Download citation
Download citation
link to html
The single-crystal structures of calcium D-gluconate and calcium α-D-isosaccharinate have been determined using X-ray diffraction at 100 K. Surprisingly, given its significance in industrial and medical applications, the structure of calcium D-gluconate has not previously been reported. Unexpectedly, the gluconate crystal structure comprises coordination polymers. Unusually, the calcium coordination number is nine. Adjacent metal centres are linked by three μ-oxo bridges, with a metal–metal separation of 3.7312 (2) Å. One of the gluconate ligands contradicts a suggestion from 1974 that a straight chain conformation is associated with an intramolecular hydrogen bond. This ligand binds to three adjacent metal centres. The use of synchrotron radiation provided an improved crystal structure with respect to that previously reported for the isosaccharinate complex, allowing the location of the hy­droxy hydrogen sites to be elucidated. In contrast to the gluconate structure, there are no μ-oxo bridges in the isosaccharinate coordination polymer and the isosaccharinate bridging coordination is such that the distance between adjacent metal centres, each of which is eight-coordinate, is 6.7573 (4) Å. Complementing the crystal structure determinations, modelling studies of the geometries and coordination modes for the aqueous [CaGluc]+ and [CaIsa]+ complexes are presented and discussed.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2052520618013720/bm5106sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520618013720/bm5106Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520618013720/bm5106IIsup3.hkl
Contains datablock II

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2052520618013720/bm5106sup4.pdf
Tables S1 and S2, Figs S1 to S9

CCDC references: 1846615; 1846616

Computing details top

Data collection: CrysAlis PRO 1.171.39.28e (Rigaku OD, 2015) for (I); mxCuBE v2 (Gabadinho et al. 2010, JSR, 27, 700-707) for (II). Cell refinement: CrysAlis PRO 1.171.39.28e (Rigaku OD, 2015) for (I). Data reduction: CrysAlis PRO 1.171.39.28e (Rigaku OD, 2015) for (I); XDS (Kabsch, 1993) for (II). For both structures, program(s) used to solve structure: ShelxT (Sheldrick, 2015); program(s) used to refine structure: SHELXL2017/1 (Sheldrick, 2017); molecular graphics: OLEX2 (Dolomanov,O.V. et al., 2009) shelXle (Hübschle,C.B., et al., 2011). Software used to prepare material for publication: WinGX (Farrugia, 1999) for (I); WinGX (Farrugia, 1999) PWT (Farrugia, 2013) PLATON (Spek, A.K., 2003) XNPP (Parsons, S., et al., 2013) ##?? for (II).

(I) top
Crystal data top
Ca2+·(C6H11O7)2·H2OF(000) = 944
Mr = 448.39Dx = 1.699 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 35610 reflections
a = 6.71198 (9) Åθ = 2.1–37.8°
b = 13.36410 (17) ŵ = 0.44 mm1
c = 19.5439 (3) ÅT = 100 K
V = 1753.08 (4) Å3Block, colourless
Z = 40.11 × 0.03 × 0.02 mm
Data collection top
AFC12 kappa
diffractometer
9212 independent reflections
Radiation source: rotating anode8854 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.034
ω scansθmax = 38.2°, θmin = 1.9°
Absorption correction: multi-scan
CrysAlisPro 1.171.39.28e (Rigaku Oxford Diffraction, 2015) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
h = 1111
Tmin = 0.898, Tmax = 1.00k = 2223
77828 measured reflectionsl = 3333
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.023 w = 1/[σ2(Fo2) + (0.028P)2 + 0.15P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.057(Δ/σ)max = 0.001
S = 1.19Δρmax = 0.42 e Å3
9212 reflectionsΔρmin = 0.22 e Å3
301 parametersAbsolute structure: Flack x determined using 3689 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259).
0 restraintsAbsolute structure parameter: 0.009 (5)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Oxygen hydrogens sites were located in final difference maps and modelled with isotropic displacement parameters.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ca10.26634 (2)0.24558 (2)0.45839 (2)0.00559 (3)
O1_10.00325 (11)0.36936 (5)0.47873 (4)0.00820 (12)
O1'_10.08825 (12)0.52935 (6)0.49729 (4)0.01024 (13)
O2_10.30646 (12)0.41108 (5)0.40788 (4)0.00861 (12)
H2O_10.415 (3)0.4297 (16)0.3921 (11)0.029 (5)*
O3_10.40382 (12)0.54686 (6)0.51484 (4)0.00903 (12)
H3O_10.376 (3)0.5829 (16)0.5457 (11)0.027 (5)*
O4_10.62181 (11)0.54189 (6)0.39736 (4)0.00938 (12)
H4O_10.682 (3)0.5440 (16)0.4346 (12)0.032 (5)*
O5_10.40248 (13)0.78659 (6)0.42815 (5)0.01419 (14)
H5O_10.436 (3)0.8358 (15)0.4490 (10)0.026 (5)*
O6_10.79442 (14)0.84239 (6)0.38053 (4)0.01472 (15)
H6O_10.848 (4)0.8592 (17)0.3432 (12)0.041 (6)*
C1_10.01999 (14)0.46160 (7)0.47064 (5)0.00691 (14)
C2_10.18735 (14)0.49597 (7)0.42295 (5)0.00698 (14)
H2_10.1260210.5201870.3793600.008*
C3_10.30984 (14)0.58110 (7)0.45351 (5)0.00724 (13)
H3_10.2194730.6383000.4647020.009*
C4_10.47065 (14)0.61679 (7)0.40367 (5)0.00775 (14)
H4_10.4067000.6247120.3577760.009*
C5_10.56240 (15)0.71782 (7)0.42305 (5)0.00916 (15)
H5_10.6329230.7124130.4679740.011*
C6_10.70878 (17)0.74677 (8)0.36712 (6)0.01552 (18)
H6A_10.8157190.6959090.3643570.019*
H6B_10.6390060.7483840.3225090.019*
O1_20.38099 (11)0.27294 (5)0.42671 (4)0.00832 (12)
O1'_20.33949 (12)0.25678 (7)0.31333 (4)0.01494 (14)
O2_20.07710 (11)0.15128 (5)0.45318 (4)0.00669 (11)
H2O_20.066 (3)0.1024 (16)0.4680 (10)0.029 (5)*
O3_20.12837 (10)0.23842 (5)0.34452 (4)0.00769 (11)
H3O_20.106 (3)0.2818 (14)0.3157 (9)0.019 (4)*
O4_20.29120 (12)0.08544 (6)0.39830 (4)0.00843 (12)
H4O_20.303 (3)0.0406 (16)0.4240 (11)0.028 (5)*
O5_20.15867 (11)0.03141 (6)0.22203 (4)0.00836 (12)
H5O_20.230 (3)0.0319 (14)0.1905 (10)0.021 (5)*
O6_20.51473 (12)0.07791 (6)0.22910 (4)0.01170 (13)
H6O_20.463 (4)0.1333 (18)0.2119 (11)0.038 (6)*
C1_20.30292 (14)0.23433 (7)0.37394 (5)0.00764 (14)
C2_20.15534 (13)0.14770 (7)0.38484 (5)0.00619 (13)
H2_20.2291460.0832360.3791180.007*
C3_20.01588 (14)0.14960 (7)0.33347 (5)0.00591 (13)
H3_20.0383120.1492030.2858100.007*
C4_20.16006 (14)0.06178 (7)0.34300 (5)0.00630 (13)
H4_20.0827140.0001080.3545810.008*
C5_20.28796 (14)0.04182 (7)0.27985 (5)0.00697 (14)
H5_20.3810650.0991880.2722950.008*
C6_20.40685 (16)0.05408 (8)0.28983 (5)0.01071 (16)
H6A_20.5009640.0455620.3283930.013*
H6B_20.3152360.1096820.3012400.013*
O1W0.10407 (12)0.38372 (6)0.25002 (4)0.01117 (13)
H1WA0.221 (4)0.4016 (19)0.2571 (12)0.039 (6)*
H1WB0.017 (3)0.4288 (16)0.2667 (10)0.027 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ca10.00514 (6)0.00573 (6)0.00589 (6)0.00022 (5)0.00026 (5)0.00090 (5)
O1_10.0083 (3)0.0061 (3)0.0102 (3)0.0009 (2)0.0019 (2)0.0005 (2)
O1'_10.0090 (3)0.0080 (3)0.0137 (3)0.0016 (2)0.0034 (2)0.0005 (2)
O2_10.0081 (3)0.0065 (3)0.0113 (3)0.0002 (2)0.0036 (2)0.0010 (2)
O3_10.0129 (3)0.0081 (3)0.0061 (3)0.0006 (2)0.0006 (2)0.0002 (2)
O4_10.0086 (3)0.0104 (3)0.0092 (3)0.0011 (2)0.0017 (2)0.0008 (2)
O5_10.0133 (3)0.0080 (3)0.0212 (4)0.0004 (3)0.0003 (3)0.0029 (3)
O6_10.0207 (4)0.0129 (3)0.0105 (3)0.0099 (3)0.0032 (3)0.0017 (2)
C1_10.0061 (3)0.0071 (3)0.0076 (3)0.0002 (3)0.0001 (3)0.0005 (3)
C2_10.0067 (3)0.0064 (3)0.0078 (3)0.0002 (3)0.0005 (3)0.0006 (3)
C3_10.0080 (3)0.0060 (3)0.0077 (3)0.0003 (3)0.0004 (3)0.0005 (3)
C4_10.0078 (3)0.0071 (3)0.0083 (3)0.0002 (3)0.0009 (3)0.0003 (3)
C5_10.0099 (4)0.0077 (3)0.0099 (4)0.0023 (3)0.0012 (3)0.0001 (3)
C6_10.0197 (4)0.0108 (4)0.0161 (4)0.0080 (4)0.0078 (3)0.0031 (3)
O1_20.0069 (3)0.0092 (3)0.0088 (3)0.0020 (2)0.0013 (2)0.0007 (2)
O1'_20.0149 (3)0.0215 (4)0.0084 (3)0.0088 (3)0.0001 (2)0.0037 (3)
O2_20.0083 (3)0.0069 (3)0.0048 (2)0.0008 (2)0.0004 (2)0.0004 (2)
O3_20.0090 (3)0.0059 (3)0.0082 (3)0.0014 (2)0.0012 (2)0.0013 (2)
O4_20.0103 (3)0.0082 (3)0.0067 (3)0.0017 (2)0.0037 (2)0.0011 (2)
O5_20.0073 (3)0.0131 (3)0.0047 (2)0.0005 (2)0.0002 (2)0.0012 (2)
O6_20.0099 (3)0.0134 (3)0.0118 (3)0.0016 (3)0.0034 (3)0.0040 (2)
C1_20.0060 (3)0.0086 (3)0.0084 (3)0.0007 (3)0.0002 (3)0.0004 (3)
C2_20.0060 (3)0.0073 (3)0.0053 (3)0.0003 (3)0.0002 (3)0.0007 (3)
C3_20.0062 (3)0.0061 (3)0.0055 (3)0.0001 (3)0.0001 (3)0.0007 (3)
C4_20.0067 (3)0.0068 (3)0.0054 (3)0.0002 (3)0.0008 (3)0.0012 (3)
C5_20.0063 (3)0.0085 (3)0.0061 (3)0.0003 (3)0.0001 (3)0.0015 (3)
C6_20.0110 (4)0.0129 (4)0.0083 (4)0.0054 (3)0.0013 (3)0.0011 (3)
O1W0.0097 (3)0.0126 (3)0.0113 (3)0.0019 (3)0.0005 (3)0.0015 (2)
Geometric parameters (Å, º) top
Ca1—O3_22.4123 (7)C4_1—H4_11.0000
Ca1—O2_12.4370 (8)C5_1—C6_11.5198 (14)
Ca1—O4_22.4467 (7)C5_1—H5_11.0000
Ca1—O2_2i2.4476 (7)C6_1—H6A_10.9900
Ca1—O1_2i2.4661 (8)C6_1—H6B_10.9900
Ca1—O1_2ii2.4739 (7)O1_2—C1_21.2667 (12)
Ca1—O1_12.4837 (7)O1'_2—C1_21.2464 (12)
Ca1—O1_1i2.5023 (7)O2_2—C2_21.4361 (11)
Ca1—O2_22.6291 (7)O2_2—H2O_20.72 (2)
Ca1—C3_23.2298 (9)O3_2—C3_21.4232 (11)
Ca1—Ca1i3.7312 (2)O3_2—H3O_20.821 (19)
Ca1—Ca1iii3.7312 (1)O4_2—C4_21.4294 (12)
O1_1—C1_11.2526 (11)O4_2—H4O_20.79 (2)
O1'_1—C1_11.2724 (12)O5_2—C5_21.4316 (12)
O2_1—C2_11.4187 (12)O5_2—H5O_20.78 (2)
O2_1—H2O_10.83 (2)O6_2—C6_21.4262 (13)
O3_1—C3_11.4297 (12)O6_2—H6O_20.88 (2)
O3_1—H3O_10.79 (2)C1_2—C2_21.5385 (13)
O4_1—C4_11.4306 (12)C2_2—C3_21.5262 (13)
O4_1—H4O_10.83 (2)C2_2—H2_21.0000
O5_1—C5_11.4166 (13)C3_2—C4_21.5326 (13)
O5_1—H5O_10.81 (2)C3_2—H3_21.0000
O6_1—C6_11.4255 (13)C4_2—C5_21.5269 (13)
O6_1—H6O_10.84 (2)C4_2—H4_21.0000
C1_1—C2_11.5302 (13)C5_2—C6_21.5223 (13)
C2_1—C3_11.5255 (13)C5_2—H5_21.0000
C2_1—H2_11.0000C6_2—H6A_20.9900
C3_1—C4_11.5301 (13)C6_2—H6B_20.9900
C3_1—H3_11.0000O1W—H1WA0.83 (3)
C4_1—C5_11.5315 (13)O1W—H1WB0.90 (2)
O3_2—Ca1—O2_172.83 (3)O2_1—C2_1—H2_1108.3
O3_2—Ca1—O4_263.18 (2)C3_1—C2_1—H2_1108.3
O2_1—Ca1—O4_2126.29 (2)C1_1—C2_1—H2_1108.3
O3_2—Ca1—O2_2i146.98 (3)O3_1—C3_1—C2_1109.10 (7)
O2_1—Ca1—O2_2i74.18 (3)O3_1—C3_1—C4_1108.80 (8)
O4_2—Ca1—O2_2i143.34 (3)C2_1—C3_1—C4_1111.31 (8)
O3_2—Ca1—O1_2i133.01 (2)O3_1—C3_1—H3_1109.2
O2_1—Ca1—O1_2i120.28 (2)C2_1—C3_1—H3_1109.2
O4_2—Ca1—O1_2i112.12 (3)C4_1—C3_1—H3_1109.2
O2_2i—Ca1—O1_2i65.52 (2)O4_1—C4_1—C3_1109.70 (7)
O3_2—Ca1—O1_2ii98.18 (2)O4_1—C4_1—C5_1110.67 (8)
O2_1—Ca1—O1_2ii70.05 (2)C3_1—C4_1—C5_1113.64 (8)
O4_2—Ca1—O1_2ii86.78 (3)O4_1—C4_1—H4_1107.5
O2_2i—Ca1—O1_2ii71.50 (2)C3_1—C4_1—H4_1107.5
O1_2i—Ca1—O1_2ii128.78 (2)C5_1—C4_1—H4_1107.5
O3_2—Ca1—O1_183.94 (2)O5_1—C5_1—C6_1112.04 (9)
O2_1—Ca1—O1_162.67 (2)O5_1—C5_1—C4_1106.54 (8)
O4_2—Ca1—O1_1135.16 (3)C6_1—C5_1—C4_1107.85 (8)
O2_2i—Ca1—O1_179.90 (2)O5_1—C5_1—H5_1110.1
O1_2i—Ca1—O1_168.22 (2)C6_1—C5_1—H5_1110.1
O1_2ii—Ca1—O1_1129.70 (2)C4_1—C5_1—H5_1110.1
O3_2—Ca1—O1_1i131.76 (2)O6_1—C6_1—C5_1110.89 (8)
O2_1—Ca1—O1_1i133.45 (3)O6_1—C6_1—H6A_1109.5
O4_2—Ca1—O1_1i69.92 (2)C5_1—C6_1—H6A_1109.5
O2_2i—Ca1—O1_1i74.55 (2)O6_1—C6_1—H6B_1109.5
O1_2i—Ca1—O1_1i74.88 (2)C5_1—C6_1—H6B_1109.5
O1_2ii—Ca1—O1_1i67.80 (2)H6A_1—C6_1—H6B_1108.0
O1_1—Ca1—O1_1i141.307 (12)C1_2—O1_2—Ca1iii122.32 (6)
O3_2—Ca1—O2_266.97 (2)C1_2—O1_2—Ca1iv122.64 (6)
O2_1—Ca1—O2_2121.08 (2)Ca1iii—O1_2—Ca1iv98.10 (3)
O4_2—Ca1—O2_267.79 (2)C2_2—O2_2—Ca1iii121.23 (5)
O2_2i—Ca1—O2_2132.35 (2)C2_2—O2_2—Ca1111.88 (5)
O1_2i—Ca1—O2_268.63 (2)Ca1iii—O2_2—Ca194.54 (2)
O1_2ii—Ca1—O2_2154.17 (2)C2_2—O2_2—H2O_2112.4 (17)
O1_1—Ca1—O2_271.74 (2)Ca1iii—O2_2—H2O_2105.8 (16)
O1_1i—Ca1—O2_2105.47 (2)Ca1—O2_2—H2O_2109.4 (18)
O3_2—Ca1—C3_224.09 (2)C3_2—O3_2—Ca1112.13 (5)
O2_1—Ca1—C3_296.42 (2)C3_2—O3_2—H3O_2112.9 (13)
O4_2—Ca1—C3_247.58 (2)Ca1—O3_2—H3O_2132.3 (13)
O2_2i—Ca1—C3_2168.76 (2)C4_2—O4_2—Ca1120.96 (6)
O1_2i—Ca1—C3_2116.09 (2)C4_2—O4_2—H4O_2112.2 (16)
O1_2ii—Ca1—C3_2111.57 (2)Ca1—O4_2—H4O_2111.6 (15)
O1_1—Ca1—C3_290.36 (2)C5_2—O5_2—H5O_2104.4 (14)
O1_1i—Ca1—C3_2116.69 (2)C6_2—O6_2—H6O_2107.7 (15)
O2_2—Ca1—C3_247.47 (2)O1'_2—C1_2—O1_2126.46 (9)
O3_2—Ca1—Ca1i138.476 (18)O1'_2—C1_2—C2_2116.08 (8)
O2_1—Ca1—Ca1i92.78 (2)O1_2—C1_2—C2_2117.39 (8)
O4_2—Ca1—Ca1i100.113 (19)O2_2—C2_2—C3_2109.63 (7)
O2_2i—Ca1—Ca1i44.620 (17)O2_2—C2_2—C1_2109.83 (7)
O1_2i—Ca1—Ca1i88.103 (18)C3_2—C2_2—C1_2112.40 (7)
O1_2ii—Ca1—Ca1i40.869 (17)O2_2—C2_2—H2_2108.3
O1_1—Ca1—Ca1i124.358 (19)C3_2—C2_2—H2_2108.3
O1_1i—Ca1—Ca1i41.365 (17)C1_2—C2_2—H2_2108.3
O2_2—Ca1—Ca1i145.151 (18)O3_2—C3_2—C2_2108.28 (7)
C3_2—Ca1—Ca1i144.120 (17)O3_2—C3_2—C4_2106.58 (7)
O3_2—Ca1—Ca1iii93.332 (18)C2_2—C3_2—C4_2112.51 (7)
O2_1—Ca1—Ca1iii104.311 (19)O3_2—C3_2—Ca143.78 (4)
O4_2—Ca1—Ca1iii107.35 (2)C2_2—C3_2—Ca184.34 (5)
O2_2i—Ca1—Ca1iii93.469 (18)C4_2—C3_2—Ca183.32 (5)
O1_2i—Ca1—Ca1iii41.026 (17)O3_2—C3_2—H3_2109.8
O1_2ii—Ca1—Ca1iii164.798 (19)C2_2—C3_2—H3_2109.8
O1_1—Ca1—Ca1iii41.741 (17)C4_2—C3_2—H3_2109.8
O1_1i—Ca1—Ca1iii111.179 (19)Ca1—C3_2—H3_2153.6
O2_2—Ca1—Ca1iii40.838 (15)O4_2—C4_2—C5_2107.68 (7)
C3_2—Ca1—Ca1iii82.757 (16)O4_2—C4_2—C3_2108.14 (7)
Ca1i—Ca1—Ca1iii128.166 (9)C5_2—C4_2—C3_2112.99 (7)
C1_1—O1_1—Ca1122.99 (6)O4_2—C4_2—H4_2109.3
C1_1—O1_1—Ca1iii138.00 (6)C5_2—C4_2—H4_2109.3
Ca1—O1_1—Ca1iii96.90 (2)C3_2—C4_2—H4_2109.3
C2_1—O2_1—Ca1125.41 (6)O5_2—C5_2—C6_2109.70 (7)
C2_1—O2_1—H2O_1109.5 (15)O5_2—C5_2—C4_2108.31 (7)
Ca1—O2_1—H2O_1121.2 (15)C6_2—C5_2—C4_2109.77 (8)
C3_1—O3_1—H3O_1109.8 (15)O5_2—C5_2—H5_2109.7
C4_1—O4_1—H4O_1104.3 (15)C6_2—C5_2—H5_2109.7
C5_1—O5_1—H5O_1110.9 (15)C4_2—C5_2—H5_2109.7
C6_1—O6_1—H6O_1104.6 (16)O6_2—C6_2—C5_2110.34 (8)
O1_1—C1_1—O1'_1125.28 (9)O6_2—C6_2—H6A_2109.6
O1_1—C1_1—C2_1117.63 (8)C5_2—C6_2—H6A_2109.6
O1'_1—C1_1—C2_1117.06 (8)O6_2—C6_2—H6B_2109.6
O2_1—C2_1—C3_1111.96 (8)C5_2—C6_2—H6B_2109.6
O2_1—C2_1—C1_1107.46 (7)H6A_2—C6_2—H6B_2108.1
C3_1—C2_1—C1_1112.40 (7)H1WA—O1W—H1WB111 (2)
Ca1—O1_1—C1_1—O1'_1159.42 (7)Ca1—O2_2—C2_2—C3_228.53 (8)
Ca1iii—O1_1—C1_1—O1'_10.22 (16)Ca1iii—O2_2—C2_2—C1_214.63 (9)
Ca1—O1_1—C1_1—C2_122.82 (11)Ca1—O2_2—C2_2—C1_295.44 (7)
Ca1iii—O1_1—C1_1—C2_1177.97 (6)O1'_2—C1_2—C2_2—O2_2161.00 (9)
Ca1—O2_1—C2_1—C3_1118.55 (7)O1_2—C1_2—C2_2—O2_221.77 (11)
Ca1—O2_1—C2_1—C1_15.34 (10)O1'_2—C1_2—C2_2—C3_238.66 (12)
O1_1—C1_1—C2_1—O2_110.97 (11)O1_2—C1_2—C2_2—C3_2144.10 (8)
O1'_1—C1_1—C2_1—O2_1171.09 (8)Ca1—O3_2—C3_2—C2_260.34 (8)
O1_1—C1_1—C2_1—C3_1134.59 (9)Ca1—O3_2—C3_2—C4_260.92 (7)
O1'_1—C1_1—C2_1—C3_147.47 (11)O2_2—C2_2—C3_2—O3_258.43 (9)
O2_1—C2_1—C3_1—O3_158.88 (10)C1_2—C2_2—C3_2—O3_264.02 (9)
C1_1—C2_1—C3_1—O3_162.19 (10)O2_2—C2_2—C3_2—C4_259.09 (10)
O2_1—C2_1—C3_1—C4_161.19 (10)C1_2—C2_2—C3_2—C4_2178.46 (7)
C1_1—C2_1—C3_1—C4_1177.73 (7)O2_2—C2_2—C3_2—Ca121.26 (6)
O3_1—C3_1—C4_1—O4_149.97 (10)C1_2—C2_2—C3_2—Ca1101.19 (7)
C2_1—C3_1—C4_1—O4_170.28 (10)Ca1—O4_2—C4_2—C5_2121.17 (7)
O3_1—C3_1—C4_1—C5_174.50 (10)Ca1—O4_2—C4_2—C3_21.23 (9)
C2_1—C3_1—C4_1—C5_1165.25 (8)O3_2—C3_2—C4_2—O4_238.30 (9)
O4_1—C4_1—C5_1—O5_1179.94 (8)C2_2—C3_2—C4_2—O4_280.22 (9)
C3_1—C4_1—C5_1—O5_155.99 (10)Ca1—C3_2—C4_2—O4_20.80 (6)
O4_1—C4_1—C5_1—C6_159.61 (10)O3_2—C3_2—C4_2—C5_280.78 (9)
C3_1—C4_1—C5_1—C6_1176.44 (8)C2_2—C3_2—C4_2—C5_2160.70 (7)
O5_1—C5_1—C6_1—O6_160.77 (12)Ca1—C3_2—C4_2—C5_2118.28 (7)
C4_1—C5_1—C6_1—O6_1177.71 (9)O4_2—C4_2—C5_2—O5_2172.27 (7)
Ca1iii—O1_2—C1_2—O1'_2163.24 (8)C3_2—C4_2—C5_2—O5_252.92 (10)
Ca1iv—O1_2—C1_2—O1'_269.65 (12)O4_2—C4_2—C5_2—C6_267.99 (9)
Ca1iii—O1_2—C1_2—C2_219.84 (11)C3_2—C4_2—C5_2—C6_2172.67 (8)
Ca1iv—O1_2—C1_2—C2_2107.27 (8)O5_2—C5_2—C6_2—O6_256.45 (10)
Ca1iii—O2_2—C2_2—C3_2138.60 (6)C4_2—C5_2—C6_2—O6_2175.35 (8)
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+1, y, z; (iii) x1/2, y+1/2, z+1; (iv) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2_1—H2O_1···O4_10.83 (2)2.04 (2)2.7529 (11)143 (2)
O2_1—H2O_1···O6_2v0.83 (2)2.42 (2)2.9376 (11)121.4 (18)
O3_1—H3O_1···O6_1vi0.79 (2)1.84 (2)2.6290 (11)175 (2)
O4_1—H4O_1···O1_1ii0.83 (2)1.98 (2)2.7621 (11)156 (2)
O5_1—H5O_1···O1_1vii0.81 (2)2.09 (2)2.8597 (11)160 (2)
O6_1—H6O_1···O1Wv0.84 (2)1.88 (2)2.6980 (12)163 (2)
O2_2—H2O_2···O2_1iii0.72 (2)2.58 (2)2.9459 (10)114.1 (19)
O2_2—H2O_2···O3_1iii0.72 (2)2.03 (2)2.7237 (10)162 (2)
O3_2—H3O_2···O1W0.821 (19)1.872 (19)2.6849 (10)170.0 (19)
O4_2—H4O_2···O1_1i0.79 (2)1.94 (2)2.6781 (11)156 (2)
O5_2—H5O_2···O4_1viii0.78 (2)1.99 (2)2.7631 (10)171 (2)
O6_2—H6O_2···O1_2ix0.88 (2)1.76 (2)2.6367 (12)173 (2)
O1W—H1WA···O6_2v0.83 (3)1.81 (3)2.6412 (11)172 (2)
O1W—H1WB···O5_2x0.90 (2)1.82 (2)2.7026 (11)165.4 (19)
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+1, y, z; (iii) x1/2, y+1/2, z+1; (v) x+1, y+1/2, z+1/2; (vi) x1/2, y+3/2, z+1; (vii) x+1/2, y+3/2, z+1; (viii) x+1, y1/2, z+1/2; (ix) x, y1/2, z+1/2; (x) x, y+1/2, z+1/2.
(II) top
Crystal data top
Ca2+·(C6H11O6)2F(000) = 420
Mr = 398.37Dx = 1.743 Mg m3
Orthorhombic, P21212Synchrotron radiation, λ = 0.7749 Å
Hall symbol: P 2 2abCell parameters from 3861 reflections
a = 6.7573 (4) Åθ = 2.3–28.5°
b = 19.5874 (10) ŵ = 0.60 mm1
c = 5.7344 (10) ÅT = 100 K
V = 758.99 (14) Å3Needle, colourless
Z = 20.10 × 0.01 × 0.01 mm
Data collection top
Pilatus 6M-F (25 Hz) and MD2 mini-kappa
diffractometer
1393 reflections with I > 2σ(I)
Radiation source: EMBL PETRA III P13-MX1 beamlineRint = 0.069
Silicon Double Crystal monochromatorθmax = 28.5°, θmin = 2.3°
Phi Scan scansh = 88
4539 measured reflectionsk = 2322
1394 independent reflectionsl = 66
Refinement top
Refinement on F2H atoms treated by a mixture of independent and constrained refinement
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.03P)2 + 0.3P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.033(Δ/σ)max < 0.001
wR(F2) = 0.082Δρmax = 0.29 e Å3
S = 1.07Δρmin = 0.60 e Å3
1394 reflectionsExtinction correction: SHELXL-2017/1 (Sheldrick 2017), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
131 parametersExtinction coefficient: 0.180 (14)
2 restraintsAbsolute structure: Flack x determined using 541 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259).
Hydrogen site location: mixedAbsolute structure parameter: 0.050 (19)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The non-hydrogen atoms in the asymmetric unit were modelled with anisotropic displacement parameters and in general a riding atom model was used for the hydrogen atoms in the model. The hydroxyl hydrogen sites were located in final difference maps and their positions were refined together with isotropic displacement parameters. A distance restraint was used for H5O and H6O.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ca10.0000000.0000000.27017 (12)0.0076 (3)
O10.8314 (3)0.05988 (9)0.0319 (3)0.0120 (5)
O1'0.7387 (3)0.15945 (8)0.1862 (4)0.0119 (5)
O20.8417 (3)0.10593 (8)0.3908 (4)0.0095 (5)
H2O0.814 (6)0.119 (2)0.524 (8)0.019 (10)*
O40.2489 (3)0.08962 (9)0.1599 (4)0.0121 (5)
H4O0.190 (7)0.130 (3)0.171 (9)0.036 (12)*
O50.2223 (3)0.02716 (10)0.5792 (4)0.0148 (5)
H5O0.208 (7)0.013 (2)0.716 (5)0.036 (12)*
O61.0579 (3)0.21470 (9)0.1967 (4)0.0144 (5)
H6O1.110 (7)0.2533 (15)0.195 (10)0.046 (14)*
C10.7776 (3)0.12109 (13)0.0161 (5)0.0092 (6)
C20.7524 (4)0.15195 (12)0.2298 (5)0.0087 (6)
C30.5309 (4)0.16147 (12)0.2837 (5)0.0108 (6)
H3A0.5181130.1893370.4269760.013*
H3B0.4696000.1874380.1544440.013*
C40.4146 (4)0.09469 (13)0.3179 (5)0.0124 (6)
H40.5061610.0557870.2845190.015*
C50.3417 (5)0.08721 (14)0.5673 (6)0.0168 (7)
H5A0.4554870.0832100.6752420.020*
H5B0.2630080.1277190.6127010.020*
C60.8531 (4)0.22175 (12)0.2493 (6)0.0108 (6)
H6A0.7909870.2542430.1391620.013*
H6B0.8368240.2398920.4092930.013*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ca10.0093 (4)0.0043 (4)0.0092 (4)0.0004 (2)0.0000.000
O10.0197 (9)0.0067 (9)0.0096 (11)0.0030 (7)0.0017 (8)0.0019 (7)
O1'0.0191 (9)0.0085 (9)0.0081 (12)0.0036 (7)0.0011 (8)0.0001 (7)
O20.0142 (9)0.0068 (9)0.0075 (12)0.0032 (7)0.0005 (8)0.0005 (7)
O40.0134 (9)0.0081 (9)0.0150 (13)0.0014 (7)0.0008 (7)0.0003 (7)
O50.0199 (10)0.0116 (9)0.0129 (12)0.0079 (7)0.0035 (8)0.0052 (8)
O60.0113 (9)0.0073 (8)0.0245 (13)0.0031 (7)0.0021 (8)0.0012 (8)
C10.0089 (11)0.0074 (12)0.0113 (16)0.0006 (9)0.0004 (10)0.0003 (10)
C20.0112 (11)0.0052 (11)0.0098 (16)0.0006 (8)0.0003 (11)0.0002 (10)
C30.0108 (11)0.0074 (11)0.0142 (15)0.0011 (8)0.0013 (11)0.0008 (9)
C40.0112 (11)0.0079 (10)0.0179 (18)0.0006 (9)0.0009 (11)0.0005 (11)
C50.0191 (13)0.0131 (13)0.0181 (19)0.0072 (10)0.0011 (12)0.0005 (11)
C60.0122 (12)0.0065 (11)0.0138 (16)0.0004 (8)0.0025 (12)0.0018 (9)
Geometric parameters (Å, º) top
Ca1—O1i2.382 (2)O5—H5O0.84 (2)
Ca1—O1ii2.382 (2)O6—C61.423 (3)
Ca1—O5iii2.383 (2)O6—H6O0.83 (2)
Ca1—O52.383 (2)C1—C21.543 (4)
Ca1—O2ii2.4347 (17)C2—C61.531 (3)
Ca1—O2i2.4347 (17)C2—C31.540 (3)
Ca1—O4iii2.5119 (18)C3—C41.539 (3)
Ca1—O42.5120 (18)C3—H3A0.9900
O1—C11.256 (3)C3—H3B0.9900
O1'—C11.259 (4)C4—C51.520 (4)
O2—C21.425 (3)C4—H41.0000
O2—H2O0.83 (4)C5—H5A0.9900
O4—C41.444 (3)C5—H5B0.9900
O4—H4O0.88 (5)C6—H6A0.9900
O5—C51.428 (3)C6—H6B0.9900
O1i—Ca1—O1ii86.70 (10)C5—O5—H5O113 (3)
O1i—Ca1—O5iii137.08 (6)Ca1—O5—H5O123 (3)
O1ii—Ca1—O5iii110.44 (7)C6—O6—H6O109 (3)
O1i—Ca1—O5110.44 (7)O1—C1—O1'125.1 (3)
O1ii—Ca1—O5137.08 (6)O1—C1—C2118.1 (2)
O5iii—Ca1—O583.92 (11)O1'—C1—C2116.8 (2)
O1i—Ca1—O2ii146.76 (7)O2—C2—C6109.2 (2)
O1ii—Ca1—O2ii64.97 (7)O2—C2—C3111.0 (2)
O5iii—Ca1—O2ii72.66 (7)C6—C2—C3108.00 (19)
O5—Ca1—O2ii82.84 (7)O2—C2—C1107.32 (19)
O1i—Ca1—O2i64.97 (7)C6—C2—C1111.6 (2)
O1ii—Ca1—O2i146.76 (7)C3—C2—C1109.8 (2)
O5iii—Ca1—O2i82.84 (7)C4—C3—C2114.79 (19)
O5—Ca1—O2i72.66 (7)C4—C3—H3A108.6
O2ii—Ca1—O2i146.98 (10)C2—C3—H3A108.6
O1i—Ca1—O4iii78.06 (7)C4—C3—H3B108.6
O1ii—Ca1—O4iii80.84 (7)C2—C3—H3B108.6
O5iii—Ca1—O4iii67.00 (7)H3A—C3—H3B107.5
O5—Ca1—O4iii139.92 (7)O4—C4—C5109.4 (2)
O2ii—Ca1—O4iii111.90 (6)O4—C4—C3112.0 (2)
O2i—Ca1—O4iii76.71 (6)C5—C4—C3111.6 (2)
O1i—Ca1—O480.84 (7)O4—C4—H4107.9
O1ii—Ca1—O478.06 (7)C5—C4—H4107.9
O5iii—Ca1—O4139.92 (7)C3—C4—H4107.9
O5—Ca1—O467.00 (7)O5—C5—C4107.9 (2)
O2ii—Ca1—O476.71 (6)O5—C5—H5A110.1
O2i—Ca1—O4111.90 (6)C4—C5—H5A110.1
O4iii—Ca1—O4150.84 (11)O5—C5—H5B110.1
C1—O1—Ca1iv123.79 (17)C4—C5—H5B110.1
C2—O2—Ca1iv122.76 (17)H5A—C5—H5B108.4
C2—O2—H2O108 (3)O6—C6—C2109.3 (2)
Ca1iv—O2—H2O129 (3)O6—C6—H6A109.8
C4—O4—Ca1114.16 (15)C2—C6—H6A109.8
C4—O4—H4O104 (3)O6—C6—H6B109.8
Ca1—O4—H4O107 (3)C2—C6—H6B109.8
C5—O5—Ca1120.31 (17)H6A—C6—H6B108.3
Ca1iv—O1—C1—O1'159.60 (19)C6—C2—C3—C4168.9 (2)
Ca1iv—O1—C1—C221.7 (3)C1—C2—C3—C469.3 (3)
Ca1iv—O2—C2—C6120.95 (19)Ca1—O4—C4—C540.2 (2)
Ca1iv—O2—C2—C3120.09 (19)Ca1—O4—C4—C3164.43 (15)
Ca1iv—O2—C2—C10.2 (2)C2—C3—C4—O4123.3 (3)
O1—C1—C2—O213.0 (3)C2—C3—C4—C5113.6 (3)
O1'—C1—C2—O2168.20 (19)Ca1—O5—C5—C440.0 (3)
O1—C1—C2—C6132.7 (2)O4—C4—C5—O550.8 (3)
O1'—C1—C2—C648.6 (3)C3—C4—C5—O5175.3 (2)
O1—C1—C2—C3107.7 (2)O2—C2—C6—O660.1 (3)
O1'—C1—C2—C371.1 (3)C3—C2—C6—O6179.1 (2)
O2—C2—C3—C449.2 (3)C1—C2—C6—O658.4 (3)
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z; (iii) x, y, z; (iv) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6O···O1v0.83 (2)1.92 (3)2.752 (2)178 (5)
O2—H2O···O1vi0.83 (4)1.91 (5)2.733 (3)173 (4)
O4—H4O···O6ii0.88 (5)1.90 (5)2.777 (3)179 (5)
O5—H5O···O1vii0.84 (2)2.05 (3)2.831 (3)155 (4)
C5—H5A···O1vi0.992.553.346 (4)137
C6—H6A···O6viii0.992.563.474 (3)153
Symmetry codes: (ii) x1, y, z; (v) x+1/2, y+1/2, z; (vi) x, y, z+1; (vii) x+1, y, z+1; (viii) x1/2, y+1/2, z.
 

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds