K. [{\varphi}_{A}^{1}] = −130.1°, [{\varphi}_{B}^{1}] = 56.1°; [|{\varphi}_{A}^{2}|] = 32.8°, [|{\varphi}_{B}^{2}|] = 30.8°; [{\varphi}_{A}^{3}] = [{\varphi}_{B}^{3}] = 0°; ψA = 36.4°, ψB = 36.2°. Viewing direction along [[\overline{1}00]]. (b) Crystal packing in phase I viewed along [111] emphasizing biphenyl stacks (AA)n and (BB)n along a (horizontal arrows), (ABAB)n along b (zigzag vertical arrows) and intermolecular N—H⋯O bonds between amide groups (dashed orange) along [∓100] directions. Phenyl rings of the ester groups (transparent) are stacked only along a.

The torsion angle about the chiral center is significantly different for the independent molecules while the remainder of the rotations are similar [Fig. 1[link](a), (Sasmal et al., 2019a[Sasmal, S., Nandi, S. K., Kumar, S. & Haldar, D. (2019a). ChemistrySelect, 4, 11172-11176.])].

Each of these molecules consists of coplanar biphenyl moieties which are stacked along a and b, while the amide groups are connected by intermolecular N—H⋯O hydrogen bonds [Fig. 1[link](b), Sasmal et al. (2019a[Sasmal, S., Nandi, S. K., Kumar, S. & Haldar, D. (2019a). ChemistrySelect, 4, 11172-11176.])].

In the present study, the temperature-dependent phase transition of 4-biphenylcarboxy-(L)-phenylalaninate has been investigated using single-crystal X-ray diffraction experiments. Low-temperature phase II is found to be a 2a × b × 2c superstructure of the high-temperature (phase I) structure.

The superstructure is described within the (3 + 1)D-superspace approach as a commensurately modulated structure (de Wolff, 1974[Wolff, P. M. de (1974). Acta Cryst. A30, 777-785.]; Janner & Janssen, 1977[Janner, A. & Janssen, T. (1977). Phys. Rev. B, 15, 643-658.]; Wagner & Schönleber, 2009[Wagner, T. & Schönleber, A. (2009). Acta Cryst. B65, 249-268.]; van Smaalen, 2012[Smaalen, S. van (2012). Incommensurate Crystallography, 1st ed. Oxford University Press.]; Janssen et al., 2018[Janssen, T., Chapuis, G. & de Boissieu, M. (2018). Aperiodic Crystals: from Modulated Phases to Quasicrystals: Structure and Properties, 2nd ed. Oxford University Press.]).

Structural properties of phase I and the modulated structure have been tabulated and compiled within t-plots (t = phase of the modulation). The origin and stability of phase II is discussed in terms of intramolecular steric factors and intermolecular HC⋯CH contacts and intermolecular hydrogen bonds. It is suggested that the order parameter of the phase transition is correlated with the suppression of dynamic disorder.

2. Experimental

2.1. Temperature-dependent single-crystal X-ray diffraction

Single crystals of the compound used in this study were obtained from those reported in Sasmal et al. (2019a[Sasmal, S., Nandi, S. K., Kumar, S. & Haldar, D. (2019a). ChemistrySelect, 4, 11172-11176.]). The crystals were protected in oil under mild refrigeration. Single-crystal X-ray diffraction (SCXRD) experiments were performed on an Agilent SuperNova, Eos diffractometer employing Cu Kα radiation. The temperature of the crystal was maintained by an Oxford Cryosystems open flow nitrogen cryostat.

During cooling, visual inspection of diffraction images revealed weaker reflections in addition to strong reflections at low temperatures.

Diffraction images collected at 150 K, 140 K and 130 K–114 K in steps of ΔT = 2 K showed that the weaker diffuse features appear at 124 K and condense into satellite reflections at 122 K (Table 1[link] and Fig. S1 in supporting information). The transition temperature is significantly higher than that of molecular biphenyl (Tc, biphenyl = 42 K). On the other hand, related polyphenyls p-terphenyl and p-quarterphenyl undergo phase transition towards superstructure phases at much higher critical temperatures [Tc, terphenyl ≈ 190 K (Yamamura et al., 1998[Yamamura, Y., Saito, K., Ikemoto, I. & Sorai, M. (1998). J. Phys. Condens. Matter, 10, 3359-3366.]), Tc, quarterphenyl ≈ 233 K (Saito et al., 1985[Saito, K., Atake, T. & Chihara, H. (1985). J. Chem. Thermodyn. 17, 539-548.])]. Complete diffraction data were collected at T = 160 K and 100 K.

Determination of unit-cell parameters and data reductions were performed using the software suite CrysAlisPro (Rigaku Oxford Diffraction, 2019[Rigaku Oxford Diffraction (2019). CrysAlisPro. Rigaku Corporation, Oxford, UK.]) (Tables 1[link] and S1).

Satellite reflections of first order (m = 1) observed below Tc could be indexed with modulation wavevector q = (σ1, 0, σ3), σ1 = σ3[{{1} \over {2}}] with respect to the basic monoclinic crystal system. Here, q = [{{1} \over {2}}](101) is perpendicular to the b axis consistent with monoclinic symmetry while in molecular biphenyl qI violates monoclinic symmetry and qII is parallel to b (Cailleau et al., 1979[Cailleau, H., Moussa, F. & Mons, J. (1979). Solid State Commun. 31, 521-524.]).

Using the plugin program NADA (Schönleber et al., 2001[Schönleber, A., Meyer, M. & Chapuis, G. (2001). J. Appl. Cryst. 34, 777-779.]) in CrysAlisPro, deviations of the σ values as a function of T from a rational value of 0.5 were found to be within their standard uncertainities (Table 1[link]), indicating a commensurate nature of the modulation.

Reflections at T = 100 K were indexed by four integers (hklm) using a basic monoclinic b-unique lattice (Tables 1[link] and S1) and modulation wavevector, q = ([{{1} \over {2}}], 0, [{{1} \over {2}}]) and data integration was performed. Empirical absorption correction was performed using the AbsPack program embedded in CrysAlisPro.

The ratio of the average intensities (〈I〉) between main and satellite reflections is 13:1 and that of their average significance [〈I/σ(I)〉] is 3:1. This indicates pronounced modulation which is characteristic of modulated molecular crystals (Schönleber & Chapuis, 2001[Schönleber, A. & Chapuis, G. (2004). Acta Cryst. B60, 108-120.]; Schönleber et al., 2003[Schönleber, A., Pattison, P. & Chapuis, G. (2003). Z. Kristallogr. 218, 507-513.]; Dey et al., 2016[Dey, S., Schönleber, A., Mondal, S., Prathapa, S. J., van Smaalen, S. & Larsen, F. K. (2016). Acta Cryst. B72, 372-380.], 2018[Dey, S., Schönleber, A., Mondal, S., Ali, S. I. & van Smaalen, S. (2018). Cryst. Growth Des. 18, 1394-1400.]; Rekis et al., 2020[Rekis, T., Schönleber, A. & van Smaalen, S. (2020). Acta Cryst. B76, 18-27.], 2021[Rekis, T., Schönleber, A., Noohinejad, L., Tolkiehn, M., Paulmann, C. & van Smaalen, S. (2021). Cryst. Growth Des. 21, 2324-2331.]).

The monoclinic crystal system in addition to the reflection conditions suggest the superspace group P21(σ10σ3)0 with σ1 = σ3 = ½ (Stokes et al., 2011[Stokes, H. T., Campbell, B. J. & van Smaalen, S. (2011). Acta Cryst. A67, 45-55.]; van Smaalen et al., 2013[Smaalen, S. van, Campbell, B. J. & Stokes, H. T. (2013). Acta Cryst. A69, 75-90.]).

2.2. Structure refinement of the modulated structure

The crystal structure of the room-temperature phase (phase I hereon) was redetermined at 160 K using Superflip (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]) and refined using Jana2006 and Jana2020 (Petříček et al., 2014[Petříček, V., Dušek, M. & Palatinus, L. (2014). Z. Kristallogr. Cryst. Mater. 229, 345-352.]).

Atoms were renamed with suffixes a and b for the two independent molecules A and B [Fig. 1[link](a)]. Anisotropic atomic displacement parameters (ADPs) of all non-hydrogen atoms were refined. Hydrogen atoms were added to carbon and nitrogen atoms using a riding model in ideal chemical geometry with constraints for isotropic ADPs [Uiso(H) = 1.2Ueq(N), Uiso(H) = 1.2Ueq(Caromatic) and Uiso(H) = 1.5Ueq(Csp3)].

Owing to the pseudoorthorhombic crystal system, the integrated data was tested for twinning employing twofold rotation along the [100] direction as twin law. This twin law is a true symmetry element in the case of a hypothetical ortho­rhombic crystal system with point group symmetry 222 (Petříček et al., 2016[Petříček, V., Dušek, M. & Plášil, J. (2016). Z. Kristallogr. Cryst. Mater. 231, 583-599.]; Nespolo, 2019[Nespolo, M. (2019). Acta Cryst. A75, 551-573.]). The fit of the structure model improved (compare [R_{F}^{\rm obs}] = 0.0463 to 0.0408) and volume of the second component refined to 0.0240 (8) (Table S2). Finally, positions of the H atoms of NH groups and the parameter corresponding to isotropic extinction correction were refined that further improved [R_{F}^{\rm obs}] values ([R_{F}^{\rm obs}]= 0.0393, Table S2 in supporting information).

The crystal structure reproduced the values for intramolecular rotations reported those for the structure at T = 200 K [φchiral = φ1 (hereon) and ψ in Fig. 1[link](a)]. In addition, we also observe that the coplanar biphenyl rings are significantly rotated with respect to the amide groups [at T = 200 K: φ2 = 32.8° and 31.2° (Sasmal et al., 2019a[Sasmal, S., Nandi, S. K., Kumar, S. & Haldar, D. (2019a). ChemistrySelect, 4, 11172-11176.]) and at T = 160 K in Fig. 1[link](a)] which also remains invariant as a function of temperature.

The modulated structure of phase II at 100 K was refined using Jana2006 and Jana2020. Fractional coordinates of all atoms from the crystal structure at T = 160 K were used in the starting model while retaining the same riding model geometry for hydrogen atoms as in phase I and the average structure was refined as main reflections. In successive steps, an incommensurate (IC) model described by one harmonic wave for displacive modulation describing the atomic modulation functions (AMFs) and basic parameters for anisotropic ADPs for non-hydrogen atoms was refined against main and satellite reflections that resulted in good fit to the diffraction pattern ([R_{F}^{\rm obs}] = 0.0425). However, ADPs of four non-hydrogen atoms were found to be non-positive definite.

Since the components of q (σ1 and σ3) are rational, three commensurately modulated structures were pursued by fixing the initial phase of the modulation to values t0 = 0, [{{1} \over {4}}] and [{{1} \over {8}}], respectively. While the former two t0 values describe monoclinic space group B21 symmetry for the equivalent 3D 2a × b × 2c superstructure, the third corresponds to triclinic B1 symmetry. The commensurately modulated structure (C) model corresponding to t0 = [{{1} \over {4}}] resulted in the best fit to the diffraction data ([R_{F}^{\rm obs}] = 0.0426) including ADPs of all atoms positive definite.

As the atomic modulation functions (AMFs) have sinusoidal character, the residual values are similar to the IC model (Fig. 2[link], Figs. S2–S4 and Table S2 in supporting information). However, the C model at t0 = [{{1} \over {4}}] is described with either cosine or sine waves for the AMFs (equal to number of refinable fractional coordinates in the equivalent superstructure) reducing significantly the number of refinable parameters as compared with the IC model (compare NC = 649 with NIC = 811, further tests in supporting information).

[Figure 2]
Figure 2
(xs1,xs4)-sections of a Fourier map centered on carbon atoms (black): (a) C23a of molecule A and (b) C23b of molecule B. The contour lines and the width of the maps are 0.5 e Å−3 and 2.5 Å, respectively.

The final C model was further improved by refining the parameter corresponding to isotropic extinction correction and AMFs and positions of hydrogen atoms of NH groups ([R_{F}^{\rm obs}] = 0.0419, Table S2). The refined twin volume in phase II reproduced the value similar to that in phase I [T = 100 K, twvol2 = 0.0242 (7) in Table S2]. Presumably, the crystal possesses pseudo-merohedral growth twins.

3. Results and discussion

3.1. Structural phase transition and unequal distortion of molecules

In the present case, the monoclinic symmetry is retained below Tc unlike monoclinic to triclinic distortion at the disorder–order phase transition of p-terphenyl (Rice et al., 2013[Rice, A. P., Tham, F. S. & Chronister, E. L. (2013). J. Chem. Crystallogr. 43, 14-25.]) and p-quarterphenyl (Baudour et al., 1978[Baudour, J.-L., Délugeard, Y. & Rivet, P. (1978). Acta Cryst. B34, 625-628.]).

In the final commensurately modulated structure model with t0 = [{{1} \over {4}}], sections corresponding to t = [{{1} \over {4}}] and [{{3} \over {4}}] (Figs. 3[link] and S5) are physically relevant. These sections represent the atomic coordinates in the equivalent twofold superstructure in 3D (Figs. 4[link], S6 and S7).

[Figure 3]
Figure 3
t-plots of intramolecular rotations of molecule A (blue) and B (red) as well as intermolecular tilts and distances between stacks of 4-biphenylcarboxy-(L)-phenylalaninate. (a) Dihedral angle |φ3| represents internal torsion within the biphenyl rings, (b) dihedral angle |φ2| represents the torsion angle between the inner ring of the biphenyl and the amide groups, (c) φ1 represents the torsion angle of the amide groups with respect to the –COOCH3 groups and (d) ψ represents the torsion angle of –COOCH3 groups with respect to amide groups. (e) | θAA/BB| represents tilt between biphenyl rings of A and Aii (blue), and of B and Bii (red) and |θAB/BA| (dashed-dotted black curve) represent tilt between inner aromatic rings of biphenyl (bonded to amide groups) of A and outer ring of B and vice versa. (f) Intermolecular distances (d) between biphenyl rings of A and Aii (blue), between those of B and Bii (red) and between those of A and B (black). Horizontal dashed lines represent those angles and distances in phase I (|φ3| = | θAA/BB| = 0°). Vertical dashed lines indicate t values corresponding to angles and distances in the 3D superstructure. Symmetry code (ii): x + 1, y, z, t.
[Figure 4]
Figure 4
Comparison of structures in phase I and phase II across the phase transition highlighting the effect of internal torsion (φ3) within biphenyl on the stacking arrangements along a. The tilt between the biphenyl stacks, θAA/BB are different for the inner rings (bonded to amide rings) and the outer rings. Corresponding values of φ3 and θ are in Fig. 3[link](e) and those for C—H⋯O and C—H⋯H—C in Table 2[link]. See full unit cells in Figs. S6 and S7. Viewed along [[\overline{1}00]].

Crystal structures of phase I and phase II have group–subgroup relations and the doubling of the a and c axes describes the additional B-centering of the superstructure in phase II.

The superstructure derived using Jana2006 comprises four molecules in the asymmetric unit (Z′ = 4); two each corresponding to molecules A and B of phase I (Fig. 4[link]).

The covalent bond distances are similar for the independent set of molecules and are practically unaffected by modulation Table S7).

In the present study, discussion is based on the modulated structure in order to establish unique relations between phase I and phase II (Rekis et al., 2021[Rekis, T., Schönleber, A., Noohinejad, L., Tolkiehn, M., Paulmann, C. & van Smaalen, S. (2021). Cryst. Growth Des. 21, 2324-2331.]; Chapuis, 2020[Chapuis, G. (2020). Acta Cryst. B76, 510-511.]; Ramakrishnan et al., 2019[Ramakrishnan, S., Schönleber, A., Hübschle, C. B., Eisele, C., Schaller, A. M., Rekis, T., Bui, N. H. A., Feulner, F., van Smaalen, S., Bag, B., Ramakrishnan, S., Tolkiehn, M. & Paulmann, C. (2019). Phys. Rev. B, 99, 195140.]; Dey et al., 2016[Dey, S., Schönleber, A., Mondal, S., Prathapa, S. J., van Smaalen, S. & Larsen, F. K. (2016). Acta Cryst. B72, 372-380.]; Noohinejad et al., 2015[Noohinejad, L., Mondal, S., Ali, S. I., Dey, S., van Smaalen, S. & Schönleber, A. (2015). Acta Cryst. B71, 228-234.]; Schoenleber, 2011[Schoenleber, A. (2011). Z. Kristallogr. 226, 499-517.]; Schönleber et al., 2003[Schönleber, A., Pattison, P. & Chapuis, G. (2003). Z. Kristallogr. 218, 507-513.]).

The modulated structure suggests that the phase transition is dominated by evolution of internal torsional degrees of freedom (φ3 > 0°) within the biphenyl moieties [Fig. 3[link](a)]. The twists about the central C—C bond are significantly different for the two molecules where the torsional modulation of A are 2–4 times larger than those of B (dihedral angles [|{\varphi}_{A}^{3}|] = 15.6°, 20.5° and [|{\varphi}_{B}^{3}|] = 4.1°, 9.3°). These distortions are described by highly anisotropic AMFs (u) along the three basis vectors where the maximum amplitude are along b for the carbon atoms of biphenyl (Fig. 2[link] and Table S4). Notably, the rotations in the present structure are significantly larger than those reported for molecular biphenyl [φ ≃  ±  5.5° (Petricek et al., 1985[Petricek, V., Coppens, P. & Becker, P. (1985). Acta Cryst. A41, 478-483.]; Baudour & Sanquer, 1983[Baudour, J. L. & Sanquer, M. (1983). Acta Cryst. B39, 75-84.])]. These values are smaller than those in the low-temperature superstructure of p-terphenyl and p-quarterphenyl [maximum φterphenyl, quarterphenyl ≃ 23° (Rice et al., 2013[Rice, A. P., Tham, F. S. & Chronister, E. L. (2013). J. Chem. Crystallogr. 43, 14-25.]; Baudour et al., 1976[Baudour, J. L., Delugeard, Y. & Cailleau, H. (1976). Acta Cryst. B32, 150-154.], 1978[Baudour, J.-L., Délugeard, Y. & Rivet, P. (1978). Acta Cryst. B34, 625-628.])].

The nature of structural changes in the present system and molecular biphenyl below the phase transition temperature is different to p-(n > 2)-phenyl systems described by the property that in the later cases two disordered conformations of the molecules freeze by superstructure formation and breaking the monoclinic symmetry of their high-temperature phase.

A distinctive property of the present modulated structure is the unequal modulation for the two different moieties where ubiphenyl > uphenylalaninate (Table S4). Compared to [|{\varphi}_{A}^{3}|], the distortions in torsion angles φ1 are lesser and those in ψ are very small and virtually equal for both A and B [[{\varphi}_{A}^{1}] = −133.7°, −127.6°; [{\varphi}_{B}^{1}] = 55°, 56.2°; [{\psi}_{ A}^{1}] = 36.8°, 37.7°; [{\psi}_{B}^{1}] = 36°, 36.6° in Figs. 3[link](c) and 3[link](d)].

A possible reason for the weaker modulations of the atoms around the chiral centers is the directional strong intermolecular N—H⋯O bonds makes large intramolecular rotations unfavorable.

Note that the observed changes in the rotations of φ2 of molecule A [compare [{\varphi}_{A}^{2}] = 39.1°, 25.8° with [{\varphi}_{B}^{2}] = 32.9°, 28.9° in Fig. 3[link](b)] are predominantly described by strong modulations of the molecule's biphenyl moiety. The asymmetry in rotations of individual molecules (Δ|φ3| ≈ 5°) is determined by the disparate bonding environments of the biphenyl moieties where the inner rings are that are covalently bonded to amide groups while the outer interact weakly via C—H⋯H—C interactions with the phenyl rings of phenylalaninate groups (Fig. 4[link]). Subsequently, the unequal values at the relevant t-sections of φ3 are correlated with those of φ2 [compare Figs. 3[link](a) and 3[link](b)].

It is also observed that the variation in φ1 is greater for molecule A than that of B [compare [{\Delta}{\varphi}_{A}^{1}] ≃ 6° with [{\Delta}{\varphi}_{B}^{1}] ≃ 1° in Fig. 3[link](c)]. The origin of disparate distortions in intramolecular rotations is explained in §3.2[link].

In the modulated structure, the biphenyl moieties in (AA)n and (BB)n stacks which are parallel (θ = 0°) in phase I are tilted with respect to each other [Fig. 3[link](e)]. These tilts (θAA/BB) are of the order of the internal twists (φ3) of the independent biphenyl moieties [θAA = 19.5° and 16.6°; θBB = 5° and 7.2° for inner and outer rings of biphenyl respectively, compare Fig. 3[link](e) with Fig. 3[link](a)] The orientation between the biphenyl moieties within the (ABAB)n stacks also vary with ΔθAA/BB ≃ 12° where the value is intermediate to [{\varphi}_{A}^{3}] and [{\varphi}_{B}^{3}] [compare Fig. 3[link](e) with Fig. 3[link](a)]. In addition, intermolecular distances between the biphenyl moieties within the stacks at the two t-sections are different and vary up to ΔdAA/BB ≃ 0.05 Å and ΔdABAB ≃ 0.02 Å [Fig. 3[link](f)].

Overall distortions in dAA and dBB are nearly equal although θAA is greater than θBB. These variations in d may arise to compensate for the mutual rotations of aromatic rings within the stacks. For example, the comparison θAA for outer rings > θAA for inner rings as opposed to θBB for outer rings < θBB for inner rings could explain the complimentary variations of dAA and of dBB [sets of distances (Å) in t = ([{{1} \over {4}}], [{{3} \over {4}}]): dAA = (5.01, 5.06); dBB = (5.06, 5.02) in Fig. 3[link](f)]. It could therefore be argued that the dimerization of biphenyl molecular stacks below Tc is predominantly governed by distortion described by molecular rotations rather than intermolecular distances. On the other hand, variation of intermolecular distances between aromatic rings of L-phenylalaninate are similar to those of the biphenyls albeit the interstack rotations of the former are significantly smaller (θ < 3°, Fig. S5 in supporting information).

3.2. Competitive forces governing modulations

Structural studies in the 3D phase of molecular biphenyl have suggested that the ortho-hydrogen atoms are displaced away in the plane of the rings to minimize steric hindrance (Trotter, 1961[Trotter, J. (1961). Acta Cryst. 14, 1135-1140.]; Hargreaves & Rizvi, 1962[Hargreaves, A. & Rizvi, S. H. (1962). Acta Cryst. 15, 365-373.]; Charbonneau & Delugeard, 1976[Charbonneau, G.-P. & Delugeard, Y. (1976). Acta Cryst. B32, 1420-1423.]). On the other hand, dynamic disorder predominantly governed by torsional vibrations around the long molecular axis (Petricek et al., 1985[Petricek, V., Coppens, P. & Becker, P. (1985). Acta Cryst. A41, 478-483.]) is predicted to balance the planar conformation of biphenyl favorable for crystal packing (Lenstra et al., 1994[Lenstra, A. T. H., Van Alsenoy, C., Verhulst, K. & Geise, H. J. (1994). Acta Cryst. B50, 96-106.]).

As short as 1.98 Å in phase I (Table 2[link]), these contacts are shorter than the predicted values for twice van der Waals radius for hydrogen [r = 1.1–1.2 Å (Rowland & Taylor, 1996[Rowland, R. S. & Taylor, R. (1996). J. Phys. Chem. 100, 7384-7391.]; Alvarez, 2013[Alvarez, S. (2013). Dalton Trans. 42, 8617-8636.])]. In the modulated structure, we observe that the distances between the ortho-hydrogen atoms are marginally but consistently larger than those in phase I (Table 2[link]) that could suggest that the torsional modulations aid in minimization of the presumed steric hindrance below Tc (Dey et al., 2022[Dey, S., Schönleber, A., van Smaalen, S., Morgenroth, W. & Krebs Larsen, F. (2022). Chem. Eur. J. 28, e202104151.], 2018[Dey, S., Schönleber, A., Mondal, S., Ali, S. I. & van Smaalen, S. (2018). Cryst. Growth Des. 18, 1394-1400.]).

Table 2
Comparison of nonbonded hydrogen⋯acceptor and hydrogen⋯hydrogen distances (Å) involved in hydrogen bonds and steric factors in phase I (T1) and phase II (T2)

The two values for distances in phase II (T2) correspond to t = [{{1} \over {4}}] and t = [{{3} \over {4}}], respectively.

Interaction class Atom labels Phase Distance (Å)
N—H⋯O H1n1a⋯O3ai I 2.00
    II 1.97, 1.95
  H1n1b⋯O3bii I 2.00
    II 2.00, 1.98
C—H⋯O H1c10a⋯O2aiii I 2.72
    II 2.72, 2.68
  H1c10b⋯O2biv I 2.78
    II 2.74, 2.73
Intra H⋯H H1c14a⋯H1c19a I 1.98
    II 2.08, 2.09
  H1c14b⋯H1c19b I 1.98
    II 2.00, 1.99
  H1c16a⋯H1c23a I 2.03
    II 2.10, 2.16
  H1c16b⋯H1c23b I 2.02
    II 2.03, 2.06
Intra H⋯O H1C13a⋯O3a I 2.59
    II 2.66, 2.54
  H1C13b⋯O3b I 2.59
    II 2.61, 2.56
Intra H⋯O H1C3a⋯O3a I 2.37
    II 2.38, 2.38
  H1C3b⋯O3b I 3.65
    II 3.65, 3.65
Inter H⋯H H1c21a⋯H1c7b I 2.59
    II 2.61, 2.56
  H1c21b⋯H1c7aii I 2.45
    II 2.39, 2.46
Symmetry codes. Phase I: (i) x − 1, y, z; (ii) x + 1, y, z; (iii) [-x+1,y+{{1} \over {2}},-z + 1]; (iv) [-x+2,y-{{1} \over {2}},-z]. Phase II: (i) x − 1, y, z, t; (ii) x+ 1, y, z, t; (iii) [-x+1,y+{{1} \over {2}},-z+1,-t]; (iv) [-x+2,y-{{1} \over {2}},-z,-t].

A peculiar property of the modulated structure under discussion is the significant difference in the torsional amplitude φ3 of the independent molecules. This aspect cannot be explained solely based on the intramolecular steric factors. Analysis of the crystal packing shows that each of these independent biphenyl moieties maintains close intermolecular CH⋯HC contacts with the phenyl rings of L-phenylalaninate in AB and BA fashion (Fig. 4[link]).

These distances are significantly longer (intermolecular dH⋯H ≥ 2.4 Å, Table 2[link]) compared with the intramolecular H⋯H distances. On the other hand, the aromatic rings of L-phenylalaninate interact with adjacent oxygen atoms of –COOCH3 via C—H⋯O hydrogen bonds (Fig. 4[link] and Table 2[link]). These hydrogen bonds are weaker (Desiraju & Steiner, 2001[Desiraju, G. R. & Steiner, T. (2001). The Weak Hydrogen Bond. In Structural Chemistry and Biology, 1st ed. Oxford University Press.]) but highly directional [∠(C—H⋯O) = 159–164°] with very little variation in the distances.

Interestingly, those H⋯H distances involving biphenyl moieties of molecule B are consistently smaller than those of molecule A in both phases (Table 2[link]). We argue that in the presence of both the van der Waals interactions and weak C—H⋯O bonds, the larger distortions of A is favored by weaker CH⋯HC interactions while that is suppressed in B.

The variations in φ2 and asymmetry in φ3 can be explained with respect to the intramolecular nonbonded nearest distances between the hydrogen atoms bonded to C13 atoms (Fig. 1[link]) of inner rings of biphenyl and the oxygen atoms O3 of the amide groups. The distances are short (dH13⋯O3 = 2.59 Å in phase I, Table 2[link]) and are in the range of the sum of the van der Waals radii of oxygen and hydrogens [rH = 1.1–1.2 Å, rO = 1.4–1.56 Å (Rowland & Taylor, 1996[Rowland, R. S. & Taylor, R. (1996). J. Phys. Chem. 100, 7384-7391.]; Alvarez, 2013[Alvarez, S. (2013). Dalton Trans. 42, 8617-8636.])]. In the modulated structure, the larger distortions of [{\varphi}_{A}^{3}] requires the amide groups to rotate with respect to the inner phenyl ring to optimize these C—H⋯O=C contacts to avoid steric effects (compare dH13a⋯O3a = 2.66 Å, 2.54 Å in Table 2[link] with [{\varphi}_{\rm A}^{2}] = 39.1°, 25.8° in Fig. 3[link]). Although the variation in [{\varphi}_{B}^{3}] is smaller, the positive correlation that is larger rotations with greater H⋯O distances and vice versa are observed (compare dH13b⋯O3b = 2.61 Å, 2.56 Å in Table 2[link] with [{\varphi}_{B}^{2}] = 32.9°, 28.9° in Fig. 3[link]). Alternatively, it could be argued that the asymmetric distortion of φ3 within individual molecules is a result of the constraint of the amide groups, where rotations are hindered when the C—H⋯O=C contact distances are short and favored when those are longer. Therefore, the four different values of intramolecular torsion φ3 within the biphenyl moieties are distinctively governed by intramolecular nonbonded H⋯H and H⋯O; and intermolecular nonbonded H⋯H contacts and weak C—H⋯O hydrogen bonds.

The independent molecules A and B differ from each other with respect to their torsion around the chiral center namely φ1 (= −130.1° and 56.1° for A and B, respectively, in phase I). The difference in twist angles has remarkable effects on the molecular conformation with respect to the distance between the O3 atoms of the amide groups and hydrogen atoms of the chiral centers C3 carbon atoms (dH3⋯O3 = 2.37 Å, 3.65 Å for A and B, respectively, in phase I, Table 2[link]). In phase II, the modulations of L-phenylalaninate moieties are weaker than that of the biphenyl groups possibly due to the presence of strong intermolecular N—H⋯O hydrogen bonds. However, the variations in [\varphi_{A}^{1}] ( ≃6°) as compared with [\varphi_{B}^{1}] ( ≃1°) are greater which could arise to optimize significantly shorter H3⋯O3 nonbonded contacts of A as compared with B (dH3⋯O3 = 2.38 Å, and 3.65 Å for A and B, respectively, in phase II, Table 2[link]).

As noted in §2.2[link] the average intensities of the satellite reflections are an order of magnitude smaller than the main reflections. The order parameter of the phase transition might be expressed as proportional to the amplitude of the modulation which is approximately proportional to square root of the intensities of the satellite reflections (van Smaalen, 2005[Smaalen, S. van (2005). Acta Cryst. A61, 51-61.]). The pronounced AMFs of the biphenyl moieties describing the predominant distortions in the crystal structure are accompanied by suppression of dynamic disorder in phase II as compared with phase I. For example, the carbon atoms at ortho (C14, C16, C19, C23) and meta (C13, C17, C20, C22) positions are strongly displaced [Fig. 5[link](b), Tables S4 and S5]. Subsequently, the ADPs are significantly reduced as compared with phase I [Fig. 5[link](a), Table S5]. Notably, the decrease of the ADPs (Ueq) from T = 160 K to T = 100 K is larger for those of molecule A than those for B in conjunction with the fact that overall the ADPs are smaller or similar for the former as opposed to phase I, while the square of the amplitude of modulations (u2) are greater for A than those for B [compare Figs. 5[link](b) with 5[link](a)].

[Figure 5]
Figure 5
Scatter plots of equivalent value of anisotropic ADPs (Ueq) and square of the amplitude of modulations (u2) of the carbon atoms of biphenyl moieties (C12 through to C23) and non-hydrogen atoms of L-phenylalaninate moieties [see Fig. 1[link](a)] of molecules A (blue) and B (red). (a) and (c) Ueq of the biphenyl carbon atoms and L-phenylalaninate non-hydrogen atoms, respectively, at T = 160 K (open circles) and at T = 100 K (full circles). (b) and (d) u2 (diamonds) of the corresponding biphenyl carbon atoms and L-phenylalaninate non-hydrogen atoms of molecules A and B, respectively, at T = 100 K. See Tables S5 and S6.

The decrease in ADPs of atoms of L-phenylalaninate moieties of A are greater than B from T = 160 K to T = 100 K [Fig. 5[link](c)]. Unlike the biphenyl moieties, such apparent switch-over of the ADPs is not observed where the overall values of A are greater than those of B in both phases I and II, while the squares of the AMFs in II are larger for A than those for B [compare Figs. 5[link](d) with 5[link](c), Tables S4 and S6]. It is possible that the superstructure formation below the phase transition aids in optimal conformation of the biphenyl moieties by significant distortions of their internal torsion while the modulations in L-phenylalaninate groups compensates for the former.

In hindsight, the observed larger mean-squared displacements of atoms of molecule A than B in high-T phase I possibly arises to optimize the short nonbonded H⋯O distances around the chiral center that is largely minimized in phase II by greater intramolecular distortions of torsional angles in the former than the later. This hypothesis is supported by the small but observable distortion of [{\varphi}^{1}_{A}] (∼ 6°) as compared with [{\varphi}^{1}_{B}] (∼ 1°) while those for ψ are significantly smaller (∼ 1°) for both molecules in phase II.

4. Conclusions

The 2a  ×  b  ×  2c superstructure of 4-biphenylcarboxy-(L)-phenylalaninate at T = 100 K has been successfully described as a commensurately modulated structure within (3+1)D superspace with superspace group symmetry P21(σ10σ3)0. The single crystal to single crystal phase transition below T = 124 K drives the 3D structure directly to a locked-in twofold superstructure accompanied by significant distortion of torsional rotations within biphenyl away from coplanarity that is also a property of incommensurately modulated structure of biphenyl but with amplitudes four times smaller than the present system.

The phase transition temperature is significantly higher than that in biphenyl yet significantly lower than for p-terphenyl and p-quarterphenyl. Consistent with the Tc, the maximum amplitude of torsion is also intermediate and in the order φquarterphenylφterphenyl > φ4-biphenylcarboxy-L-phenylalaninate > φbiphenyl.

Topologically separated, conformations of both the weaker C—H⋯O bonds and stronger N—H⋯O bonds are rigid and that underlines their role in stabilizing the crystal packing in both phases. A unique property of the present polyphenyl coupled amino acid ester is the distinctively unequal torsional amplitude (φA > φB) within the independent molecules which is governed by multiple level of competitions involving unequal van der Waals constraints in the presence of weak hydrogen bonds between the biphenyl and L-phenylalaninate moieties while the asymmetry of φ3 is determined by intramolecular nonbonded constraints between phenyl rings and amide groups.

The unusual nature of the phase transition is rationalised by the fact that unequal intramolecular distortions of the two molecules are complemented by unequal suppression of the dynamic disorder of their atoms below Tc.

The present investigation of the phase transition in the biphenylcarboxy coupled amino acid ester system also shows consequences for crystal packing where significant distortions in conjugations represented by mutual intramolecular rotations between homo aromatic groups as well as with aliphatic amide groups results in modulated ππ stacking arrangements (θAA/BB > 0°) of phenyl groups but preserves the conformations of intermolecular directional N—H⋯O hydrogen bonds of the high-temperature structure.

5. Related literature

The following references are cited in the supporting information: Becker & Coppens (1974[Becker, P. J. & Coppens, P. (1974). Acta Cryst. A30, 129-147.]), Coelho (2003[Coelho, A. A. (2003). J. Appl. Cryst. 36, 86-95.], 2018[Coelho, A. A. (2018). J. Appl. Cryst. 51, 210-218.]), Petříček et al. (2014[Petříček, V., Dušek, M. & Palatinus, L. (2014). Z. Kristallogr. Cryst. Mater. 229, 345-352.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO 1.171.41.122a (Rigaku OD, 2021) for I_phaseII_modulated; CrysAlis PRO 1.171.40.54a (Rigaku OD, 2019) for I_phaseI. Cell refinement: CrysAlis PRO 1.171.41.122a (Rigaku OD, 2021) for I_phaseII_modulated; CrysAlis PRO 1.171.40.54a (Rigaku OD, 2019) for I_phaseI. Data reduction: CrysAlis PRO 1.171.41.122a (Rigaku OD, 2021) for I_phaseII_modulated; CrysAlis PRO 1.171.40.54a (Rigaku OD, 2019) for I_phaseI.

(I_phaseII_modulated) top
Crystal data top
C23H21NO3F(000) = 760
Mr = 359.4Dx = 1.312 Mg m3
Monoclinic, P21(α0γ)0†Cu Kα radiation, λ = 1.54184 Å
q = 0.500000a* + 0.500000c*Cell parameters from 3948 reflections
a = 5.0377 (2) Åθ = 4.2–65.7°
b = 8.5898 (3) ŵ = 0.70 mm1
c = 42.0432 (14) ÅT = 100 K
β = 90.884 (3)°Rectangular, colorless
V = 1819.11 (11) Å30.24 × 0.16 × 0.11 mm
Z = 4
† Symmetry operations: (1) x1, x2, x3, x4; (2) −x1, x2+1/2, −x3, −x4.

Data collection top
SuperNova, Dual, Cu at home/near, Eos
diffractometer
8898 independent reflections
Radiation source: X-ray tube5940 reflections with I > 3σ(I)
Mirror monochromatorRint = 0.027
Detector resolution: 7.9580 pixels mm-1θmax = 65.8°, θmin = 3.2°
ω scansh = 56
Absorption correction: multi-scan
CrysAlisPro 1.171.41.122a (Rigaku Oxford Diffraction, 2021) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 107
Tmin = 0.966, Tmax = 1l = 4349
13838 measured reflections
Refinement top
Refinement on FH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.042Weighting scheme based on measured s.u.'s w = 1/(σ2(F) + 0.0001F2)
wR(F2) = 0.053(Δ/σ)max = 0.001
S = 1.40Δρmax = 0.28 e Å3
8898 reflectionsΔρmin = 0.26 e Å3
662 parametersExtinction correction: B-C type 1 Gaussian isotropic (Becker & Coppens, 1974)
0 restraintsExtinction coefficient: 2000 (200)
403 constraintsAbsolute structure: 2293 of Friedel pairs used in the refinement
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1a0.3281 (4)0.0586 (3)0.45604 (4)0.0324 (6)
O1b0.8601 (3)0.5767 (3)0.04224 (4)0.0245 (5)
O2a0.1716 (5)0.2539 (3)0.48497 (5)0.0528 (8)
O2b0.6592 (4)0.3891 (3)0.01379 (4)0.0357 (6)
O3a0.8641 (3)0.2662 (3)0.39922 (4)0.0268 (5)
O3b0.5649 (3)0.4034 (3)0.09454 (4)0.0242 (5)
N1a0.4221 (4)0.2536750.40734 (4)0.0202 (6)
N1b1.0017 (4)0.3687 (3)0.08786 (4)0.0174 (5)
C1a0.2019 (6)0.0493 (4)0.47735 (6)0.0344 (9)
C1b0.7017 (5)0.6894 (4)0.02465 (6)0.0290 (8)
C2a0.2943 (5)0.2079 (4)0.46273 (5)0.0246 (7)
C2b0.8090 (4)0.4294 (4)0.03488 (5)0.0214 (7)
C3a0.4348 (5)0.3147 (4)0.43962 (5)0.0215 (7)
C3b0.9674 (5)0.3156 (4)0.05526 (5)0.0193 (6)
C4a0.3236 (5)0.4818 (4)0.44133 (5)0.0229 (7)
C4b0.8374 (5)0.1516 (3)0.05272 (5)0.0220 (7)
C5a0.4652 (5)0.5942 (4)0.41993 (5)0.0232 (7)
C5b0.9455 (5)0.0347 (3)0.07633 (5)0.0223 (7)
C6a0.3934 (5)0.6056 (4)0.38805 (6)0.0271 (7)
C6b0.8291 (5)0.0212 (4)0.10608 (5)0.0245 (7)
C7a0.5263 (5)0.7059 (4)0.36807 (6)0.0287 (8)
C7b0.9184 (5)0.0881 (4)0.12781 (6)0.0273 (7)
C8a0.7338 (5)0.7984 (4)0.37965 (6)0.0273 (7)
C8b1.1270 (5)0.1852 (4)0.12056 (6)0.0290 (8)
C9a0.8041 (5)0.7890 (4)0.41150 (6)0.0288 (8)
C9b1.2478 (5)0.1728 (4)0.09106 (6)0.0285 (8)
C10a0.6718 (5)0.6877 (4)0.43153 (6)0.0254 (7)
C10b1.1568 (5)0.0635 (4)0.06929 (5)0.0246 (7)
C11a0.6357 (4)0.2417 (4)0.38927 (5)0.0193 (7)
C11b0.7942 (4)0.4048 (4)0.10536 (5)0.0177 (6)
C12a0.5851 (4)0.1990 (4)0.35516 (5)0.0193 (6)
C12b0.8486 (4)0.4459 (4)0.13957 (5)0.0182 (6)
C13a0.7508 (5)0.2571 (4)0.33255 (5)0.0250 (7)
C13b0.6799 (5)0.5475 (4)0.15426 (6)0.0369 (9)
C14a0.7120 (5)0.2217 (4)0.30072 (6)0.0267 (8)
C14b0.7182 (5)0.5891 (4)0.18587 (6)0.0371 (9)
C15a0.5115 (4)0.1245 (4)0.29032 (5)0.0203 (6)
C15b0.9251 (4)0.5269 (3)0.20397 (5)0.0185 (6)
C16a0.3465 (5)0.0658 (4)0.31327 (6)0.0256 (8)
C16b1.0894 (5)0.4230 (4)0.18885 (5)0.0334 (8)
C17a0.3818 (5)0.1034 (4)0.34520 (5)0.0233 (7)
C17b1.0577 (5)0.3836 (4)0.15712 (6)0.0310 (8)
C18a0.4741 (4)0.0871 (4)0.25609 (5)0.0193 (6)
C18b0.9603 (4)0.5671 (4)0.23844 (5)0.0202 (7)
C19a0.6345 (5)0.1510 (4)0.23310 (6)0.0286 (8)
C19b0.7931 (5)0.6736 (4)0.25293 (5)0.0304 (8)
C20a0.6015 (6)0.1174 (4)0.20114 (6)0.0314 (8)
C20b0.8211 (5)0.7084 (4)0.28498 (6)0.0311 (8)
C21a0.4041 (5)0.0168 (4)0.19119 (6)0.0270 (7)
C21b1.0142 (4)0.6378 (4)0.30348 (5)0.0232 (7)
C22a0.2431 (5)0.0484 (4)0.21341 (6)0.0311 (8)
C22b1.1828 (5)0.5347 (4)0.28921 (6)0.0293 (8)
C23a0.2771 (5)0.0138 (4)0.24536 (6)0.0272 (8)
C23b1.1584 (5)0.4989 (4)0.25727 (6)0.0262 (7)
H1c3a0.6188360.3188160.4458390.0322*
H1c3b1.1446470.3088850.0472950.029*
H1c4a0.1377750.4806810.4359150.0343*
H2c4a0.3344220.5183910.4628890.0343*
H1c4b0.648890.1609760.0551540.033*
H2c4b0.8573990.1121580.0315320.033*
H1c6a0.2501780.5432240.3797460.0325*
H1c6b0.6848820.0886890.1115120.0294*
H1c7a0.4751320.7118830.3460220.0345*
H1c7b0.8348290.0965350.1481070.0328*
H1c8a0.8264140.8674240.3657150.0327*
H1c8b1.1886580.2608630.135760.0347*
H1c9a0.9451490.8530080.4198230.0346*
H1c9b1.3933870.2397790.085870.0342*
H1c10a0.7229580.6818260.4535770.0305*
H1c10b1.2405670.0553080.0490010.0295*
H1n1a0.253 (5)0.254 (3)0.3989 (6)0.0243*
H1n1b1.172 (5)0.381 (3)0.0954 (5)0.0208*
H1c13a0.8938240.3224920.3390220.03*
H1c13b0.5328890.5904110.142450.0443*
H1c14a0.8263010.265140.2854030.032*
H1c14b0.5996560.6623070.1954090.0446*
H1c16a0.2061940.0015810.3069250.0307*
H1c16b1.2316370.3760160.2008670.0401*
H1c17a0.2636870.0625760.3605720.028*
H1c17b1.1800540.3134850.1473030.0371*
H1c19a0.7722110.2203880.2396730.0343*
H1c19b0.6566470.7236830.2405430.0365*
H1c20a0.7147460.163550.1858510.0376*
H1c20b0.7044350.78270.2944510.0373*
H1c22a0.1062730.1184150.2066960.0374*
H1c22b1.3207250.4863530.3017140.0352*
H1c23a0.1628430.0598660.260480.0326*
H1c23b1.2790650.4263990.2479260.0314*
H1c21a0.3800380.0070980.1690260.0324*
H1c21b1.0302150.6603130.3257860.0279*
H1c1a0.2373020.1539410.4706280.0516*
H2c1a0.2707790.0342040.4985430.0516*
H3c1a0.0137970.0314160.4770420.0516*
H1c1b0.750090.7925870.0312850.0436*
H2c1b0.7332160.6779930.0023070.0436*
H3c1b0.5170470.6721020.0287020.0436*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1a0.0429 (11)0.0232 (9)0.0314 (9)0.0014 (8)0.0128 (8)0.0012 (7)
O1b0.0298 (9)0.0186 (8)0.0249 (8)0.0019 (7)0.0074 (6)0.0017 (7)
O2a0.0936 (17)0.0291 (11)0.0369 (11)0.0007 (12)0.0360 (11)0.0019 (9)
O2b0.0507 (11)0.0247 (9)0.0309 (9)0.0020 (9)0.0218 (8)0.0008 (8)
O3a0.0145 (8)0.0396 (10)0.0265 (9)0.0001 (8)0.0001 (6)0.0032 (8)
O3b0.0147 (8)0.0325 (9)0.0252 (8)0.0002 (7)0.0029 (6)0.0009 (8)
N1a0.0163 (10)0.0250 (10)0.0193 (9)0.0005 (8)0.0008 (7)0.0013 (8)
N1b0.0137 (9)0.0189 (9)0.0193 (9)0.0022 (8)0.0018 (7)0.0001 (7)
C1a0.0492 (17)0.0277 (14)0.0265 (13)0.0096 (13)0.0037 (11)0.0022 (11)
C1b0.0399 (15)0.0202 (12)0.0269 (12)0.0048 (12)0.0037 (10)0.0032 (10)
C2a0.0254 (13)0.0282 (13)0.0202 (11)0.0010 (11)0.0001 (9)0.0050 (10)
C2b0.0229 (12)0.0230 (12)0.0184 (11)0.0007 (10)0.0019 (9)0.0003 (9)
C3a0.0217 (12)0.0235 (12)0.0192 (11)0.0012 (10)0.0020 (9)0.0028 (9)
C3b0.0193 (12)0.0210 (11)0.0177 (11)0.0004 (10)0.0013 (8)0.0008 (9)
C4a0.0210 (12)0.0249 (12)0.0228 (12)0.0033 (10)0.0020 (9)0.0042 (10)
C4b0.0248 (13)0.0161 (11)0.0249 (12)0.0011 (10)0.0056 (9)0.0016 (9)
C5a0.0253 (13)0.0184 (12)0.0261 (12)0.0040 (10)0.0043 (9)0.0010 (9)
C5b0.0248 (13)0.0151 (11)0.0270 (12)0.0039 (10)0.0048 (9)0.0040 (9)
C6a0.0227 (13)0.0277 (13)0.0308 (13)0.0028 (11)0.0041 (9)0.0032 (11)
C6b0.0243 (13)0.0182 (11)0.0310 (13)0.0012 (10)0.0021 (9)0.0027 (10)
C7a0.0297 (13)0.0321 (14)0.0245 (12)0.0009 (12)0.0002 (10)0.0034 (11)
C7b0.0331 (13)0.0229 (12)0.0259 (12)0.0006 (11)0.0010 (10)0.0001 (10)
C8a0.0309 (14)0.0206 (12)0.0304 (13)0.0022 (11)0.0032 (10)0.0034 (10)
C8b0.0313 (14)0.0213 (12)0.0340 (14)0.0003 (11)0.0081 (10)0.0030 (11)
C9a0.0294 (14)0.0249 (13)0.0321 (13)0.0023 (11)0.0020 (10)0.0046 (11)
C9b0.0265 (13)0.0217 (12)0.0372 (14)0.0038 (10)0.0026 (10)0.0031 (10)
C10a0.0271 (13)0.0245 (12)0.0244 (12)0.0006 (11)0.0022 (9)0.0024 (10)
C10b0.0255 (12)0.0217 (12)0.0264 (12)0.0030 (11)0.0001 (9)0.0051 (10)
C11a0.0121 (11)0.0200 (12)0.0259 (11)0.0001 (9)0.0008 (8)0.0012 (9)
C11b0.0116 (11)0.0157 (11)0.0258 (11)0.0002 (9)0.0005 (8)0.0030 (9)
C12a0.0165 (11)0.0194 (11)0.0221 (11)0.0013 (10)0.0005 (8)0.0000 (9)
C12b0.0168 (11)0.0174 (11)0.0204 (11)0.0020 (9)0.0040 (8)0.0018 (9)
C13a0.0166 (12)0.0324 (14)0.0260 (12)0.0046 (11)0.0011 (9)0.0031 (11)
C13b0.0315 (15)0.0518 (18)0.0272 (13)0.0237 (14)0.0088 (10)0.0068 (13)
C14a0.0248 (13)0.0309 (14)0.0245 (12)0.0032 (12)0.0057 (10)0.0018 (11)
C14b0.0381 (15)0.0444 (16)0.0287 (13)0.0247 (14)0.0076 (11)0.0112 (12)
C15a0.0195 (11)0.0169 (11)0.0244 (11)0.0031 (10)0.0002 (8)0.0005 (9)
C15b0.0166 (11)0.0162 (11)0.0227 (11)0.0004 (9)0.0009 (8)0.0006 (9)
C16a0.0244 (13)0.0254 (13)0.0268 (13)0.0040 (11)0.0001 (10)0.0021 (11)
C16b0.0297 (14)0.0460 (16)0.0243 (12)0.0194 (13)0.0057 (10)0.0048 (12)
C17a0.0180 (12)0.0249 (13)0.0272 (12)0.0028 (11)0.0063 (9)0.0005 (10)
C17b0.0239 (13)0.0430 (16)0.0258 (12)0.0144 (12)0.0041 (9)0.0079 (11)
C18a0.0164 (11)0.0168 (11)0.0247 (11)0.0038 (9)0.0014 (8)0.0023 (9)
C18b0.0212 (12)0.0179 (11)0.0217 (11)0.0053 (10)0.0042 (8)0.0004 (9)
C19a0.0279 (14)0.0289 (14)0.0290 (13)0.0055 (12)0.0015 (10)0.0032 (11)
C19b0.0287 (14)0.0391 (16)0.0233 (12)0.0120 (12)0.0030 (10)0.0001 (11)
C20a0.0376 (15)0.0338 (15)0.0227 (12)0.0031 (13)0.0025 (11)0.0038 (11)
C20b0.0298 (14)0.0365 (15)0.0271 (12)0.0071 (12)0.0044 (10)0.0069 (11)
C21a0.0321 (14)0.0258 (13)0.0228 (12)0.0068 (11)0.0048 (9)0.0063 (10)
C21b0.0211 (12)0.0266 (12)0.0220 (12)0.0074 (10)0.0003 (9)0.0018 (10)
C22a0.0315 (15)0.0300 (15)0.0318 (14)0.0040 (12)0.0048 (11)0.0057 (12)
C22b0.0290 (14)0.0314 (14)0.0273 (13)0.0038 (12)0.0078 (10)0.0003 (11)
C23a0.0245 (13)0.0297 (14)0.0273 (13)0.0045 (12)0.0007 (10)0.0015 (11)
C23b0.0266 (13)0.0259 (13)0.0260 (12)0.0056 (11)0.0008 (9)0.0039 (10)
Geometric parameters (Å, º) top
AverageMinimumMaximum
O1a—C1a1.443 (4)1.438 (4)1.448 (4)
O1a—C2a1.324 (5)1.324 (5)1.324 (5)
O1b—C1b1.450 (5)1.450 (5)1.450 (5)
O1b—C2b1.327 (5)1.326 (5)1.327 (5)
O2a—C2a1.196 (5)1.193 (5)1.199 (5)
O2b—C2b1.206 (4)1.205 (4)1.206 (4)
O3a—C11a1.238 (6)1.236 (6)1.239 (6)
O3b—C11b1.235 (6)1.230 (6)1.240 (6)
N1a—C3a1.455 (4)1.454 (4)1.457 (4)
N1a—C11a1.332 (6)1.331 (6)1.334 (6)
N1a—H1n1a0.92 (3)0.91 (3)0.92 (3)
N1b—C3b1.453 (4)1.453 (4)1.453 (4)
N1b—C11b1.324 (5)1.320 (5)1.329 (5)
N1b—H1n1b0.92 (3)0.91 (3)0.92 (3)
C1a—H1c1a1.0 (5)1.0 (6)1.0 (6)
C1a—H2c1a1(2)1(2)1(2)
C1a—H3c1a0.960 (6)0.960 (6)0.960 (6)
C1b—H1c1b1.0 (9)1.0 (9)1.0 (9)
C1b—H2c1b1.0 (19)1.0 (19)1.0 (19)
C1b—H3c1b0.96 (2)0.96 (2)0.96 (2)
C2a—C3a1.519 (5)1.519 (5)1.520 (5)
C2b—C3b1.519 (5)1.518 (5)1.520 (5)
C3a—C4a1.543 (5)1.542 (5)1.545 (5)
C3a—H1c3a1.0 (11)1.0 (12)1.0 (12)
C3b—C4b1.556 (5)1.555 (5)1.556 (5)
C3b—H1c3b1.0 (11)1.0 (11)1.0 (11)
C4a—C5a1.507 (5)1.504 (5)1.509 (5)
C4a—H1c4a0.96 (6)0.96 (6)0.96 (6)
C4a—H2c4a1(3)1(3)1(3)
C4b—C5b1.508 (5)1.506 (5)1.511 (5)
C4b—H1c4b1.0 (3)1.0 (3)1.0 (3)
C4b—H2c4b1(3)1(3)1(3)
C5a—C6a1.387 (5)1.385 (5)1.389 (5)
C5a—C10a1.397 (6)1.390 (6)1.404 (6)
C5b—C6b1.395 (5)1.392 (5)1.397 (5)
C5b—C10b1.394 (6)1.392 (6)1.395 (6)
C6a—C7a1.383 (5)1.383 (5)1.384 (5)
C6a—H1c6a1.0 (3)1.0 (3)1.0 (3)
C6b—C7b1.380 (5)1.376 (5)1.384 (5)
C6b—H1c6b1.0 (8)1.0 (8)1.0 (8)
C7a—C8a1.395 (6)1.393 (6)1.396 (6)
C7a—H1c7a1(3)1(3)1(3)
C7b—C8b1.379 (6)1.379 (6)1.380 (6)
C7b—H1c7b1(4)1(4)1(4)
C8a—C9a1.382 (5)1.379 (5)1.386 (5)
C8a—H1c8a1.0 (18)1.0 (18)1.0 (18)
C8b—C9b1.394 (5)1.391 (5)1.397 (5)
C8b—H1c8b1.0 (8)1.0 (8)1.0 (8)
C9a—C10a1.389 (5)1.386 (5)1.392 (5)
C9a—H1c9a1.0 (3)1.0 (3)1.0 (3)
C9b—C10b1.384 (5)1.383 (5)1.385 (5)
C9b—H1c9b0.960 (7)0.960 (7)0.960 (7)
C10a—H1c10a1(3)1(3)1(3)
C10b—H1c10b1.0 (14)1.0 (14)1.0 (14)
C11a—C12a1.498 (5)1.498 (5)1.498 (5)
C11b—C12b1.502 (5)1.497 (5)1.508 (5)
C12a—C13a1.385 (6)1.383 (6)1.388 (6)
C12a—C17a1.386 (6)1.384 (6)1.388 (6)
C12b—C13b1.373 (6)1.371 (6)1.374 (6)
C12b—C17b1.385 (6)1.383 (6)1.387 (6)
C13a—C14a1.384 (5)1.381 (5)1.386 (5)
C13a—H1c13a1.0 (7)1.0 (7)1.0 (7)
C13b—C14b1.387 (5)1.387 (5)1.387 (5)
C13b—H1c13b1.0 (6)1.0 (6)1.0 (6)
C14a—C15a1.392 (6)1.388 (7)1.396 (7)
C14a—H1c14a1(3)1(3)1(3)
C14b—C15b1.389 (6)1.386 (6)1.392 (6)
C14b—H1c14b1.0 (12)1.0 (13)1.0 (13)
C15a—C16a1.394 (5)1.384 (6)1.404 (6)
C15a—C18a1.484 (4)1.476 (4)1.491 (4)
C15b—C16b1.380 (5)1.377 (5)1.383 (5)
C15b—C18b1.498 (4)1.497 (4)1.499 (4)
C16a—C17a1.389 (5)1.386 (5)1.393 (5)
C16a—H1c16a0.960 (5)0.960 (5)0.960 (5)
C16b—C17b1.383 (4)1.376 (4)1.390 (4)
C16b—H1c16b0.96 (10)0.96 (10)0.96 (10)
C17a—H1c17a1.0 (4)1.0 (4)1.0 (4)
C17b—H1c17b1.0 (5)1.0 (5)1.0 (5)
C18a—C19a1.394 (5)1.390 (5)1.399 (5)
C18a—C23a1.399 (6)1.393 (6)1.404 (6)
C18b—C19b1.392 (6)1.391 (6)1.394 (6)
C18b—C23b1.396 (6)1.392 (6)1.399 (6)
C19a—C20a1.382 (5)1.381 (5)1.383 (5)
C19a—H1c19a1.0 (13)1.0 (13)1.0 (13)
C19b—C20b1.385 (5)1.378 (5)1.392 (5)
C19b—H1c19b1(2)1(2)1(2)
C20a—C21a1.389 (6)1.386 (7)1.392 (7)
C20a—H1c20a1(3)1(3)1(3)
C20b—C21b1.380 (6)1.375 (6)1.384 (6)
C20b—H1c20b1.0 (19)1(2)1(2)
C21a—C22a1.376 (6)1.371 (6)1.381 (6)
C21a—H1c21a0.96 (10)0.96 (10)0.96 (10)
C21b—C22b1.373 (6)1.371 (6)1.375 (6)
C21b—H1c21b1.0 (8)1.0 (8)1.0 (8)
C22a—C23a1.384 (5)1.382 (5)1.387 (5)
C22a—H1c22a1.0 (4)1.0 (4)1.0 (4)
C22b—C23b1.381 (5)1.374 (5)1.389 (5)
C22b—H1c22b1.0 (3)1.0 (3)1.0 (3)
C23a—H1c23a0.96 (16)0.96 (17)0.96 (17)
C23b—H1c23b0.960 (14)0.960 (15)0.960 (15)
C1a—O1a—C2a115.5 (3)115.5 (3)115.6 (3)
C1b—O1b—C2b114.5 (3)114.4 (3)114.5 (3)
C3a—N1a—C11a122.4 (3)122.0 (3)122.7 (3)
C3a—N1a—H1n1a113 (4)112 (4)113 (4)
C11a—N1a—H1n1a122 (4)121 (4)124 (4)
C3b—N1b—C11b121.0 (2)120.4 (2)121.5 (2)
C3b—N1b—H1n1b117.3 (15)117.2 (15)117.5 (15)
C11b—N1b—H1n1b121.6 (15)121.0 (15)122.2 (15)
O1a—C1a—H1c1a109.47109.47109.47
O1a—C1a—H2c1a109.47109.47109.47
O1a—C1a—H3c1a109.47109.47109.47
H1c1a—C1a—H2c1a109.47109.47109.47
H1c1a—C1a—H3c1a109.47109.47109.47
H2c1a—C1a—H3c1a109.47109.47109.47
O1b—C1b—H1c1b109.47109.47109.47
O1b—C1b—H2c1b109.47109.47109.47
O1b—C1b—H3c1b109.47109.47109.47
H1c1b—C1b—H2c1b109.47109.47109.47
H1c1b—C1b—H3c1b109.47109.47109.47
H2c1b—C1b—H3c1b109.47109.47109.47
O1a—C2a—O2a123.8 (3)123.4 (3)124.2 (3)
O1a—C2a—C3a112.7 (3)112.5 (3)112.9 (3)
O2a—C2a—C3a123.5 (4)123.4 (4)123.7 (4)
O1b—C2b—O2b124.2 (4)124.1 (4)124.3 (4)
O1b—C2b—C3b112.6 (3)112.5 (3)112.6 (3)
O2b—C2b—C3b123.2 (4)123.2 (4)123.3 (4)
N1a—C3a—C2a111.4 (3)111.0 (3)111.8 (3)
N1a—C3a—C4a111.6 (3)111.4 (3)111.7 (3)
N1a—C3a—H1c3a107.2107.06107.35
C2a—C3a—C4a111.0 (3)110.9 (3)111.1 (3)
C2a—C3a—H1c3a107.81107.43108.19
C4a—C3a—H1c3a107.62107.44107.8
N1b—C3b—C2b112.6 (3)112.5 (3)112.7 (3)
N1b—C3b—C4b113.1 (3)112.9 (3)113.4 (3)
N1b—C3b—H1c3b104.51104.21104.81
C2b—C3b—C4b109.1 (3)109.0 (3)109.1 (3)
C2b—C3b—H1c3b108.98108.94109.01
C4b—C3b—H1c3b108.35108.22108.48
C3a—C4a—C5a113.1 (3)112.6 (3)113.6 (3)
C3a—C4a—H1c4a109.47109.47109.47
C3a—C4a—H2c4a109.47109.47109.47
C5a—C4a—H1c4a109.47109.47109.47
C5a—C4a—H2c4a109.47109.47109.47
H1c4a—C4a—H2c4a105.58105.05106.1
C3b—C4b—C5b114.2 (3)114.1 (3)114.3 (3)
C3b—C4b—H1c4b109.47109.47109.47
C3b—C4b—H2c4b109.47109.47109.47
C5b—C4b—H1c4b109.47109.47109.47
C5b—C4b—H2c4b109.47109.47109.47
H1c4b—C4b—H2c4b104.28104.2104.36
C4a—C5a—C6a120.3 (3)120.1 (3)120.5 (3)
C4a—C5a—C10a121.1 (3)120.9 (3)121.3 (3)
C6a—C5a—C10a118.6 (3)118.6 (3)118.6 (3)
C4b—C5b—C6b119.5 (3)119.2 (3)119.9 (3)
C4b—C5b—C10b122.2 (3)122.1 (3)122.3 (3)
C6b—C5b—C10b118.3 (4)118.0 (3)118.5 (4)
C5a—C6a—C7a120.7 (3)120.5 (3)120.8 (3)
C5a—C6a—H1c6a119.68119.62119.73
C7a—C6a—H1c6a119.67119.61119.73
C5b—C6b—C7b120.9 (3)120.7 (3)121.0 (3)
C5b—C6b—H1c6b119.57119.5119.63
C7b—C6b—H1c6b119.57119.5119.63
C6a—C7a—C8a120.7 (3)120.3 (3)121.1 (3)
C6a—C7a—H1c7a119.67119.47119.87
C8a—C7a—H1c7a119.67119.46119.87
C6b—C7b—C8b120.4 (4)120.4 (4)120.4 (4)
C6b—C7b—H1c7b119.79119.78119.8
C8b—C7b—H1c7b119.79119.78119.8
C7a—C8a—C9a119.0 (4)118.6 (4)119.4 (4)
C7a—C8a—H1c8a120.51120.32120.69
C9a—C8a—H1c8a120.51120.33120.7
C7b—C8b—C9b119.7 (4)119.7 (4)119.7 (4)
C7b—C8b—H1c8b120.16120.14120.17
C9b—C8b—H1c8b120.16120.14120.17
C8a—C9a—C10a120.4 (3)120.1 (3)120.6 (3)
C8a—C9a—H1c9a119.81119.68119.94
C10a—C9a—H1c9a119.81119.68119.94
C8b—C9b—C10b119.7 (3)119.6 (3)119.7 (3)
C8b—C9b—H1c9b120.16120.13120.19
C10b—C9b—H1c9b120.16120.13120.19
C5a—C10a—C9a120.7 (3)120.5 (3)120.9 (3)
C5a—C10a—H1c10a119.64119.54119.74
C9a—C10a—H1c10a119.64119.54119.74
C5b—C10b—C9b121.1 (4)121.1 (4)121.1 (4)
C5b—C10b—H1c10b119.46119.45119.47
C9b—C10b—H1c10b119.46119.45119.47
O3a—C11a—N1a123.5 (3)123.3 (3)123.6 (3)
O3a—C11a—C12a120.6 (3)120.3 (3)120.8 (3)
N1a—C11a—C12a116.0 (3)115.8 (3)116.1 (3)
O3b—C11b—N1b122.3 (3)122.0 (3)122.7 (3)
O3b—C11b—C12b120.7 (3)120.7 (3)120.8 (3)
N1b—C11b—C12b116.9 (3)116.7 (3)117.2 (3)
C11a—C12a—C13a118.2 (3)117.8 (3)118.5 (3)
C11a—C12a—C17a123.3 (3)122.7 (3)123.9 (3)
C13a—C12a—C17a118.5 (3)118.2 (3)118.8 (3)
C11b—C12b—C13b118.3 (3)118.2 (3)118.5 (3)
C11b—C12b—C17b123.1 (3)123.0 (3)123.1 (3)
C13b—C12b—C17b118.6 (3)118.4 (3)118.7 (3)
C12a—C13a—C14a120.5 (3)120.4 (4)120.6 (3)
C12a—C13a—H1c13a119.75119.71119.79
C14a—C13a—H1c13a119.75119.71119.79
C12b—C13b—C14b121.2 (4)121.1 (4)121.2 (4)
C12b—C13b—H1c13b119.42119.4119.45
C14b—C13b—H1c13b119.42119.39119.45
C13a—C14a—C15a121.7 (3)121.6 (4)121.9 (3)
C13a—C14a—H1c14a119.13119.06119.2
C15a—C14a—H1c14a119.13119.06119.2
C13b—C14b—C15b121.2 (4)121.0 (4)121.4 (4)
C13b—C14b—H1c14b119.41119.32119.51
C15b—C14b—H1c14b119.41119.32119.51
C14a—C15a—C16a117.3 (3)117.3 (3)117.3 (3)
C14a—C15a—C18a121.0 (3)121.0 (3)121.1 (3)
C16a—C15a—C18a121.6 (3)121.5 (3)121.7 (3)
C14b—C15b—C16b116.6 (3)116.3 (3)117.0 (3)
C14b—C15b—C18b121.2 (3)120.6 (3)121.8 (3)
C16b—C15b—C18b122.1 (3)121.8 (3)122.4 (3)
C15a—C16a—C17a121.0 (3)120.9 (3)121.0 (3)
C15a—C16a—H1c16a119.52119.48119.56
C17a—C16a—H1c16a119.52119.48119.56
C15b—C16b—C17b122.7 (3)122.3 (3)123.2 (3)
C15b—C16b—H1c16b118.63118.42118.83
C17b—C16b—H1c16b118.63118.42118.83
C12a—C17a—C16a120.9 (3)120.9 (3)120.9 (3)
C12a—C17a—H1c17a119.54119.54119.54
C16a—C17a—H1c17a119.54119.53119.54
C12b—C17b—C16b119.7 (4)119.6 (4)119.7 (4)
C12b—C17b—H1c17b120.16120.13120.2
C16b—C17b—H1c17b120.17120.13120.2
C15a—C18a—C19a121.4 (3)120.9 (3)121.9 (3)
C15a—C18a—C23a121.7 (3)121.6 (3)121.9 (3)
C19a—C18a—C23a116.9 (3)116.3 (3)117.4 (3)
C15b—C18b—C19b120.8 (3)120.7 (3)120.9 (3)
C15b—C18b—C23b121.7 (3)121.7 (3)121.7 (3)
C19b—C18b—C23b117.5 (3)117.4 (3)117.7 (3)
C18a—C19a—C20a122.0 (4)121.4 (4)122.6 (4)
C18a—C19a—H1c19a118.99118.71119.28
C20a—C19a—H1c19a118.99118.71119.28
C18b—C19b—C20b120.9 (4)120.4 (3)121.5 (4)
C18b—C19b—H1c19b119.54119.26119.82
C20b—C19b—H1c19b119.53119.25119.81
C19a—C20a—C21a119.8 (3)119.5 (3)120.1 (3)
C19a—C20a—H1c20a120.09119.95120.24
C21a—C20a—H1c20a120.09119.95120.24
C19b—C20b—C21b121.0 (4)120.6 (4)121.3 (4)
C19b—C20b—H1c20b119.52119.36119.69
C21b—C20b—H1c20b119.52119.36119.69
C20a—C21a—C22a119.4 (3)119.4 (3)119.4 (3)
C20a—C21a—H1c21a120.31120.3120.32
C22a—C21a—H1c21a120.31120.3120.32
C20b—C21b—C22b118.4 (3)118.3 (3)118.5 (3)
C20b—C21b—H1c21b120.8120.75120.86
C22b—C21b—H1c21b120.8120.75120.85
C21a—C22a—C23a120.5 (4)120.0 (3)121.0 (4)
C21a—C22a—H1c22a119.76119.51120.01
C23a—C22a—H1c22a119.76119.51120
C21b—C22b—C23b121.4 (3)121.3 (3)121.6 (3)
C21b—C22b—H1c22b119.29119.2119.37
C23b—C22b—H1c22b119.29119.2119.38
C18a—C23a—C22a121.4 (3)120.7 (3)122.2 (3)
C18a—C23a—H1c23a119.28118.9119.66
C22a—C23a—H1c23a119.28118.9119.66
C18b—C23b—C22b120.7 (3)120.6 (3)120.8 (3)
C18b—C23b—H1c23b119.64119.6119.68
C22b—C23b—H1c23b119.64119.6119.68
(I_phaseI) top
Crystal data top
C23H21NO3F(000) = 760
Mr = 359.4Dx = 1.300 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54184 Å
Hall symbol: P 2ybCell parameters from 3437 reflections
a = 5.0479 (2) Åθ = 4.2–65.4°
b = 8.6330 (4) ŵ = 0.69 mm1
c = 42.1525 (15) ÅT = 160 K
β = 90.513 (3)°Rectrangular, colorless
V = 1836.87 (13) Å30.24 × 0.16 × 0.11 mm
Z = 4
Data collection top
SuperNova, Dual, Cu at home/near, Eos
diffractometer
4555 independent reflections
Radiation source: X-ray tube4219 reflections with I > 3σ(I)
Mirror monochromatorRint = 0.020
Detector resolution: 7.9580 pixels mm-1θmax = 65.3°, θmin = 2.1°
ω scansh = 55
Absorption correction: multi-scan
CrysAlisPro 1.171.40.54a (Rigaku Oxford Diffraction, 2019) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 1010
Tmin = 0.898, Tmax = 1l = 2749
6108 measured reflections
Refinement top
Refinement on FH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.039Weighting scheme based on measured s.u.'s w = 1/(σ2(F) + 0.0001F2)
wR(F2) = 0.049(Δ/σ)max = 0.0003
S = 1.54Δρmax = 0.17 e Å3
4555 reflectionsΔρmin = 0.15 e Å3
494 parametersExtinction correction: B-C type 1 Gaussian isotropic (Becker & Coppens, 1974)
0 restraintsExtinction coefficient: 3400 (300)
163 constraintsAbsolute structure: 1218 of Friedel pairs used in the refinement
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1a0.3209 (5)0.0596 (4)0.45564 (5)0.0488 (8)
O1b0.8559 (4)0.5788 (4)0.04235 (4)0.0340 (6)
O2a0.1752 (8)0.2511 (5)0.48507 (7)0.0852 (14)
O2b0.6560 (6)0.3932 (4)0.01419 (5)0.0533 (9)
O3a0.8541 (4)0.2654 (4)0.39851 (5)0.0383 (7)
O3b0.5560 (4)0.4070 (4)0.09509 (4)0.0330 (6)
N1a0.4147 (5)0.2536750.40714 (5)0.0265 (7)
N1b0.9919 (4)0.3722 (4)0.08810 (5)0.0235 (7)
C1a0.1977 (9)0.0488 (6)0.47710 (8)0.0552 (14)
C1b0.7025 (7)0.6917 (5)0.02466 (7)0.0414 (11)
C2a0.2913 (6)0.2070 (5)0.46255 (6)0.0335 (9)
C2b0.8031 (6)0.4325 (5)0.03514 (6)0.0291 (9)
C3a0.4295 (6)0.3143 (5)0.43929 (6)0.0281 (8)
C3b0.9592 (6)0.3187 (5)0.05575 (6)0.0255 (8)
C4a0.3154 (6)0.4788 (5)0.44110 (7)0.0336 (9)
C4b0.8291 (6)0.1568 (5)0.05334 (6)0.0296 (9)
C5a0.4559 (6)0.5923 (5)0.41986 (6)0.0316 (9)
C5b0.9369 (6)0.0394 (5)0.07655 (6)0.0288 (8)
C6a0.3833 (7)0.6055 (5)0.38816 (7)0.0388 (10)
C6b0.8186 (6)0.0248 (5)0.10632 (7)0.0331 (9)
C7a0.5160 (7)0.7071 (6)0.36839 (7)0.0431 (11)
C7b0.9087 (6)0.0847 (5)0.12755 (7)0.0384 (10)
C8a0.7185 (7)0.7981 (5)0.37988 (7)0.0414 (11)
C8b1.1171 (7)0.1809 (5)0.12010 (8)0.0398 (10)
C9a0.7912 (7)0.7871 (5)0.41144 (8)0.0435 (11)
C9b1.2378 (6)0.1683 (5)0.09081 (8)0.0380 (10)
C10a0.6598 (6)0.6856 (5)0.43137 (7)0.0369 (10)
C10b1.1468 (6)0.0567 (5)0.06921 (7)0.0352 (10)
C11a0.6282 (5)0.2414 (5)0.38875 (6)0.0275 (8)
C11b0.7833 (5)0.4085 (5)0.10570 (6)0.0236 (8)
C12a0.5746 (5)0.1993 (5)0.35478 (6)0.0271 (8)
C12b0.8386 (5)0.4494 (5)0.13964 (6)0.0235 (8)
C13a0.7404 (7)0.2577 (6)0.33210 (7)0.0489 (12)
C13b0.6711 (7)0.5509 (6)0.15456 (7)0.0430 (11)
C14a0.7010 (7)0.2228 (6)0.30031 (7)0.0505 (13)
C14b0.7094 (7)0.5917 (6)0.18620 (7)0.0439 (11)
C15a0.5008 (6)0.1252 (5)0.29014 (6)0.0274 (8)
C15b0.9146 (5)0.5288 (5)0.20401 (6)0.0248 (8)
C16a0.3368 (7)0.0662 (6)0.31326 (7)0.0439 (11)
C16b1.0803 (6)0.4268 (6)0.18894 (7)0.0414 (11)
C17a0.3717 (7)0.1040 (5)0.34503 (7)0.0430 (11)
C17b1.0469 (6)0.3877 (6)0.15710 (7)0.0393 (10)
C18a0.4636 (6)0.0879 (5)0.25594 (6)0.0275 (8)
C18b0.9493 (5)0.5681 (5)0.23843 (6)0.0279 (8)
C19a0.6213 (7)0.1549 (6)0.23294 (7)0.0482 (12)
C19b0.7833 (7)0.6755 (6)0.25305 (7)0.0419 (11)
C20a0.5851 (8)0.1201 (6)0.20106 (7)0.0535 (13)
C20b0.8104 (7)0.7094 (6)0.28491 (7)0.0442 (11)
C21a0.3936 (7)0.0194 (5)0.19124 (7)0.0363 (10)
C21b1.0040 (6)0.6387 (5)0.30308 (7)0.0354 (10)
C22a0.2357 (8)0.0474 (6)0.21338 (8)0.0497 (13)
C22b1.1728 (7)0.5358 (6)0.28887 (7)0.0418 (11)
C23a0.2706 (7)0.0139 (6)0.24550 (7)0.0488 (12)
C23b1.1471 (7)0.5003 (5)0.25696 (7)0.0356 (10)
H1c1a0.2513080.1522590.4718160.0828*
H2c1a0.251450.0256770.4984820.0828*
H3c1a0.0085740.0404180.4752410.0828*
H1c1b0.7420970.7936880.0324160.062*
H2c1b0.7464150.6852690.0025910.062*
H3c1b0.5170870.6708540.027250.062*
H1c3a0.6133480.3195770.4452110.0421*
H1c3b1.1366130.3113210.0478620.0382*
H1c4a0.1304020.4764160.4356630.0504*
H2c4a0.3239560.5147850.4626340.0504*
H1c4b0.6411450.1664540.0560250.0444*
H2c4b0.8468950.1179590.0321280.0444*
H1c6a0.2402550.5439180.3798640.0465*
H1c6b0.6741330.0914040.1119320.0397*
H1c7a0.4657760.7140340.3464190.0517*
H1c7b0.8253450.0941640.1478360.0461*
H1c8a0.808610.8686430.3660760.0497*
H1c8b1.1785320.2564110.135170.0477*
H1c9a0.9331460.8498340.4196180.0522*
H1c9b1.3821870.23540.0853920.0456*
H1c10a0.7101850.6796190.4533520.0442*
H1c10b1.2313120.0467820.0489990.0422*
H1n1a0.248 (7)0.240 (4)0.3988 (7)0.0319*
H1n1b1.162 (7)0.384 (4)0.0961 (7)0.0282*
H1c13a0.8851810.3233990.3383180.0586*
H1c13b0.5247430.5945760.1429230.0515*
H1c14a0.8165270.2679650.2848770.0606*
H1c14b0.5914230.6646480.1958560.0527*
H1c16a0.1956070.0024460.3072080.0527*
H1c16b1.2238230.381080.2007390.0496*
H1c17a0.2519170.0627710.3604570.0516*
H1c17b1.1686260.3175750.1472320.0472*
H1c19a0.7577370.2264210.2391650.0578*
H1c19b0.6482970.7265720.240740.0503*
H1c20a0.6973030.1679370.1856170.0642*
H1c20b0.6931640.7829650.2945260.0531*
H1c21a0.3704440.0041030.1691270.0436*
H1c21b1.020550.6610990.3253130.0425*
H1c22a0.0990240.1181090.2068310.0596*
H1c22b1.3106660.4877090.3012350.0502*
H1c23a0.1577450.0627540.2607340.0586*
H1c23b1.2672230.4278940.2475010.0427*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1a0.0640 (16)0.0383 (14)0.0445 (12)0.0019 (13)0.0228 (10)0.0012 (11)
O1b0.0440 (12)0.0249 (11)0.0329 (10)0.0020 (10)0.0108 (8)0.0036 (9)
O2a0.158 (3)0.0436 (17)0.0553 (16)0.001 (2)0.0651 (19)0.0016 (14)
O2b0.0797 (18)0.0361 (14)0.0434 (12)0.0009 (14)0.0347 (12)0.0036 (12)
O3a0.0195 (10)0.0602 (16)0.0353 (10)0.0008 (10)0.0001 (7)0.0064 (10)
O3b0.0208 (10)0.0468 (14)0.0313 (9)0.0018 (10)0.0034 (7)0.0025 (10)
N1a0.0209 (12)0.0303 (14)0.0284 (11)0.0013 (10)0.0008 (8)0.0034 (10)
N1b0.0198 (11)0.0259 (13)0.0249 (10)0.0004 (9)0.0014 (8)0.0007 (9)
C1a0.085 (3)0.043 (2)0.0381 (18)0.013 (2)0.0091 (17)0.0025 (16)
C1b0.061 (2)0.0283 (18)0.0349 (16)0.0089 (17)0.0082 (14)0.0049 (14)
C2a0.0415 (17)0.0342 (18)0.0249 (13)0.0037 (15)0.0040 (11)0.0021 (13)
C2b0.0370 (16)0.0278 (16)0.0223 (13)0.0022 (14)0.0005 (11)0.0006 (11)
C3a0.0256 (14)0.0322 (16)0.0263 (13)0.0045 (12)0.0004 (10)0.0023 (12)
C3b0.0254 (14)0.0271 (15)0.0239 (12)0.0002 (12)0.0019 (10)0.0021 (11)
C4a0.0326 (16)0.0375 (18)0.0308 (14)0.0030 (14)0.0045 (11)0.0038 (13)
C4b0.0318 (15)0.0243 (16)0.0326 (14)0.0010 (13)0.0085 (11)0.0028 (12)
C5a0.0329 (16)0.0294 (17)0.0326 (13)0.0073 (14)0.0033 (11)0.0013 (13)
C5b0.0310 (15)0.0199 (15)0.0353 (14)0.0038 (12)0.0068 (10)0.0042 (12)
C6a0.0339 (17)0.046 (2)0.0368 (15)0.0045 (15)0.0047 (12)0.0014 (15)
C6b0.0351 (17)0.0240 (16)0.0402 (15)0.0008 (14)0.0001 (12)0.0006 (13)
C7a0.0454 (19)0.049 (2)0.0349 (16)0.0011 (18)0.0040 (13)0.0042 (16)
C7b0.0430 (18)0.0356 (19)0.0367 (15)0.0029 (16)0.0008 (12)0.0040 (15)
C8a0.0457 (18)0.037 (2)0.0415 (17)0.0004 (16)0.0035 (14)0.0080 (15)
C8b0.0402 (17)0.0327 (18)0.0463 (17)0.0021 (15)0.0080 (13)0.0059 (15)
C9a0.0418 (18)0.039 (2)0.0498 (18)0.0041 (17)0.0031 (14)0.0038 (16)
C9b0.0302 (15)0.0296 (17)0.0541 (18)0.0079 (14)0.0053 (13)0.0047 (15)
C10a0.0410 (17)0.0364 (19)0.0332 (14)0.0029 (15)0.0050 (12)0.0035 (13)
C10b0.0363 (17)0.0317 (18)0.0375 (15)0.0026 (14)0.0012 (12)0.0049 (13)
C11a0.0212 (14)0.0305 (17)0.0310 (13)0.0052 (12)0.0016 (10)0.0016 (12)
C11b0.0198 (13)0.0196 (14)0.0313 (13)0.0011 (12)0.0013 (10)0.0048 (12)
C12a0.0227 (14)0.0294 (16)0.0292 (13)0.0027 (13)0.0016 (10)0.0006 (12)
C12b0.0234 (14)0.0205 (14)0.0266 (13)0.0004 (11)0.0027 (10)0.0043 (11)
C13a0.0408 (18)0.075 (3)0.0307 (15)0.030 (2)0.0011 (12)0.0045 (17)
C13b0.0400 (18)0.055 (2)0.0342 (15)0.0240 (18)0.0087 (12)0.0056 (15)
C14a0.0467 (19)0.076 (3)0.0287 (15)0.030 (2)0.0036 (13)0.0016 (17)
C14b0.051 (2)0.048 (2)0.0327 (15)0.0240 (18)0.0020 (13)0.0091 (15)
C15a0.0240 (14)0.0252 (15)0.0329 (14)0.0049 (12)0.0006 (10)0.0004 (12)
C15b0.0245 (14)0.0210 (14)0.0289 (13)0.0025 (12)0.0029 (10)0.0020 (11)
C16a0.0418 (18)0.054 (2)0.0364 (16)0.0222 (18)0.0073 (12)0.0131 (16)
C16b0.0320 (16)0.062 (2)0.0299 (14)0.0177 (17)0.0071 (11)0.0015 (15)
C17a0.0427 (18)0.051 (2)0.0360 (15)0.0205 (17)0.0161 (13)0.0070 (15)
C17b0.0368 (17)0.052 (2)0.0290 (14)0.0170 (16)0.0018 (11)0.0084 (14)
C18a0.0284 (14)0.0230 (15)0.0311 (13)0.0058 (12)0.0018 (10)0.0019 (12)
C18b0.0266 (14)0.0295 (16)0.0276 (13)0.0071 (12)0.0038 (10)0.0010 (12)
C19a0.049 (2)0.062 (3)0.0340 (16)0.0229 (19)0.0062 (14)0.0102 (16)
C19b0.0378 (18)0.056 (2)0.0322 (15)0.0116 (17)0.0000 (12)0.0031 (15)
C20a0.057 (2)0.073 (3)0.0305 (16)0.020 (2)0.0074 (14)0.0092 (17)
C20b0.0421 (18)0.056 (2)0.0348 (15)0.0056 (18)0.0049 (13)0.0107 (16)
C21a0.0432 (18)0.0365 (18)0.0292 (14)0.0057 (15)0.0022 (11)0.0042 (13)
C21b0.0386 (17)0.0373 (18)0.0305 (14)0.0119 (15)0.0021 (12)0.0024 (13)
C22a0.056 (2)0.053 (3)0.0402 (17)0.0184 (19)0.0129 (15)0.0022 (17)
C22b0.0415 (18)0.047 (2)0.0372 (15)0.0021 (17)0.0076 (12)0.0007 (15)
C23a0.053 (2)0.059 (2)0.0346 (16)0.0252 (19)0.0022 (14)0.0054 (16)
C23b0.0422 (18)0.0329 (18)0.0316 (15)0.0049 (15)0.0021 (12)0.0058 (13)
Geometric parameters (Å, º) top
O1a—C1a1.446 (5)C9b—C10b1.400 (5)
O1a—C2a1.314 (6)C9b—H1c9b0.96
O1b—C1b1.447 (5)C10a—H1c10a0.96
O1b—C2b1.326 (5)C10b—H1c10b0.96
O2a—C2a1.183 (5)C11a—C12a1.500 (4)
O2b—C2b1.198 (4)C11b—C12b1.498 (4)
O3a—C11a1.227 (3)C12a—C13a1.372 (5)
O3b—C11b1.228 (3)C12a—C17a1.374 (5)
N1a—C3a1.454 (3)C12b—C13b1.374 (5)
N1a—C11a1.337 (3)C12b—C17b1.384 (4)
N1a—H1n1a0.92 (3)C13a—C14a1.386 (4)
N1b—C3b1.448 (3)C13a—H1c13a0.96
N1b—C11b1.331 (4)C13b—C14b1.391 (4)
N1b—H1n1b0.92 (3)C13b—H1c13b0.96
C1a—H1c1a0.96C14a—C15a1.381 (5)
C1a—H2c1a0.96C14a—H1c14a0.96
C1a—H3c1a0.96C14b—C15b1.385 (5)
C1b—H1c1b0.96C14b—H1c14b0.96
C1b—H2c1b0.96C15a—C16a1.381 (5)
C1b—H3c1b0.96C15a—C18a1.487 (4)
C2a—C3a1.523 (5)C15b—C16b1.374 (5)
C2b—C3b1.526 (5)C15b—C18b1.499 (4)
C3a—C4a1.534 (6)C16a—C17a1.388 (4)
C3a—H1c3a0.96C16a—H1c16a0.96
C3b—C4b1.547 (5)C16b—C17b1.393 (4)
C3b—H1c3b0.96C16b—H1c16b0.96
C4a—C5a1.509 (5)C17a—H1c17a0.96
C4a—H1c4a0.96C17b—H1c17b0.96
C4a—H2c4a0.96C18a—C19a1.386 (5)
C4b—C5b1.507 (5)C18a—C23a1.381 (5)
C4b—H1c4b0.96C18b—C19b1.397 (5)
C4b—H2c4b0.96C18b—C23b1.391 (5)
C5a—C6a1.387 (4)C19a—C20a1.387 (5)
C5a—C10a1.391 (5)C19a—H1c19a0.96
C5b—C6b1.400 (4)C19b—C20b1.380 (4)
C5b—C10b1.383 (5)C19b—H1c19b0.96
C6a—C7a1.387 (5)C20a—C21a1.362 (6)
C6a—H1c6a0.96C20a—H1c20a0.96
C6b—C7b1.376 (5)C20b—C21b1.379 (5)
C6b—H1c6b0.96C20b—H1c20b0.96
C7a—C8a1.373 (5)C21a—C22a1.361 (5)
C7a—H1c7a0.96C21a—H1c21a0.96
C7b—C8b1.379 (5)C21b—C22b1.372 (6)
C7b—H1c7b0.96C21b—H1c21b0.96
C8a—C9a1.380 (5)C22a—C23a1.394 (5)
C8a—H1c8a0.96C22a—H1c22a0.96
C8b—C9b1.386 (5)C22b—C23b1.385 (4)
C8b—H1c8b0.96C22b—H1c22b0.96
C9a—C10a1.387 (5)C23a—H1c23a0.96
C9a—H1c9a0.96C23b—H1c23b0.96
C1a—O1a—C2a115.9 (3)C9a—C10a—H1c10a119.64
C1b—O1b—C2b114.7 (3)C5b—C10b—C9b121.0 (3)
C3a—N1a—C11a122.3 (2)C5b—C10b—H1c10b119.51
C3a—N1a—H1n1a116.2 (19)C9b—C10b—H1c10b119.51
C11a—N1a—H1n1a120.6 (19)O3a—C11a—N1a122.9 (3)
C3b—N1b—C11b121.1 (2)O3a—C11a—C12a121.4 (2)
C3b—N1b—H1n1b118.5 (19)N1a—C11a—C12a115.7 (2)
C11b—N1b—H1n1b120.4 (19)O3b—C11b—N1b122.4 (2)
O1a—C1a—H1c1a109.47O3b—C11b—C12b121.1 (2)
O1a—C1a—H2c1a109.47N1b—C11b—C12b116.5 (2)
O1a—C1a—H3c1a109.47C11a—C12a—C13a118.1 (3)
H1c1a—C1a—H2c1a109.47C11a—C12a—C17a123.9 (3)
H1c1a—C1a—H3c1a109.47C13a—C12a—C17a118.0 (3)
H2c1a—C1a—H3c1a109.47C11b—C12b—C13b118.5 (3)
O1b—C1b—H1c1b109.47C11b—C12b—C17b123.5 (3)
O1b—C1b—H2c1b109.47C13b—C12b—C17b118.0 (3)
O1b—C1b—H3c1b109.47C12a—C13a—C14a120.7 (4)
H1c1b—C1b—H2c1b109.47C12a—C13a—H1c13a119.64
H1c1b—C1b—H3c1b109.47C14a—C13a—H1c13a119.64
H2c1b—C1b—H3c1b109.47C12b—C13b—C14b121.3 (3)
O1a—C2a—O2a123.2 (4)C12b—C13b—H1c13b119.37
O1a—C2a—C3a113.1 (3)C14b—C13b—H1c13b119.37
O2a—C2a—C3a123.6 (4)C13a—C14a—C15a122.0 (3)
O1b—C2b—O2b124.1 (3)C13a—C14a—H1c14a118.98
O1b—C2b—C3b112.4 (2)C15a—C14a—H1c14a118.98
O2b—C2b—C3b123.5 (4)C13b—C14b—C15b121.2 (4)
N1a—C3a—C2a111.2 (3)C13b—C14b—H1c14b119.41
N1a—C3a—C4a111.3 (2)C15b—C14b—H1c14b119.41
N1a—C3a—H1c3a107.52C14a—C15a—C16a116.6 (3)
C2a—C3a—C4a110.9 (3)C14a—C15a—C18a121.2 (3)
C2a—C3a—H1c3a107.97C16a—C15a—C18a122.2 (3)
C4a—C3a—H1c3a107.8C14b—C15b—C16b117.1 (3)
N1b—C3b—C2b112.6 (3)C14b—C15b—C18b121.1 (3)
N1b—C3b—C4b113.2 (3)C16b—C15b—C18b121.8 (3)
N1b—C3b—H1c3b104.4C15a—C16a—C17a121.5 (4)
C2b—C3b—C4b109.1 (2)C15a—C16a—H1c16a119.25
C2b—C3b—H1c3b108.93C17a—C16a—H1c16a119.24
C4b—C3b—H1c3b108.3C15b—C16b—C17b122.1 (3)
C3a—C4a—C5a113.1 (3)C15b—C16b—H1c16b118.93
C3a—C4a—H1c4a109.47C17b—C16b—H1c16b118.93
C3a—C4a—H2c4a109.47C12a—C17a—C16a121.1 (3)
C5a—C4a—H1c4a109.47C12a—C17a—H1c17a119.44
C5a—C4a—H2c4a109.47C16a—C17a—H1c17a119.45
H1c4a—C4a—H2c4a105.54C12b—C17b—C16b120.2 (3)
C3b—C4b—C5b114.5 (2)C12b—C17b—H1c17b119.88
C3b—C4b—H1c4b109.47C16b—C17b—H1c17b119.88
C3b—C4b—H2c4b109.47C15a—C18a—C19a121.3 (3)
C5b—C4b—H1c4b109.47C15a—C18a—C23a121.9 (3)
C5b—C4b—H2c4b109.47C19a—C18a—C23a116.7 (3)
H1c4b—C4b—H2c4b103.95C15b—C18b—C19b120.8 (3)
C4a—C5a—C6a120.2 (3)C15b—C18b—C23b121.7 (3)
C4a—C5a—C10a121.3 (3)C19b—C18b—C23b117.5 (3)
C6a—C5a—C10a118.5 (3)C18a—C19a—C20a121.1 (4)
C4b—C5b—C6b119.2 (3)C18a—C19a—H1c19a119.47
C4b—C5b—C10b122.1 (3)C20a—C19a—H1c19a119.47
C6b—C5b—C10b118.7 (3)C18b—C19b—C20b121.0 (3)
C5a—C6a—C7a120.4 (3)C18b—C19b—H1c19b119.48
C5a—C6a—H1c6a119.81C20b—C19b—H1c19b119.48
C7a—C6a—H1c6a119.81C19a—C20a—C21a121.3 (4)
C5b—C6b—C7b120.2 (3)C19a—C20a—H1c20a119.35
C5b—C6b—H1c6b119.89C21a—C20a—H1c20a119.35
C7b—C6b—H1c6b119.89C19b—C20b—C21b120.7 (4)
C6a—C7a—C8a120.8 (3)C19b—C20b—H1c20b119.67
C6a—C7a—H1c7a119.61C21b—C20b—H1c20b119.67
C8a—C7a—H1c7a119.61C20a—C21a—C22a118.7 (3)
C6b—C7b—C8b120.9 (3)C20a—C21a—H1c21a120.64
C6b—C7b—H1c7b119.54C22a—C21a—H1c21a120.64
C8b—C7b—H1c7b119.54C20b—C21b—C22b119.0 (3)
C7a—C8a—C9a119.4 (4)C20b—C21b—H1c21b120.52
C7a—C8a—H1c8a120.29C22b—C21b—H1c21b120.52
C9a—C8a—H1c8a120.29C21a—C22a—C23a120.6 (4)
C7b—C8b—C9b119.9 (3)C21a—C22a—H1c22a119.72
C7b—C8b—H1c8b120.06C23a—C22a—H1c22a119.72
C9b—C8b—H1c8b120.06C21b—C22b—C23b120.9 (3)
C8a—C9a—C10a120.2 (4)C21b—C22b—H1c22b119.53
C8a—C9a—H1c9a119.9C23b—C22b—H1c22b119.53
C10a—C9a—H1c9a119.9C18a—C23a—C22a121.6 (3)
C8b—C9b—C10b119.3 (3)C18a—C23a—H1c23a119.19
C8b—C9b—H1c9b120.37C22a—C23a—H1c23a119.19
C10b—C9b—H1c9b120.37C18b—C23b—C22b120.8 (3)
C5a—C10a—C9a120.7 (3)C18b—C23b—H1c23b119.58
C5a—C10a—H1c10a119.64C22b—C23b—H1c23b119.58
O1a—C2a—C3a—N1a36.2 (3)C2a—C3a—N1a—C11a130.1 (3)
O1b—C2b—C3b—N1b36.4 (3)C2b—C3b—N1b—C11b56.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4a—H1c4a···O3ai0.962.773.459 (4)129.24
C10a—H1c10a···O2aii0.962.723.656 (4)163.61
C10b—H1c10b···O2biii0.962.783.688 (4)158.56
N1a—H1n1a···O3ai0.92 (3)2.00 (3)2.852 (3)154 (3)
N1b—H1n1b···O3biv0.92 (3)2.00 (3)2.876 (3)157 (3)
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1/2, z+1; (iii) x+2, y1/2, z; (iv) x+1, y, z.
(I_phaseII) top
Crystal data top
C23H21NO3F(000) = 3040
Mr = 359.4Dx = 1.312 Mg m3
Monoclinic, B21Cu Kα radiation, λ = 1.54184 Å
a = 10.0754 (2) ÅCell parameters from 3948 reflections
b = 8.5898 (3) Åθ = 4.2–65.7°
c = 84.0864 (14) ŵ = 0.70 mm1
β = 90.884 (3)°T = 100 K
V = 7276.4 (3) Å3Rectrangular, colorless
Z = 160.24 × 0.16 × 0.11 mm
Data collection top
SuperNova, Dual, Cu at home/near, Eos
diffractometer
8898 independent reflections
Radiation source: X-ray tube5940 reflections with I > 3σ(I)
Mirror monochromatorRint = 0.027
Detector resolution: 7.9580 pixels mm-1θmax = 65.8°, θmin = 3.2°
ω scansh = 1111
Absorption correction: multi-scank = 107
Tmin = 0.966, Tmax = 1l = 8798
13838 measured reflections
Refinement top
Refinement on FH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.042Weighting scheme based on measured s.u.'s w = 1/(σ2(F) + 0.0001F2)
wR(F2) = 0.053(Δ/σ)max < 0.001
S = 1.35Δρmax = 0.22 e Å3
8898 reflectionsΔρmin = 0.21 e Å3
1 parametersExtinction correction: B-C type 1 Gaussian isotropic (Becker & Coppens, 1974)
0 restraintsExtinction coefficient: 1998.78
1309 constraintsAbsolute structure: 2293 of Friedel pairs used in the refinement
Special details top

Refinement. The superstructure model was derived from the commensurately modulated structure model using JANA2006. The scale factor has been refined with a damping factor of 1.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1a-10.1634870.0525290.2282950.0324
O1a-20.6646140.0647250.2277470.0324
O1b-10.4305150.5779370.0210360.0246
O1b-20.9295360.5753630.0212030.0246
O2a-10.0842280.2464740.2428140.0528
O2a-20.5873990.261230.242160.0528
O2b-10.3318430.3908450.0065980.0356
O2b-20.8273850.3874250.0071950.0356
O3a-10.431660.2742240.1998690.0268
O3a-20.9324860.258230.199350.0268
O3b-10.2820520.4058930.046910.0241
O3b-20.7828480.4008870.0476260.0241
N1a-10.2113170.2476070.2040820.0202
N1a-20.7108290.2597430.2032610.0202
N1b-10.5001530.3693280.0438040.0174
N1b-20.0015050.3681360.0440580.0174
C1a-10.1008940.9445510.238890.0344
C1a-20.601040.9569210.2384570.0344
C1b-10.3514090.6908290.0122510.029
C1b-20.8503180.6878770.0123960.029
C2a-10.146030.2016350.2316390.0246
C2a-20.6482960.2140850.2310920.0246
C2b-10.4059250.4306770.0172320.0214
C2b-20.9030350.4280710.0176440.0214
C3a-10.2163020.3093530.2201790.0215
C3a-20.7185380.3199710.2194420.0215
C3b-10.4845080.3164870.0274720.0193
C3b-20.9829390.3146390.0277890.0193
C4a-10.1587710.4754860.2209670.0229
C4a-20.6647850.4880780.2203680.0229
C4b-10.4191070.1528660.0261680.0221
C4b-20.9182750.1504340.0265520.0221
C5a-10.2293530.5875520.210260.0232
C5a-20.7358110.600760.209670.0232
C5b-10.4734910.0355710.0378780.0223
C5b-20.9720470.0338250.0384540.0223
C6a-10.1948690.5976810.1942890.0271
C6a-20.6985680.6134370.1937560.0271
C6b-10.4146490.0212640.052680.0246
C6b-20.9144280.0210420.0533990.0246
C7a-10.263590.6954810.1842790.0287
C7a-20.7626920.7162690.1837930.0287
C7b-10.4598530.9118930.0635730.0273
C7b-20.9585550.9119450.0642410.0273
C8a-10.3672910.7880990.1900150.0273
C8a-20.8665260.8086130.1896350.0273
C8b-10.564890.8157820.059960.029
C8b-20.062080.8139080.0606040.029
C9a-10.4003670.7807950.2060530.0289
C9a-20.9037250.7973010.2054460.0289
C9b-10.6257620.8292130.0452060.0285
C9b-20.1220210.8251570.0458550.0285
C10a-10.3327220.6819490.2161340.0254
C10a-20.8390830.6934090.2153930.0254
C10b-10.5794080.9382010.0343210.0246
C10b-20.0773770.9347090.0349650.0246
C11a-10.3180830.2431940.1949680.0193
C11a-20.8176290.2402560.1943030.0193
C11b-10.3967490.4065790.0524660.0177
C11b-20.8974280.4031070.052890.0177
C12a-10.2941940.2006240.1778820.0194
C12a-20.7908850.197420.177280.0194
C12b-10.4229450.4472880.0695340.0182
C12b-20.9256950.4445040.0700340.0182
C13a-10.3650490.2785180.1663120.0251
C13a-20.8857820.235770.1662430.0251
C13b-10.3414690.5538780.0766830.0369
C13b-20.8384770.5410660.0775770.0369
C14a-10.3450820.2437920.1503580.0266
C14a-20.8668690.1995640.1503630.0266
C14b-10.3605140.5956010.0924920.0371
C14b-20.8577070.5826850.0933770.0371
C15a-10.2573050.1270340.1454290.0203
C15a-20.754230.122050.1448960.0203
C15b-10.4602150.5288790.1017640.0185
C15b-20.9648870.5249650.1022020.0185
C16a-10.1863030.0491660.157260.0256
C16a-20.6601590.0823660.1560140.0256
C16b-10.5394870.420350.0943260.0334
C16b-20.0499380.4256020.0945260.0334
C17a-10.2033390.0876750.1731670.0233
C17a-20.6784550.1191070.1720330.0233
C17b-10.5246860.3810240.0785310.0309
C17b-20.033040.3862040.0785850.0309
C18a-10.2385910.0892010.1284140.0193
C18a-20.7355070.0849310.1276810.0193
C18b-10.4781590.5680630.1190090.0203
C18b-20.9821240.5661010.1194310.0203
C19a-10.3287260.1364330.1170370.0286
C19a-20.8057630.1656110.1160620.0286
C19b-10.3902870.6683740.1265180.0304
C19b-20.902840.6788540.1264170.0304
C20a-10.3124460.1024430.1010530.0313
C20a-20.7890790.1323990.1000840.0313
C20b-10.4065940.7028640.1426070.0311
C20b-20.9145260.7139840.1423710.0311
C21a-10.2028130.0173880.0959730.027
C21a-20.7012510.0161280.0952180.027
C21b-10.5088550.6394480.1514830.0232
C21b-20.0053050.636230.1519970.0232
C22a-10.1119740.9672040.1069910.0312
C22a-20.6310890.9360440.1064170.0312
C22b-10.5959850.5412210.1440360.0293
C22b-20.0868640.5281130.1451790.0293
C23a-10.1294650.0044740.122870.0271
C23a-20.6476780.9679320.1224910.0271
C23b-10.5825330.5058860.128160.0262
C23b-20.0759020.491960.1291130.0262
H1c3a-10.3080790.3153180.223360.0322*
H1c3a-20.8107570.3223140.2224790.0322*
H1c3b-10.5732990.3097170.023550.029*
H1c3b-20.0713480.3080530.0237450.029*
H1c4a-10.0661090.4729730.2181430.0343*
H1c4a-20.5716660.4883890.2177720.0343*
H2c4a-10.1637780.5125830.2317280.0343*
H2c4a-20.6706440.5241990.2311610.0343*
H1c4b-10.3249510.162390.0274580.033*
H1c4b-20.8239390.1595620.0276960.033*
H2c4b-10.4286360.1137690.0155510.033*
H2c4b-20.9287630.1105470.0159810.033*
H1c6a-10.1226590.53630.1901330.0325*
H1c6a-20.6275190.5501480.1896130.0325*
H1c6b-10.3419110.0879980.0553610.0294*
H1c6b-20.8429710.089380.0561510.0294*
H1c7a-10.239470.6996480.1731980.0345*
H1c7a-20.7356620.7241180.1728240.0345*
H1c7b-10.4178690.9028620.0737030.0328*
H1c7b-20.916960.9040680.0744040.0328*
H1c8a-10.4148220.8555550.1830010.0327*
H1c8a-20.9115920.8792930.1827140.0327*
H1c8b-10.5959820.7400720.0675430.0347*
H1c8b-20.0926760.7382020.0682170.0347*
H1c9a-10.4708170.8448110.2102250.0346*
H1c9a-20.9743320.8612050.2095980.0346*
H1c9b-10.6992970.7632890.0426270.0342*
H1c9b-20.194090.7571530.0432430.0342*
H1c10a-10.3567630.6780270.2272180.0305*
H1c10a-20.8661950.6856250.2263590.0305*
H1c10b-10.6209970.946710.0241620.0295*
H1c10b-20.119570.9426740.0248390.0295*
H1n1a-10.1278160.2492070.199670.0243*
H1n1a-20.6249530.2578950.1992670.0243*
H1n1b-10.5850630.3804090.0477490.0208*
H1n1b-20.0868330.3823950.047620.0208*
H1c13a-10.4283040.3569650.1693770.03*
H1c13a-20.965520.2880190.1696450.03*
H1c13b-10.2701870.600230.0706370.0443*
H1c13b-20.7627020.5805920.0718130.0443*
H1c14a-10.3927720.3014320.1425070.032*
H1c14a-20.9335290.2288480.1428960.032*
H1c14b-10.303460.6722770.0971050.0446*
H1c14b-20.7961960.6523370.0983040.0446*
H1c16a-10.1251290.9681570.1542930.0307*
H1c16a-20.5810650.0286810.1526320.0307*
H1c16b-10.6081310.3700410.1004770.0401*
H1c16b-20.1235060.3819910.100390.0401*
H1c17a-10.1515480.0354660.1810340.028*
H1c17a-20.6121390.0896860.1795380.028*
H1c17b-10.5844270.3081680.073770.0371*
H1c17b-20.0956270.3188020.0735330.0371*
H1c19a-10.4053010.1949610.1204080.0343*
H1c19a-20.866910.2458150.1192650.0343*
H1c19b-10.3181090.7139460.1205630.0365*
H1c19b-20.8385380.733420.119980.0365*
H1c20a-10.3766030.1374920.0935270.0376*
H1c20a-20.8381430.1896080.0923240.0376*
H1c20b-10.3452690.7722590.1476030.0373*
H1c20b-20.8591660.7931410.1468480.0373*
H1c22a-10.0366950.9064390.1036160.0374*
H1c22a-20.5695780.8567310.103080.0374*
H1c22b-10.6679440.4962660.1500790.0352*
H1c22b-20.1527810.476440.1516350.0352*
H1c23a-10.0642320.9708520.130330.0326*
H1c23a-20.5986110.9094160.130150.0326*
H1c23b-10.6454990.437710.1232830.0314*
H1c23b-20.1335660.4150880.1246430.0314*
H1c21a-10.1901420.9935810.0848990.0324*
H1c21a-20.6898960.9922230.0841270.0324*
H1c21b-10.5191540.6631350.1625910.0279*
H1c21b-20.0110610.6574910.1631950.0279*
H1c1a-10.1190330.8400020.2355230.0516*
H1c1a-20.6182690.8521160.2351050.0516*
H2c1a-10.1351190.9596940.2494950.0516*
H2c1a-20.635660.9718980.2490480.0516*
H3c1a-10.0067550.961890.2387210.0516*
H3c1a-20.5070420.9752780.2383210.0516*
H1c1b-10.3749430.7939670.0156690.0436*
H1c1b-20.8751470.7912070.0156160.0436*
H2c1b-10.3679150.6803740.0010880.0436*
H2c1b-20.8653010.6756120.0012190.0436*
H3c1b-10.2590010.6728790.0141810.0436*
H3c1b-20.7580460.6713250.0145210.0436*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1a-10.042870.0232460.0315140.0013850.012830.001207
O1a-20.042870.0232460.0315140.0013850.012830.001207
O1b-10.0297950.0185850.0250680.0019250.0074230.00172
O1b-20.0297950.0185850.0250680.0019250.0074230.00172
O2a-10.0936170.0290890.0368850.0007010.0359580.001939
O2a-20.0936170.0290890.0368850.0007010.0359580.001939
O2b-10.0507260.0246780.0307980.001990.0218410.000842
O2b-20.0507260.0246780.0307980.001990.0218410.000842
O3a-10.0144730.0395550.02650.0001320.0001290.00322
O3a-20.0144730.0395550.02650.0001320.0001290.00322
O3b-10.0146940.0324980.0250680.0002370.0029180.000915
O3b-20.0146940.0324980.0250680.0002370.0029180.000915
N1a-10.0162990.0250180.0193380.0004950.0007720.001281
N1a-20.0162990.0250180.0193380.0004950.0007720.001281
N1b-10.0137330.0189330.0193380.0021830.0018450.000146
N1b-20.0137330.0189330.0193380.0021830.0018450.000146
C1a-10.0491990.0276650.02650.0095920.003690.002159
C1a-20.0491990.0276650.02650.0095920.003690.002159
C1b-10.0399190.0201630.0268580.0047520.003690.00322
C1b-20.0399190.0201630.0268580.0047520.003690.00322
C2a-10.0254250.028240.0200540.0009640.0001290.005012
C2a-20.0254250.028240.0200540.0009640.0001290.005012
C2b-10.0229260.0229770.0182640.0007190.0019310.000293
C2b-20.0229260.0229770.0182640.0007190.0019310.000293
C3a-10.0217070.0235120.0193380.0011750.0019740.002817
C3a-20.0217070.0235120.0193380.0011750.0019740.002817
C3b-10.019260.0209510.0175470.0003680.0012870.000768
C3b-20.019260.0209510.0175470.0003680.0012870.000768
C4a-10.0209670.0249290.0229190.0033490.0020170.004244
C4a-20.0209670.0249290.0229190.0033490.0020170.004244
C4b-10.0247770.0161440.0250680.0010830.0056210.00161
C4b-20.0247770.0161440.0250680.0010830.0056210.00161
C5a-10.0252860.0184060.0261420.0039590.0042910.000988
C5a-20.0252860.0184060.0261420.0039590.0042910.000988
C5b-10.0247920.015060.0268580.0038580.0048060.004025
C5b-20.0247920.015060.0268580.0038580.0048060.004025
C6a-10.0226590.0276570.0307980.0027620.0040760.003256
C6a-20.0226590.0276570.0307980.0027620.0040760.003256
C6b-10.0242940.0181780.0311560.0011620.0021030.002707
C6b-20.0242940.0181780.0311560.0011620.0021030.002707
C7a-10.0296670.0320760.0243520.0009470.0002570.003403
C7a-20.0296670.0320760.0243520.0009470.0002570.003403
C7b-10.0331270.0229140.0257840.0005610.001030.00011
C7b-20.0331270.0229140.0257840.0005610.001030.00011
C8a-10.0309310.0206450.0304390.0022180.0031750.003366
C8a-20.0309310.0206450.0304390.0022180.0031750.003366
C8b-10.0313320.0212620.0340210.0003290.0080670.002964
C8b-20.0313320.0212620.0340210.0003290.0080670.002964
C9a-10.0293890.0248690.032230.0022750.0019740.004573
C9a-20.0293890.0248690.032230.0022750.0019740.004573
C9b-10.026510.0217060.0372440.0037750.0025750.00311
C9b-20.026510.0217060.0372440.0037750.0025750.00311
C10a-10.0271370.0245210.0243520.0006360.0021880.002378
C10a-20.0271370.0245210.0243520.0006360.0021880.002378
C10b-10.0255380.0217180.02650.0030510.0000860.005049
C10b-20.0255380.0217180.02650.0030510.0000860.005049
C11a-10.0121340.0199790.0257840.0000920.0008150.001171
C11a-20.0121340.0199790.0257840.0000920.0008150.001171
C11b-10.0115680.0156620.0257840.0002190.0005150.003037
C11b-20.0115680.0156620.0257840.0002190.0005150.003037
C12a-10.0164840.0193930.0222030.0013060.0005150
C12a-20.0164840.0193930.0222030.0013060.0005150
C12b-10.0168230.0174260.0204120.0019990.0040340.001829
C12b-20.0168230.0174260.0204120.0019990.0040340.001829
C13a-10.0166230.0323710.0261420.0045990.0010730.00311
C13a-20.0166230.0323710.0261420.0045990.0010730.00311
C13b-10.0315230.0517820.0272160.0237480.0087960.006769
C13b-20.0315230.0517820.0272160.0237480.0087960.006769
C14a-10.0247670.0308940.0243520.0031870.0056640.001756
C14a-20.0247670.0308940.0243520.0031870.0056640.001756
C14b-10.0380680.0444410.0286490.0246820.0075950.011232
C14b-20.0380680.0444410.0286490.0246820.0075950.011232
C15a-10.0195120.0169480.0243520.003130.0001720.000549
C15a-20.0195120.0169480.0243520.003130.0001720.000549
C15b-10.0166170.016230.0225610.0004160.0009440.000585
C15b-20.0166170.016230.0225610.0004160.0009440.000585
C16a-10.0244330.025370.0268580.0039540.0000430.002049
C16a-20.0244330.025370.0268580.0039540.0000430.002049
C16b-10.0297230.0459850.0243520.0193550.0057070.004829
C16b-20.0297230.0459850.0243520.0193550.0057070.004829
C17a-10.017970.0248910.0272160.0028450.0063080.000476
C17a-20.017970.0248910.0272160.0028450.0063080.000476
C17b-10.0238720.0430020.0257840.0143530.0041190.007939
C17b-20.0238720.0430020.0257840.0143530.0041190.007939
C18a-10.0164370.0168250.024710.0038320.0014160.002342
C18a-20.0164370.0168250.024710.0038320.0014160.002342
C18b-10.0211780.0179390.0218450.00530.0042480.000402
C18b-20.0211780.0179390.0218450.00530.0042480.000402
C19a-10.0278770.0288610.0290070.0054490.0014590.00322
C19a-20.0278770.0288610.0290070.0054490.0014590.00322
C19b-10.0287150.0391370.0232770.0119510.0030040.000073
C19b-20.0287150.0391370.0232770.0119510.0030040.000073
C20a-10.0376150.0337760.0225610.0031040.0024460.003805
C20a-20.0376150.0337760.0225610.0031040.0024460.003805
C20b-10.029790.0364560.0272160.0071280.004420.006878
C20b-20.029790.0364560.0272160.0071280.004420.006878
C21a-10.0320630.0258410.0229190.0067950.0048060.00633
C21a-20.0320630.0258410.0229190.0067950.0048060.00633
C21b-10.0211060.0266410.0218450.0073780.0002570.001793
C21b-20.0211060.0266410.0218450.0073780.0002570.001793
C22a-10.0314560.0300270.0318720.0040070.0047630.005671
C22a-20.0314560.0300270.0318720.0040070.0047630.005671
C22b-10.0290390.0314250.0272160.0037530.007810.000293
C22b-20.0290390.0314250.0272160.0037530.007810.000293
C23a-10.0244890.0297210.0272160.0045370.0006440.0015
C23a-20.0244890.0297210.0272160.0045370.0006440.0015
C23b-10.0266020.0259080.0261420.0056110.0008150.003915
C23b-20.0266020.0259080.0261420.0056110.0008150.003915
Geometric parameters (Å, º) top
O1a-1—C1a-1i1.4384 (1)C9b-1—C10b-11.3853 (1)
O1a-1—C2a-11.3236 (1)C9b-1—H1c9b-10.9600 (1)
O1a-2—C1a-2i1.4480 (1)C9b-2—C10b-21.3834 (1)
O1a-2—C2a-21.3242 (1)C9b-2—H1c9b-20.9600 (1)
O1b-1—C1b-11.4502 (1)C10a-1—H1c10a-10.9599 (1)
O1b-1—C2b-11.3271 (1)C10a-2—H1c10a-20.9600 (1)
O1b-2—C1b-21.4496 (1)C10b-1—H1c10b-10.9600 (1)
O1b-2—C2b-21.3263 (1)C10b-2—H1c10b-20.9600 (1)
O2a-1—C2a-11.1988 (1)C11a-1—C12a-11.4984 (1)
O2a-2—C2a-21.1934 (1)C11a-2—C12a-21.4983 (1)
O2b-1—C2b-11.2055 (1)C11b-1—C12b-11.4967 (1)
O2b-2—C2b-21.2059 (1)C11b-2—C12b-21.5077 (1)
O3a-1—C11a-11.2393 (1)C12a-1—C13a-11.3875 (1)
O3a-2—C11a-21.2361 (1)C12a-1—C17a-11.3875 (1)
O3b-1—C11b-11.2398 (1)C12a-2—C13a-21.3825 (1)
O3b-2—C11b-21.2301 (1)C12a-2—C17a-21.3838 (1)
N1a-1—C3a-11.4539 (1)C12b-1—C13b-11.3743 (1)
N1a-1—C11a-11.3309 (1)C12b-1—C17b-11.3868 (1)
N1a-1—H1n1a-10.9143 (1)C12b-2—C13b-21.3710 (1)
N1a-2—C3a-21.4566 (1)C12b-2—C17b-2iii1.3833 (1)
N1a-2—C11a-21.3335 (1)C13a-1—C14a-11.3859 (1)
N1a-2—H1n1a-20.9234 (1)C13a-1—H1c13a-10.9600 (1)
N1b-1—C3b-11.4526 (1)C13a-2—C14a-21.3814 (1)
N1b-1—C11b-11.3198 (1)C13a-2—H1c13a-20.9600 (1)
N1b-1—H1n1b-10.9177 (1)C13b-1—C14b-11.3873 (1)
N1b-2—C3b-2ii1.4525 (1)C13b-1—H1c13b-10.9600 (1)
N1b-2—C11b-2ii1.3287 (1)C13b-2—C14b-21.3865 (1)
N1b-2—H1n1b-20.9143 (1)C13b-2—H1c13b-20.9600 (1)
C1a-1—H1c1a-10.9600 (1)C14a-1—C15a-11.3959 (1)
C1a-1—H2c1a-10.9600 (1)C14a-1—H1c14a-10.9600 (1)
C1a-1—H3c1a-10.9600 (1)C14a-2—C15a-21.3880 (1)
C1a-2—H1c1a-20.9600 (1)C14a-2—H1c14a-20.9600 (1)
C1a-2—H2c1a-20.9601 (1)C14b-1—C15b-11.3861 (1)
C1a-2—H3c1a-20.9600 (1)C14b-1—H1c14b-10.9600 (1)
C1b-1—H1c1b-10.9600 (1)C14b-2—C15b-21.3921 (1)
C1b-1—H2c1b-10.9600 (1)C14b-2—H1c14b-20.9600 (1)
C1b-1—H3c1b-10.9600 (1)C15a-1—C16a-11.4039 (1)
C1b-2—H1c1b-20.9600 (1)C15a-1—C18a-11.4764 (1)
C1b-2—H2c1b-20.9600 (1)C15a-2—C16a-21.3841 (1)
C1b-2—H3c1b-20.9600 (1)C15a-2—C18a-21.4914 (1)
C2a-1—C3a-11.5189 (1)C15b-1—C16b-11.3833 (1)
C2a-2—C3a-21.5196 (1)C15b-1—C18b-11.4969 (1)
C2b-1—C3b-11.5197 (1)C15b-2—C16b-2iii1.3771 (1)
C2b-2—C3b-21.5179 (1)C15b-2—C18b-21.4987 (1)
C3a-1—C4a-11.5421 (1)C16a-1—C17a-11.3860 (1)
C3a-1—H1c3a-10.9600 (1)C16a-1—H1c16a-1i0.9600 (1)
C3a-2—C4a-21.5446 (1)C16a-2—C17a-21.3929 (1)
C3a-2—H1c3a-20.9600 (1)C16a-2—H1c16a-20.9600 (1)
C3b-1—C4b-11.5554 (1)C16b-1—C17b-11.3763 (1)
C3b-1—H1c3b-10.9600 (1)C16b-1—H1c16b-10.9600 (1)
C3b-2—C4b-21.5565 (1)C16b-2—C17b-21.3904 (1)
C3b-2—H1c3b-2iii0.9600 (1)C16b-2—H1c16b-20.9600 (1)
C4a-1—C5a-11.5042 (1)C17a-1—H1c17a-10.9600 (1)
C4a-1—H1c4a-10.9600 (1)C17a-2—H1c17a-20.9600 (1)
C4a-1—H2c4a-10.9599 (1)C17b-1—H1c17b-10.9600 (1)
C4a-2—C5a-21.5093 (1)C17b-2—H1c17b-20.9600 (1)
C4a-2—H1c4a-20.9600 (1)C18a-1—C19a-11.3897 (1)
C4a-2—H2c4a-20.9601 (1)C18a-1—C23a-11.3929 (1)
C4b-1—C5b-11.5061 (1)C18a-2—C19a-21.3990 (1)
C4b-1—H1c4b-10.9600 (1)C18a-2—C23a-2i1.4042 (1)
C4b-1—H2c4b-10.9600 (1)C18b-1—C19b-11.3936 (1)
C4b-2—C5b-21.5105 (1)C18b-1—C23b-11.3994 (1)
C4b-2—H1c4b-20.9600 (1)C18b-2—C19b-21.3913 (1)
C4b-2—H2c4b-20.9600 (1)C18b-2—C23b-2iii1.3919 (1)
C5a-1—C6a-11.3847 (1)C19a-1—C20a-11.3827 (1)
C5a-1—C10a-11.4037 (1)C19a-1—H1c19a-10.9600 (1)
C5a-2—C6a-21.3885 (1)C19a-2—C20a-21.3812 (1)
C5a-2—C10a-21.3900 (1)C19a-2—H1c19a-20.9600 (1)
C5b-1—C6b-11.3923 (1)C19b-1—C20b-11.3922 (1)
C5b-1—C10b-1i1.3920 (1)C19b-1—H1c19b-10.9600 (1)
C5b-2—C6b-21.3967 (1)C19b-2—C20b-21.3783 (1)
C5b-2—C10b-2iv1.3953 (1)C19b-2—H1c19b-20.9600 (1)
C6a-1—C7a-11.3826 (1)C20a-1—C21a-11.3863 (1)
C6a-1—H1c6a-10.9600 (1)C20a-1—H1c20a-10.9600 (1)
C6a-2—C7a-21.3843 (1)C20a-2—C21a-21.3917 (1)
C6a-2—H1c6a-20.9600 (1)C20a-2—H1c20a-20.9600 (1)
C6b-1—C7b-1i1.3843 (1)C20b-1—C21b-11.3754 (1)
C6b-1—H1c6b-10.9600 (1)C20b-1—H1c20b-10.9600 (1)
C6b-2—C7b-2i1.3764 (1)C20b-2—C21b-2iii1.3838 (1)
C6b-2—H1c6b-20.9600 (1)C20b-2—H1c20b-20.9600 (1)
C7a-1—C8a-11.3934 (1)C21a-1—C22a-1i1.3813 (1)
C7a-1—H1c7a-10.9600 (1)C21a-1—H1c21a-1i0.9600 (1)
C7a-2—C8a-21.3961 (1)C21a-2—C22a-2i1.3712 (1)
C7a-2—H1c7a-20.9600 (1)C21a-2—H1c21a-2i0.9601 (1)
C7b-1—C8b-11.3798 (1)C21b-1—C22b-11.3754 (1)
C7b-1—H1c7b-10.9600 (1)C21b-1—H1c21b-10.9600 (1)
C7b-2—C8b-2iii1.3786 (1)C21b-2—C22b-21.3715 (1)
C7b-2—H1c7b-20.9600 (1)C21b-2—H1c21b-20.9600 (1)
C8a-1—C9a-11.3856 (1)C22a-1—C23a-1v1.3817 (1)
C8a-1—H1c8a-10.9600 (1)C22a-1—H1c22a-10.9600 (1)
C8a-2—C9a-21.3792 (1)C22a-2—C23a-21.3867 (1)
C8a-2—H1c8a-20.9600 (1)C22a-2—H1c22a-20.9600 (1)
C8b-1—C9b-11.3972 (1)C22b-1—C23b-11.3737 (1)
C8b-1—H1c8b-10.9599 (1)C22b-1—H1c22b-10.9600 (1)
C8b-2—C9b-21.3911 (1)C22b-2—C23b-21.3889 (1)
C8b-2—H1c8b-20.9600 (1)C22b-2—H1c22b-20.9600 (1)
C9a-1—C10a-11.3863 (1)C23a-1—H1c23a-1i0.9600 (1)
C9a-1—H1c9a-10.9600 (1)C23a-2—H1c23a-20.9600 (1)
C9a-2—C10a-21.3918 (1)C23b-1—H1c23b-10.9600 (1)
C9a-2—H1c9a-20.9600 (1)C23b-2—H1c23b-20.9600 (1)
C1a-1i—O1a-1—C2a-1115.5571 (17)C5a-2—C10a-2—H1c10a-2119.541 (2)
C1a-2i—O1a-2—C2a-2115.4634 (17)C9a-2—C10a-2—H1c10a-2119.5413 (19)
C1b-1—O1b-1—C2b-1114.5492 (19)C5b-1v—C10b-1—C9b-1121.054 (2)
C1b-2—O1b-2—C2b-2114.4180 (19)C5b-1v—C10b-1—H1c10b-1119.473 (2)
C3a-1—N1a-1—C11a-1121.995 (2)C9b-1—C10b-1—H1c10b-1119.4725 (17)
C3a-1—N1a-1—H1n1a-1112.993 (3)C5b-2vi—C10b-2—C9b-2121.098 (2)
C11a-1—N1a-1—H1n1a-1120.904 (2)C5b-2vi—C10b-2—H1c10b-2119.451 (2)
C3a-2—N1a-2—C11a-2122.707 (2)C9b-2—C10b-2—H1c10b-2119.4511 (17)
C3a-2—N1a-2—H1n1a-2112.457 (3)O3a-1—C11a-1—N1a-1123.557 (2)
C11a-2—N1a-2—H1n1a-2123.513 (2)O3a-1—C11a-1—C12a-1120.344 (3)
C3b-1—N1b-1—C11b-1121.496 (3)N1a-1—C11a-1—C12a-1116.089 (3)
C3b-1—N1b-1—H1n1b-1117.457 (3)O3a-2—C11a-2—N1a-2123.347 (2)
C11b-1—N1b-1—H1n1b-1120.984 (2)O3a-2—C11a-2—C12a-2120.815 (3)
C3b-2ii—N1b-2—C11b-2ii120.443 (3)N1a-2—C11a-2—C12a-2115.827 (3)
C3b-2ii—N1b-2—H1n1b-2117.240 (3)O3b-1—C11b-1—N1b-1122.009 (2)
C11b-2ii—N1b-2—H1n1b-2122.198 (2)O3b-1—C11b-1—C12b-1120.798 (3)
O1a-1v—C1a-1—H1c1a-1109.4666 (19)N1b-1—C11b-1—C12b-1117.183 (3)
O1a-1v—C1a-1—H2c1a-1109.4709 (19)O3b-2—C11b-2—N1b-2iii122.666 (2)
O1a-1v—C1a-1—H3c1a-1109.470 (2)O3b-2—C11b-2—C12b-2120.670 (3)
H1c1a-1—C1a-1—H2c1a-1109.4760 (8)N1b-2iii—C11b-2—C12b-2116.660 (3)
H1c1a-1—C1a-1—H3c1a-1109.4692 (9)C11a-1—C12a-1—C13a-1118.545 (2)
H2c1a-1—C1a-1—H3c1a-1109.475 (3)C11a-1—C12a-1—C17a-1122.6925 (19)
O1a-2v—C1a-2—H1c1a-2109.4754 (19)C13a-1—C12a-1—C17a-1118.7599 (19)
O1a-2v—C1a-2—H2c1a-2109.4722 (19)C11a-2—C12a-2—C13a-2117.823 (2)
O1a-2v—C1a-2—H3c1a-2109.472 (2)C11a-2—C12a-2—C17a-2123.933 (2)
H1c1a-2—C1a-2—H2c1a-2109.4669 (8)C13a-2—C12a-2—C17a-2118.229 (2)
H1c1a-2—C1a-2—H3c1a-2109.4732 (9)C11b-1—C12b-1—C13b-1118.516 (2)
H2c1a-2—C1a-2—H3c1a-2109.468 (3)C11b-1—C12b-1—C17b-1123.035 (2)
O1b-1—C1b-1—H1c1b-1109.470 (2)C13b-1—C12b-1—C17b-1118.4445 (19)
O1b-1—C1b-1—H2c1b-1109.4726 (19)C11b-2—C12b-2—C13b-2118.168 (2)
O1b-1—C1b-1—H3c1b-1109.4704 (19)C11b-2—C12b-2—C17b-2iii123.111 (2)
H1c1b-1—C1b-1—H2c1b-1109.4716 (9)C13b-2—C12b-2—C17b-2iii118.694 (2)
H1c1b-1—C1b-1—H3c1b-1109.4701 (10)C12a-1—C13a-1—C14a-1120.420 (2)
H2c1b-1—C1b-1—H3c1b-1109.472 (3)C12a-1—C13a-1—H1c13a-1119.7925 (19)
O1b-2—C1b-2—H1c1b-2109.470 (2)C14a-1—C13a-1—H1c13a-1119.788 (2)
O1b-2—C1b-2—H2c1b-2109.4703 (19)C12a-2—C13a-2—C14a-2120.579 (2)
O1b-2—C1b-2—H3c1b-2109.4716 (19)C12a-2—C13a-2—H1c13a-2119.710 (2)
H1c1b-2—C1b-2—H2c1b-2109.4728 (9)C14a-2—C13a-2—H1c13a-2119.711 (2)
H1c1b-2—C1b-2—H3c1b-2109.4709 (10)C12b-1—C13b-1—C14b-1121.099 (2)
H2c1b-2—C1b-2—H3c1b-2109.472 (3)C12b-1—C13b-1—H1c13b-1119.4538 (19)
O1a-1—C2a-1—O2a-1123.3494 (1)C14b-1—C13b-1—H1c13b-1119.447 (2)
O1a-1—C2a-1—C3a-1112.9495 (17)C12b-2—C13b-2—C14b-2121.210 (2)
O2a-1—C2a-1—C3a-1123.6704 (18)C12b-2—C13b-2—H1c13b-2119.394 (2)
O1a-2—C2a-2—O2a-2124.1537 (2)C14b-2—C13b-2—H1c13b-2119.396 (2)
O1a-2—C2a-2—C3a-2112.4815 (17)C13a-1—C14a-1—C15a-1121.5932 (19)
O2a-2—C2a-2—C3a-2123.3520 (19)C13a-1—C14a-1—H1c14a-1119.203 (2)
O1b-1—C2b-1—O2b-1124.09C15a-1—C14a-1—H1c14a-1119.2036 (19)
O1b-1—C2b-1—C3b-1112.6403 (19)C13a-2—C14a-2—C15a-2121.873 (2)
O2b-1—C2b-1—C3b-1123.2516 (18)C13a-2—C14a-2—H1c14a-2119.062 (2)
O1b-2—C2b-2—O2b-2124.29C15a-2—C14a-2—H1c14a-2119.064 (2)
O1b-2—C2b-2—C3b-2112.4791 (19)C13b-1—C14b-1—C15b-1121.366 (2)
O2b-2—C2b-2—C3b-2123.1901 (18)C13b-1—C14b-1—H1c14b-1119.314 (2)
N1a-1—C3a-1—C2a-1111.018 (2)C15b-1—C14b-1—H1c14b-1119.3206 (19)
N1a-1—C3a-1—C4a-1111.7145 (13)C13b-2—C14b-2—C15b-2120.979 (2)
N1a-1—C3a-1—H1c3a-1107.347 (3)C13b-2—C14b-2—H1c14b-2119.512 (2)
C2a-1—C3a-1—C4a-1110.9325 (19)C15b-2—C14b-2—H1c14b-2119.509 (2)
C2a-1—C3a-1—H1c3a-1108.190 (2)C14a-1—C15a-1—C16a-1117.3464 (19)
C4a-1—C3a-1—H1c3a-1107.4408 (9)C14a-1—C15a-1—C18a-1121.1133 (19)
N1a-2—C3a-2—C2a-2111.773 (2)C16a-1—C15a-1—C18a-1121.533 (2)
N1a-2—C3a-2—C4a-2111.4350 (13)C14a-2—C15a-2—C16a-2117.345 (2)
N1a-2—C3a-2—H1c3a-2107.060 (3)C14a-2—C15a-2—C18a-2120.968 (2)
C2a-2—C3a-2—C4a-2111.0949 (18)C16a-2—C15a-2—C18a-2121.684 (2)
C2a-2—C3a-2—H1c3a-2107.430 (2)C14b-1—C15b-1—C16b-1116.2843 (19)
C4a-2—C3a-2—H1c3a-2107.7979 (8)C14b-1—C15b-1—C18b-1121.842 (2)
N1b-1—C3b-1—C2b-1112.456 (2)C16b-1—C15b-1—C18b-1121.8421 (19)
N1b-1—C3b-1—C4b-1112.8710 (13)C14b-2—C15b-2—C16b-2iii117.007 (2)
N1b-1—C3b-1—H1c3b-1104.809 (3)C14b-2—C15b-2—C18b-2120.576 (2)
C2b-1—C3b-1—C4b-1109.077 (2)C16b-2iii—C15b-2—C18b-2122.380 (2)
C2b-1—C3b-1—H1c3b-1108.941 (2)C15a-1—C16a-1—C17a-1120.884 (2)
C4b-1—C3b-1—H1c3b-1108.4857 (11)C15a-1—C16a-1—H1c16a-1i119.5603 (19)
N1b-2iii—C3b-2—C2b-2112.688 (2)C17a-1—C16a-1—H1c16a-1i119.5552 (19)
N1b-2iii—C3b-2—C4b-2113.4114 (13)C15a-2—C16a-2—C17a-2121.034 (2)
N1b-2iii—C3b-2—H1c3b-2iii104.213 (3)C15a-2—C16a-2—H1c16a-2119.483 (2)
C2b-2—C3b-2—C4b-2109.045 (2)C17a-2—C16a-2—H1c16a-2119.483 (2)
C2b-2—C3b-2—H1c3b-2iii109.010 (2)C15b-1—C16b-1—C17b-1123.1610 (19)
C4b-2—C3b-2—H1c3b-2iii108.2185 (11)C15b-1—C16b-1—H1c16b-1118.4227 (19)
C3a-1—C4a-1—C5a-1112.6439 (19)C17b-1—C16b-1—H1c16b-1118.416 (2)
C3a-1—C4a-1—H1c4a-1109.4703 (9)C15b-2ii—C16b-2—C17b-2122.335 (2)
C3a-1—C4a-1—H2c4a-1109.4739 (13)C15b-2ii—C16b-2—H1c16b-2118.830 (2)
C5a-1—C4a-1—H1c4a-1109.468 (2)C17b-2—C16b-2—H1c16b-2118.834 (2)
C5a-1—C4a-1—H2c4a-1109.469 (2)C12a-1—C17a-1—C16a-1120.929 (2)
H1c4a-1—C4a-1—H2c4a-1106.104 (3)C12a-1—C17a-1—H1c17a-1119.5354 (19)
C3a-2—C4a-2—C5a-2113.5559 (19)C16a-1—C17a-1—H1c17a-1119.535 (2)
C3a-2—C4a-2—H1c4a-2109.4717 (8)C12a-2—C17a-2—C16a-2120.925 (2)
C3a-2—C4a-2—H2c4a-2109.4683 (12)C12a-2—C17a-2—H1c17a-2119.539 (2)
C5a-2—C4a-2—H1c4a-2109.475 (2)C16a-2—C17a-2—H1c17a-2119.536 (2)
C5a-2—C4a-2—H2c4a-2109.472 (2)C12b-1—C17b-1—C16b-1119.595 (2)
H1c4a-2—C4a-2—H2c4a-2105.050 (3)C12b-1—C17b-1—H1c17b-1120.1985 (19)
C3b-1—C4b-1—C5b-1114.138 (2)C16b-1—C17b-1—H1c17b-1120.206 (2)
C3b-1—C4b-1—H1c4b-1109.4713 (11)C12b-2ii—C17b-2—C16b-2119.743 (2)
C3b-1—C4b-1—H2c4b-1109.4700 (15)C12b-2ii—C17b-2—H1c17b-2120.131 (2)
C5b-1—C4b-1—H1c4b-1109.471 (2)C16b-2—C17b-2—H1c17b-2120.126 (2)
C5b-1—C4b-1—H2c4b-1109.4722 (19)C15a-1—C18a-1—C19a-1121.855 (2)
H1c4b-1—C4b-1—H2c4b-1104.363 (3)C15a-1—C18a-1—C23a-1121.850 (2)
C3b-2—C4b-2—C5b-2114.277 (2)C19a-1—C18a-1—C23a-1116.295 (2)
C3b-2—C4b-2—H1c4b-2109.4715 (11)C15a-2—C18a-2—C19a-2120.940 (2)
C3b-2—C4b-2—H2c4b-2109.4729 (15)C15a-2—C18a-2—C23a-2i121.6248 (19)
C5b-2—C4b-2—H1c4b-2109.470 (2)C19a-2—C18a-2—C23a-2i117.4349 (19)
C5b-2—C4b-2—H2c4b-2109.4710 (19)C15b-1—C18b-1—C19b-1120.654 (2)
H1c4b-2—C4b-2—H2c4b-2104.195 (3)C15b-1—C18b-1—C23b-1121.693 (2)
C4a-1—C5a-1—C6a-1120.4522 (18)C19b-1—C18b-1—C23b-1117.653 (2)
C4a-1—C5a-1—C10a-1120.940 (2)C15b-2—C18b-2—C19b-2120.9003 (19)
C6a-1—C5a-1—C10a-1118.599 (2)C15b-2—C18b-2—C23b-2iii121.669 (2)
C4a-2—C5a-2—C6a-2120.0749 (19)C19b-2—C18b-2—C23b-2iii117.4222 (19)
C4a-2—C5a-2—C10a-2121.339 (2)C18a-1—C19a-1—C20a-1122.583 (2)
C6a-2—C5a-2—C10a-2118.586 (2)C18a-1—C19a-1—H1c19a-1118.709 (2)
C4b-1—C5b-1—C6b-1119.2000 (17)C20a-1—C19a-1—H1c19a-1118.708 (2)
C4b-1—C5b-1—C10b-1i122.268 (2)C18a-2—C19a-2—C20a-2121.446 (2)
C6b-1—C5b-1—C10b-1i118.520 (2)C18a-2—C19a-2—H1c19a-2119.2752 (19)
C4b-2—C5b-2—C6b-2119.8970 (17)C20a-2—C19a-2—H1c19a-2119.2792 (19)
C4b-2—C5b-2—C10b-2iv122.107 (2)C18b-1—C19b-1—C20b-1120.369 (2)
C6b-2—C5b-2—C10b-2iv117.986 (2)C18b-1—C19b-1—H1c19b-1119.816 (2)
C5a-1—C6a-1—C7a-1120.5364 (19)C20b-1—C19b-1—H1c19b-1119.814 (2)
C5a-1—C6a-1—H1c6a-1119.732 (2)C18b-2—C19b-2—C20b-2121.4917 (19)
C7a-1—C6a-1—H1c6a-1119.731 (2)C18b-2—C19b-2—H1c19b-2119.2560 (19)
C5a-2—C6a-2—C7a-2120.7703 (18)C20b-2—C19b-2—H1c19b-2119.252 (2)
C5a-2—C6a-2—H1c6a-2119.619 (2)C19a-1—C20a-1—C21a-1119.526 (2)
C7a-2—C6a-2—H1c6a-2119.611 (2)C19a-1—C20a-1—H1c20a-1120.237 (2)
C5b-1—C6b-1—C7b-1i120.7397 (17)C21a-1—C20a-1—H1c20a-1120.237 (2)
C5b-1—C6b-1—H1c6b-1119.627 (2)C19a-2—C20a-2—C21a-2120.0995 (19)
C7b-1i—C6b-1—H1c6b-1119.633 (2)C19a-2—C20a-2—H1c20a-2119.948 (2)
C5b-2—C6b-2—C7b-2i120.9956 (17)C21a-2—C20a-2—H1c20a-2119.9525 (19)
C5b-2—C6b-2—H1c6b-2119.503 (2)C19b-1—C20b-1—C21b-1121.281 (2)
C7b-2i—C6b-2—H1c6b-2119.501 (2)C19b-1—C20b-1—H1c20b-1119.359 (2)
C6a-1—C7a-1—C8a-1121.068 (2)C21b-1—C20b-1—H1c20b-1119.360 (2)
C6a-1—C7a-1—H1c7a-1119.4654 (19)C19b-2—C20b-2—C21b-2iii120.624 (2)
C8a-1—C7a-1—H1c7a-1119.467 (2)C19b-2—C20b-2—H1c20b-2119.6901 (19)
C6a-2—C7a-2—C8a-2120.252 (2)C21b-2iii—C20b-2—H1c20b-2119.6859 (19)
C6a-2—C7a-2—H1c7a-2119.8756 (19)C20a-1—C21a-1—C22a-1i119.396 (2)
C8a-2—C7a-2—H1c7a-2119.872 (2)C20a-1—C21a-1—H1c21a-1i120.302 (2)
C6b-1v—C7b-1—C8b-1120.400 (2)C22a-1i—C21a-1—H1c21a-1i120.301 (2)
C6b-1v—C7b-1—H1c7b-1119.7996 (17)C20a-2—C21a-2—C22a-2i119.3616 (19)
C8b-1—C7b-1—H1c7b-1119.800 (2)C20a-2—C21a-2—H1c21a-2i120.3176 (19)
C6b-2v—C7b-2—C8b-2iii120.447 (2)C22a-2i—C21a-2—H1c21a-2i120.321 (2)
C6b-2v—C7b-2—H1c7b-2119.7769 (17)C20b-1—C21b-1—C22b-1118.293 (2)
C8b-2iii—C7b-2—H1c7b-2119.776 (2)C20b-1—C21b-1—H1c21b-1120.855 (2)
C7a-1—C8a-1—C9a-1118.610 (2)C22b-1—C21b-1—H1c21b-1120.852 (2)
C7a-1—C8a-1—H1c8a-1120.693 (2)C20b-2ii—C21b-2—C22b-2118.5023 (19)
C9a-1—C8a-1—H1c8a-1120.6975 (19)C20b-2ii—C21b-2—H1c21b-2120.748 (2)
C7a-2—C8a-2—C9a-2119.352 (2)C22b-2—C21b-2—H1c21b-2120.7501 (19)
C7a-2—C8a-2—H1c8a-2120.324 (2)C21a-1v—C22a-1—C23a-1v119.993 (2)
C9a-2—C8a-2—H1c8a-2120.3242 (19)C21a-1v—C22a-1—H1c22a-1120.003 (2)
C7b-1—C8b-1—C9b-1119.656 (2)C23a-1v—C22a-1—H1c22a-1120.004 (2)
C7b-1—C8b-1—H1c8b-1120.176 (2)C21a-2v—C22a-2—C23a-2120.972 (2)
C9b-1—C8b-1—H1c8b-1120.1676 (17)C21a-2v—C22a-2—H1c22a-2119.5131 (19)
C7b-2ii—C8b-2—C9b-2119.716 (2)C23a-2—C22a-2—H1c22a-2119.5145 (19)
C7b-2ii—C8b-2—H1c8b-2120.141 (2)C21b-1—C22b-1—C23b-1121.594 (2)
C9b-2—C8b-2—H1c8b-2120.1432 (17)C21b-1—C22b-1—H1c22b-1119.204 (2)
C8a-1—C9a-1—C10a-1120.6469 (19)C23b-1—C22b-1—H1c22b-1119.202 (2)
C8a-1—C9a-1—H1c9a-1119.677 (2)C21b-2—C22b-2—C23b-2121.254 (2)
C10a-1—C9a-1—H1c9a-1119.676 (2)C21b-2—C22b-2—H1c22b-2119.3688 (19)
C8a-2—C9a-2—C10a-2120.1175 (18)C23b-2—C22b-2—H1c22b-2119.378 (2)
C8a-2—C9a-2—H1c9a-2119.942 (2)C18a-1—C23a-1—C22a-1i122.192 (2)
C10a-2—C9a-2—H1c9a-2119.941 (2)C18a-1—C23a-1—H1c23a-1i118.905 (2)
C8b-1—C9b-1—C10b-1119.6262 (17)C22a-1i—C23a-1—H1c23a-1i118.903 (2)
C8b-1—C9b-1—H1c9b-1120.183 (2)C18a-2v—C23a-2—C22a-2120.6793 (19)
C10b-1—C9b-1—H1c9b-1120.191 (2)C18a-2v—C23a-2—H1c23a-2119.6587 (19)
C8b-2—C9b-2—C10b-2119.7471 (17)C22a-2—C23a-2—H1c23a-2119.662 (2)
C8b-2—C9b-2—H1c9b-2120.132 (2)C18b-1—C23b-1—C22b-1120.802 (2)
C10b-2—C9b-2—H1c9b-2120.121 (2)C18b-1—C23b-1—H1c23b-1119.596 (2)
C5a-1—C10a-1—C9a-1120.514 (2)C22b-1—C23b-1—H1c23b-1119.602 (2)
C5a-1—C10a-1—H1c10a-1119.743 (2)C18b-2ii—C23b-2—C22b-2120.643 (2)
C9a-1—C10a-1—H1c10a-1119.7425 (19)C18b-2ii—C23b-2—H1c23b-2119.6810 (19)
C5a-2—C10a-2—C9a-2120.918 (2)C22b-2—C23b-2—H1c23b-2119.676 (2)
Symmetry codes: (i) x, y1, z; (ii) x1, y, z; (iii) x+1, y, z; (iv) x+1, y1, z; (v) x, y+1, z; (vi) x1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3b-1—H1c3b-1···O2b-20.963.003.9236161.88
C4a-1—H1c4a-1···O3a-2ii0.962.773.4434128.27
C4a-1—H1c4a-1···C10a-2ii0.962.983.7486138.45
C4a-2—H1c4a-2···O3a-10.962.753.4260127.83
C4a-2—H1c4a-2···C10a-10.962.933.7492144.34
C6b-1—H1c6b-1···O3b-10.962.883.5939131.70
C6b-2—H1c6b-2···O3b-20.962.833.5523132.43
C7a-1—H1c7a-1···C21b-20.962.993.7658139.35
C7a-2—H1c7a-2···C21b-10.962.973.7607140.04
C7b-2—H1c7b-2···C21a-2v0.962.973.8098146.59
C9a-1—H1c9a-1···C1a-20.962.863.6920145.38
C9a-2—H1c9a-2···O1a-1vii0.962.953.8977168.76
C9a-2—H1c9a-2···C1a-1iii0.962.853.6445141.06
C10a-1—H1c10a-1···O2a-2viii0.962.723.6500162.63
C10a-2—H1c10a-2···O2a-1viii0.962.683.6154163.78
C10b-1—H1c10b-1···O2b-2ix0.962.743.6551158.90
C10b-2—H1c10b-2···O2b-1x0.962.733.6457159.21
N1a-1—H1n1a-1···O3a-2ii0.911.972.8328156.81
N1a-2—H1n1a-2···O3a-10.921.952.8255156.64
N1b-1—H1n1b-1···O3b-20.922.002.8742158.48
N1b-2—H1n1b-2···O3b-10.911.982.8516159.03
C13a-1—H1c13a-1···C21b-10.962.973.6499128.46
C13b-1—H1c13b-1···C8b-20.962.903.8241161.36
C13b-2—H1c13b-2···C8b-10.963.003.9032157.77
C14a-1—H1c14a-1···C22b-10.962.913.6389134.03
C14a-1—H1c14a-1···C23b-10.962.883.7966161.21
C14a-2—H1c14a-2···C23b-2iii0.962.933.7487144.46
C16b-1—H1c16b-1···C19a-20.962.953.8955169.74
C16b-1—H1c16b-1···C20a-20.962.743.5551143.47
C17a-2—H1c17a-2···O3a-10.962.973.6900132.51
C19a-2—H1c19a-2···C15b-20.962.973.6762131.32
C19a-2—H1c19a-2···C18b-20.962.993.8803155.54
C19b-2—H1c19b-2···C22a-20.962.943.8812168.06
C19b-2—H1c19b-2···C23a-20.962.803.5858140.21
C20a-1—H1c20a-1···C16b-10.962.933.6124128.84
C20a-1—H1c20a-1···C17b-10.962.873.7430151.33
C20a-2—H1c20a-2···C16b-2iii0.962.953.6752133.58
C20a-2—H1c20a-2···C17b-2iii0.962.853.7683160.85
C20b-1—H1c20b-1···C16a-1v0.962.993.9214164.76
C22a-2—H1c22a-2···C18b-10.962.973.6792131.58
C22b-2—H1c22b-2···C13a-10.962.983.9315169.21
C22b-2—H1c22b-2···C14a-10.962.793.5900141.73
C23a-1v—H1c23a-1···C20b-2ii0.962.873.7033146.27
C23a-2—H1c23a-2···C19b-10.962.963.6726131.95
C23a-2—H1c23a-2···C20b-10.962.843.7513159.42
C23b-1—H1c23b-1···C19a-20.962.913.8350162.08
C21a-1v—H1c21a-1···C7b-2ii0.962.973.7140135.14
C21a-1v—H1c21a-1···C8b-20.962.853.7122149.51
C21a-2v—H1c21a-2···C7b-10.962.953.6875134.39
C21a-2v—H1c21a-2···C8b-10.962.823.6760149.45
C21b-1—H1c21b-1···C8a-10.962.993.7822141.12
C21b-2—H1c21b-2···C8a-2ii0.962.973.7816142.49
C1b-1—H1c1b-1···C5b-1v0.962.953.8528156.47
C1b-1—H1c1b-1···C10b-10.962.853.6200137.59
C1b-2—H1c1b-2···C5b-2v0.962.993.8798155.14
C1b-2—H1c1b-2···C10b-2iii0.962.873.6327137.52
Symmetry codes: (ii) x1, y, z; (iii) x+1, y, z; (v) x, y+1, z; (vii) x+1, y+1, z; (viii) x+1, y+1/2, z+1/2; (ix) x+3/2, y+1/2, z; (x) x+1/2, y+1/2, z.
 

Acknowledgements

We thank Professor Sreenivasan Ramakrishnan, Dr Vaclav Petříček, Dr Sitaram Ramakrishnan, Professor Venkataramanan Mahalingam and Dr Saumya Mukherjee for helpful comments and fruitful discussions. We thank the editor and anonymous reviewers for important suggestions. Open access funding enabled and organized by Projekt DEAL.

Funding information

Funding for this research was provided by: Science and Engineering Research Board, Department of Science and Technology (India) (scholarship No. DST-SERB:PDF/2018/002502); Alexander von Humboldt-Stiftung.

References

First citationAlvarez, S. (2013). Dalton Trans. 42, 8617–8636.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBastiansen, O. (1949). Acta Chem. Scand. 3, 408–414.  CrossRef CAS Web of Science Google Scholar
First citationBaudour, J. L., Delugeard, Y. & Cailleau, H. (1976). Acta Cryst. B32, 150–154.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBaudour, J.-L., Délugeard, Y. & Rivet, P. (1978). Acta Cryst. B34, 625–628.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBaudour, J. L. & Sanquer, M. (1983). Acta Cryst. B39, 75–84.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBecker, P. J. & Coppens, P. (1974). Acta Cryst. A30, 129–147.  CrossRef IUCr Journals Web of Science Google Scholar
First citationBenkert, C. & Heine, V. (1987). Phys. Rev. Lett. 58, 2232–2234.  CrossRef PubMed CAS Web of Science Google Scholar
First citationBenkert, C., Heine, V. & Simmons, E. H. (1987). J. Phys. C Solid State Phys. 20, 3337–3354.  CrossRef CAS Web of Science Google Scholar
First citationBree, A. & Edelson, M. (1977). Chem. Phys. Lett. 46, 500–504.  CrossRef CAS Web of Science Google Scholar
First citationBree, A. & Edelson, M. (1978). Chem. Phys. Lett. 55, 319–322.  CrossRef CAS Web of Science Google Scholar
First citationBürkle, M., Viljas, J. K., Vonlanthen, D., Mishchenko, A., Schön, G., Mayor, M., Wandlowski, T. & Pauly, F. (2012). Phys. Rev. B, 85, 075417.  Google Scholar
First citationBusing, W. R. (1983). Acta Cryst. A39, 340–347.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCailleau, H., Moussa, F. & Mons, J. (1979). Solid State Commun. 31, 521–524.  CrossRef CAS Web of Science Google Scholar
First citationCasalone, G., Mariani, C., Mugnoli, A. & Simonetta, M. (1968). Mol. Phys. 15, 339–348.  CrossRef CAS Web of Science Google Scholar
First citationChapuis, G. (2020). Acta Cryst. B76, 510–511.  Web of Science CrossRef IUCr Journals Google Scholar
First citationCharbonneau, G.-P. & Delugeard, Y. (1976). Acta Cryst. B32, 1420–1423.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationCharbonneau, G. P. & Delugeard, Y. (1977). Acta Cryst. B33, 1586–1588.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationCoelho, A. A. (2003). J. Appl. Cryst. 36, 86–95.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCoelho, A. A. (2018). J. Appl. Cryst. 51, 210–218.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCranney, M., Comtet, G., Dujardin, G., Kim, J. W., Kampen, T. U., Horn, K., Mamatkulov, M., Stauffer, L. & Sonnet, P. (2007). Phys. Rev. B, 76, 075324.  Web of Science CrossRef Google Scholar
First citationDesiraju, G. R. & Steiner, T. (2001). The Weak Hydrogen Bond. In Structural Chemistry and Biology, 1st ed. Oxford University Press.  Google Scholar
First citationDey, S., Schönleber, A., Mondal, S., Ali, S. I. & van Smaalen, S. (2018). Cryst. Growth Des. 18, 1394–1400.  Web of Science CSD CrossRef CAS Google Scholar
First citationDey, S., Schönleber, A., Mondal, S., Prathapa, S. J., van Smaalen, S. & Larsen, F. K. (2016). Acta Cryst. B72, 372–380.  Web of Science CrossRef IUCr Journals Google Scholar
First citationDey, S., Schönleber, A., van Smaalen, S., Morgenroth, W. & Krebs Larsen, F. (2022). Chem. Eur. J. 28, e202104151.  Web of Science PubMed Google Scholar
First citationEcolivet, C., Sanquer, M., Pellegrin, J. & DeWitte, J. (1983). J. Chem. Phys. 78, 6317–6324.  CrossRef CAS Web of Science Google Scholar
First citationFriedman, P. S., Kopelman, R. & Prasad, P. N. (1974). Chem. Phys. Lett. 24, 15–17.  CrossRef CAS Web of Science Google Scholar
First citationHargreaves, A. & Rizvi, S. H. (1962). Acta Cryst. 15, 365–373.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationHochstrasser, R. M., McAlpine, R. D. & Whiteman, J. D. (1973). J. Chem. Phys. 58, 5078–5088.  CrossRef CAS Web of Science Google Scholar
First citationIshibashi, Y. (1981). J. Phys. Soc. Jpn, 50, 1255–1258.  CrossRef CAS Web of Science Google Scholar
First citationJanner, A. & Janssen, T. (1977). Phys. Rev. B, 15, 643–658.  CrossRef CAS Web of Science Google Scholar
First citationJanssen, T., Chapuis, G. & de Boissieu, M. (2018). Aperiodic Crystals: from Modulated Phases to Quasicrystals: Structure and Properties, 2nd ed. Oxford University Press.  Google Scholar
First citationJeong, H., Li, H. B., Domulevicz, L. & Hihath, J. (2020). Adv. Funct. Mater. 30, 2000615.  Web of Science CrossRef Google Scholar
First citationJohansson Seechurn, C. C. C., Kitching, M. O., Colacot, T. J. & Snieckus, V. (2012). Angew. Chem. Int. Ed. 51, 5062–5085.  CAS Google Scholar
First citationKhatua, R., Sahoo, S. R., Sharma, S. & Sahu, S. (2020). Synth. Met. 267, 116474.  Web of Science CrossRef Google Scholar
First citationLenstra, A. T. H., Van Alsenoy, C., Verhulst, K. & Geise, H. J. (1994). Acta Cryst. B50, 96–106.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMishchenko, A., Vonlanthen, D., Meded, V., Bürkle, M., Li, C., Pobelov, I. V., Bagrets, A., Viljas, J. K., Pauly, F., Evers, F., Mayor, M. & Wandlowski, T. (2010). Nano Lett. 10, 156–163.  Web of Science CrossRef CAS PubMed Google Scholar
First citationNespolo, M. (2019). Acta Cryst. A75, 551–573.  Web of Science CrossRef IUCr Journals Google Scholar
First citationNoohinejad, L., Mondal, S., Ali, S. I., Dey, S., van Smaalen, S. & Schönleber, A. (2015). Acta Cryst. B71, 228–234.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOniwa, K., Kanagasekaran, T., Jin, T., Akhtaruzzaman, M., Yamamoto, Y., Tamura, H., Hamada, I., Shimotani, H., Asao, N., Ikeda, S. & Tanigaki, K. (2013). J. Mater. Chem. C, 1, 4163–4170.  Web of Science CSD CrossRef CAS Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationParlinski, K., Schranz, W. & Kabelka, H. (1989). Phys. Rev. B, 39, 488–494.  CrossRef CAS Web of Science Google Scholar
First citationPetricek, V., Coppens, P. & Becker, P. (1985). Acta Cryst. A41, 478–483.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPetříček, V., Dušek, M. & Palatinus, L. (2014). Z. Kristallogr. Cryst. Mater. 229, 345–352.  Google Scholar
First citationPetříček, V., Dušek, M. & Plášil, J. (2016). Z. Kristallogr. Cryst. Mater. 231, 583–599.  Google Scholar
First citationPinheiro, C. B. & Abakumov, A. M. (2015). IUCrJ, 2, 137–154.  Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
First citationPopelier, P. L. A., Maxwell, P. I., Thacker, J. C. R. & Alkorta, I. (2019). Theor. Chem. Acc. 138, 12.  Web of Science CrossRef PubMed Google Scholar
First citationRamakrishnan, S., Schönleber, A., Hübschle, C. B., Eisele, C., Schaller, A. M., Rekis, T., Bui, N. H. A., Feulner, F., van Smaalen, S., Bag, B., Ramakrishnan, S., Tolkiehn, M. & Paulmann, C. (2019). Phys. Rev. B, 99, 195140.  Web of Science CrossRef ICSD Google Scholar
First citationRekis, T., Schönleber, A., Noohinejad, L., Tolkiehn, M., Paulmann, C. & van Smaalen, S. (2021). Cryst. Growth Des. 21, 2324–2331.  Web of Science CSD CrossRef CAS Google Scholar
First citationRekis, T., Schönleber, A. & van Smaalen, S. (2020). Acta Cryst. B76, 18–27.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRice, A. P., Tham, F. S. & Chronister, E. L. (2013). J. Chem. Crystallogr. 43, 14–25.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku Oxford Diffraction (2019). CrysAlisPro. Rigaku Corporation, Oxford, UK.  Google Scholar
First citationRowland, R. S. & Taylor, R. (1996). J. Phys. Chem. 100, 7384–7391.  CrossRef CAS Web of Science Google Scholar
First citationSaito, K., Atake, T. & Chihara, H. (1985). J. Chem. Thermodyn. 17, 539–548.  CrossRef CAS Web of Science Google Scholar
First citationSasmal, S., Nandi, S. K., Kumar, S. & Haldar, D. (2019a). ChemistrySelect, 4, 11172–11176.  Web of Science CSD CrossRef CAS Google Scholar
First citationSasmal, S., Podder, D., Debnath, M., Nandi, S. K. & Haldar, D. (2019b). ChemistrySelect, 4, 10302–10306.  Web of Science CrossRef CAS Google Scholar
First citationSchoenleber, A. (2011). Z. Kristallogr. 226, 499–517.  Web of Science CrossRef CAS Google Scholar
First citationSchönleber, A. & Chapuis, G. (2004). Acta Cryst. B60, 108–120.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSchönleber, A., Meyer, M. & Chapuis, G. (2001). J. Appl. Cryst. 34, 777–779.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSchönleber, A., Pattison, P. & Chapuis, G. (2003). Z. Kristallogr. 218, 507–513.  Google Scholar
First citationSmaalen, S. van (2005). Acta Cryst. A61, 51–61.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSmaalen, S. van (2012). Incommensurate Crystallography, 1st ed. Oxford University Press.  Google Scholar
First citationSmaalen, S. van, Campbell, B. J. & Stokes, H. T. (2013). Acta Cryst. A69, 75–90.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSteed, K. M. & Steed, J. W. (2015). Chem. Rev. 115, 2895–2933.  Web of Science CrossRef CAS PubMed Google Scholar
First citationStokes, H. T., Campbell, B. J. & van Smaalen, S. (2011). Acta Cryst. A67, 45–55.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuzuki, H. (1959). Bull. Chem. Soc. Jpn, 32, 1340–1350.  CrossRef CAS Web of Science Google Scholar
First citationTrotter, J. (1961). Acta Cryst. 14, 1135–1140.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationVonlanthen, D., Mishchenko, A., Elbing, M., Neuburger, M., Wandlowski, T. & Mayor, M. (2009). Angew. Chem. Int. Ed. 48, 8886–8890.  Web of Science CSD CrossRef CAS Google Scholar
First citationWagner, T. & Schönleber, A. (2009). Acta Cryst. B65, 249–268.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationWakayama, N. I. (1981). Chem. Phys. Lett. 83, 413–417.  CrossRef CAS Web of Science Google Scholar
First citationWei, J., Liang, B., Duan, R., Cheng, Z., Li, C., Zhou, T., Yi, Y. & Wang, Y. (2016). Angew. Chem. Int. Ed. 55, 15589–15593.  Web of Science CSD CrossRef CAS Google Scholar
First citationWolff, P. M. de (1974). Acta Cryst. A30, 777–785.  CrossRef Web of Science IUCr Journals Google Scholar
First citationYamamura, Y., Saito, K., Ikemoto, I. & Sorai, M. (1998). J. Phys. Condens. Matter, 10, 3359–3366.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoSTRUCTURAL SCIENCE
CRYSTAL ENGINEERING
MATERIALS
ISSN: 2052-5206
Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds