Download citation
Download citation
link to html
The title compound, [Mg2(C12H14O4)2]n, is the first example of an s-block metal adamantanedicarboxyl­ate coordination poly­mer. The asymmetric unit comprises two crystallographically unique MgII centers and two adamantane-1,3-dicarboxyl­ate ligands. The compound is constructed from a combination of chains of corner-sharing magnesium-centered polyhedra, parallel to the a axis, connected by organic linkers to form a layered polymer. The two MgII centers are present in distorted tetra­hedral and octa­hedral coordination environments derived from carboxyl­ate O atoms. Tetra­hedrally coordinated MgII centers have been reported in organometallic com­pounds, but this is the first time that such coordination has been observed in a magnesium-based coordination polymer. The bond valance sums of the two MgII centers are 2.05 and 2.11 valence units, matching well with the expected value of 2.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270111037954/bm3110sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270111037954/bm3110Isup2.hkl
Contains datablock I

CCDC reference: 855945

Comment top

Coordination polymers (CPs) or metal–organic frameworks (MOFs) (Cheetham et al., 2006) are a new class of material composed of extended arrays of metal centers, connected by organic linkers to form frameworks of various dimensionalities, tailored for specific uses such as gas storage (Murray et al., 2009), separation (Li et al., 2009), catalysis (Ma et al., 2009) and luminescence (Allendorf et al., 2009). A wide range of metal centers is used to construct MOFs or CPs. First-row transition metals are popular choices because of their well known bonding interactions with the functional groups of organic linkers. The application of alkali and alkaline earth metals to form MOFs or CPs is limited, however. The use of s-block metal centers to construct frameworks offers several advantages. Porous frameworks based on early s-block metals can provide gravimetric advantages for gas-storage applications due to the low atomic weight metal centers (Dinca & Long, 2005; Abrahams et al., 2010). In addition, nontoxic frameworks based on s-block metals (Na, K, Mg and Ca) have potential uses in biological applications (Imaz et al., 2011).

Apart from metal centers, the choice of organic linkers is critical for varying the coordination behavior of metal ions and determining the overall characteristics of the framework. For example, adamantanedicarboxylate linkers are used to form various framework topologies with first-row transition metals, lanthanides and actinides (Nazarenko et al., 2010; Nielsen et al., 2008; Millange et al., 2004; Ok & O'Hare, 2008; Xu et al., 2006). Our group is currently investigating the structure type and functionalities of different frameworks formed using s-block metal centers (Li, Mg and Ca) for potential use as gas-storage media (Banerjee et al., 2010, 2011).

In this work, we report the first example of a magnesium–adamantane-1,3-dicarboxylate [Mg(1,3-ADA)] layered polymer, namely poly[(µ4-adamantane-1,3-dicarboxylato)magnesium], (I), prepared under solvothermal conditions. Compound (I) crystallizes in the triclinic space group P1 with an asymmetric unit comprising two MgII ions and two complete dianionic 1,3-ADA2- ligands (Fig. 1). There are two types of crystallographically independent Mg site, viz. Mg1 with a tetrahedral MgO4 environment and Mg2 with a distorted octahedral MgO6 environment.

Atom Mg1 is coordinated to four bridging bidentate 1,3-ADA2- ligands, with Mg—O bond lengths and internal O—Mg—O angles of 1.919 (2)–1.947 (2) Å and 104.53 (8)–112.92 (8)°, respectively (Table 1). Tetrahedral coordination of magnesium is well established in magnesium-based organometallic compounds (Cambridge Structural Database, Version 5.32, update of November 2010; Allen 2002), but to the best of our knowledge this is the first time that such coordination has been seen in a magnesium-based polymer. Atom Mg2 is also coordinated by four 1,3-ADA2- ligands, where two of these act as bidentate chelating ligands donating four O atoms [O3, O4, O5iv and O6iv; symmetry code: (iv) x + 1, y, z] which occupy two axial and two equatorial sites. The other equatorial O atoms [O2iii and O8ii; symmetry codes: (iii) -x + 1, -y, -z + 3; (ii) -x + 1, -y, -z + 2] are donated by two different bridging bidentate 1,3-ADA2- ligands. The coordination octahedron is highly distorted, with two narrow O—Mg—O angles [O3—Mg2—O4 = 60.72 (7)° and O5iv—Mg2—O6iv = 60.59 (7)°; symmetry code: (iv) x + 1, y, z] from chelating carboxylate groups (Table 1). The Mg2—O bond lengths lie in the range 1.969 (2)–2.174 (2) Å.

Atoms O4 and O5 bridge adjacent Mg1 and Mg2 centers, leading to the formation of ···Mg1···Mg2···Mg1··· chains running parallel to the a axis (Fig. 2); the Mg1···Mg2 and Mg2···Mg1iv [symmetry code: (iv) x + 1, y, z] distances are 3.5419 (11) and 3.5463 (11) Å, respectively. The Mg1···Mg2 chains are crosslinked by 1,3-ADA2- ligands. The carboxylate groups of the 1,3-ADA2- linkers display two different coordination behaviors, bidentate-chelating (O3/O4 and O5/O6) and bidentate-bridging (O1/O2 and O7/O8) (Fig. 1), with atoms O4 and O5 shared between atoms Mg1 and Mg2. Hence, each of the organic linkers connects four metal ions to produce two-dimensional layers in the ac plane (Fig. 3).

Related literature top

For related literature, see: Abrahams et al. (2010); Allen (2002); Allendorf et al. (2009); Banerjee et al. (2010, 2011); Cheetham et al. (2006); Dinca & Long (2005); Imaz et al. (2011); Li et al. (2009); Ma et al. (2009); Millange et al. (2004); Murray et al. (2009); Nazarenko et al. (2010); Nielsen et al. (2008); Ok & O'Hare (2008); Xu et al. (2006).

Experimental top

Compound (I) was synthesized by dissolving Mg(NO3)2.6H2O (99%, Sigma–Aldrich; 0.122 g, 0.47 mmol) and adamantane-1,3-dicarboxylic acid (95%, TCI-America; 0.106 g, 0.47 mmol) in a mixture of ethanol (95%, Fisher; 4.0 g) and N,N-dimethylformamide (DMF, 99%, Sigma–Aldrich; 4.0 g), and stirring the mixture for 1 h (molar ratio of metal salt–ligand–DMF–ethanol = 1:1:116:185). The resulting solution was placed in a Teflon-lined 23 ml Parr stainless steel autoclave and heated for 5 d at 453 K. The product was obtained as needle-shaped crystals (yield 0.130 g, 55% based on Mg, 0.130 g) which were washed with ethanol.

Refinement top

All C-bound H atoms were placed in calculated positions and treated using a riding model, with C—H = 0.97 (methylene) or 0.98 Å (methine), and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Burnett & Johnson, 1996) and CrystalMaker (Palmer, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the local environment of the MgII cations in (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) -x, -y, -z + 3; (ii) -x + 1, -y, -z + 2; (iii) -x + 1, -y, -z + 3; (iv) x + 1, y, z.]
[Figure 2] Fig. 2. A view of the structure of (I), along the [100] direction, parallel to the layers. H atoms have been omitted for clarity.
[Figure 3] Fig. 3. A view of a single layer of the structure of (I), highlighting the chains of alternating MgO4 and MgO6 coordination polyhedra. H atoms have been omitted for clarity.
Poly[(µ4-adamantane-1,3-dicarboxylato- κ5O1:O1':O3,O3':O3')(µ3- adamantane-1,3-dicarboxylato- κ5O1,O1':O3,O3':O3') dimagnesium] top
Crystal data top
[Mg2(C12H14O4)2]Z = 2
Mr = 246.5F(000) = 520
Triclinic, P1Dx = 1.452 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.9034 (2) ÅCell parameters from 9594 reflections
b = 11.3549 (4) Åθ = 3.1–33.0°
c = 15.3196 (6) ŵ = 0.15 mm1
α = 70.713 (4)°T = 293 K
β = 83.131 (3)°Needle, colourless
γ = 89.141 (3)°0.3 × 0.1 × 0.05 mm
V = 1124.95 (7) Å3
Data collection top
Oxford Xcalibur Atlas Gemini
diffractometer
4605 independent reflections
Radiation source: Enhance (Mo) X-ray Source3157 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
Detector resolution: 10.4962 pixels mm-1θmax = 26.4°, θmin = 3.1°
ω scansh = 88
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 1414
Tmin = 0.979, Tmax = 1.000l = 1919
28700 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0797P)2]
where P = (Fo2 + 2Fc2)/3
4605 reflections(Δ/σ)max < 0.001
307 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
[Mg2(C12H14O4)2]γ = 89.141 (3)°
Mr = 246.5V = 1124.95 (7) Å3
Triclinic, P1Z = 2
a = 6.9034 (2) ÅMo Kα radiation
b = 11.3549 (4) ŵ = 0.15 mm1
c = 15.3196 (6) ÅT = 293 K
α = 70.713 (4)°0.3 × 0.1 × 0.05 mm
β = 83.131 (3)°
Data collection top
Oxford Xcalibur Atlas Gemini
diffractometer
4605 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
3157 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 1.000Rint = 0.061
28700 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.154H-atom parameters constrained
S = 1.02Δρmax = 0.46 e Å3
4605 reflectionsΔρmin = 0.28 e Å3
307 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0787 (4)0.0955 (3)0.60973 (18)0.0325 (6)
C20.1404 (3)0.1959 (2)0.51649 (17)0.0280 (6)
C30.0342 (4)0.2457 (3)0.46362 (18)0.0355 (6)
H3A0.09740.17820.45110.043*
H3B0.12820.27830.50150.043*
C40.2380 (4)0.3033 (2)0.53668 (18)0.0337 (6)
H4A0.14640.33560.57580.040*
H4B0.34980.27290.56970.040*
C50.2896 (3)0.1443 (2)0.45653 (17)0.0276 (6)
H5A0.23080.07540.44400.033*
H5B0.40100.11350.48980.033*
C60.3038 (4)0.4077 (2)0.44481 (19)0.0371 (6)
H60.36460.47660.45780.044*
C70.1292 (4)0.4552 (3)0.3917 (2)0.0429 (7)
H7A0.03570.49010.42830.052*
H7B0.17220.52050.33350.052*
C80.0326 (4)0.3487 (3)0.37193 (18)0.0348 (6)
H80.08040.37960.33860.042*
C90.1792 (3)0.2962 (3)0.31217 (17)0.0308 (6)
H9A0.21990.36070.25320.037*
H9B0.11830.22810.29940.037*
C100.4520 (4)0.3551 (2)0.38605 (18)0.0319 (6)
H10A0.56250.32400.41990.038*
H10B0.49920.42070.32870.038*
C110.3576 (3)0.2489 (2)0.36340 (16)0.0261 (5)
C120.5037 (3)0.1963 (2)0.30560 (16)0.0261 (5)
C130.0083 (3)0.1980 (2)0.09558 (17)0.0265 (5)
C140.1581 (3)0.2521 (2)0.01134 (16)0.0260 (5)
C150.3370 (3)0.3017 (2)0.03970 (17)0.0302 (6)
H15A0.39310.23470.08660.036*
H15B0.29880.36650.06620.036*
C160.2211 (3)0.1476 (2)0.02924 (17)0.0262 (5)
H16A0.27530.07970.01770.031*
H16B0.10840.11530.04710.031*
C170.0709 (4)0.3569 (2)0.06344 (17)0.0314 (6)
H17A0.02770.42250.03860.038*
H17B0.04150.32490.08180.038*
C180.2242 (4)0.4104 (2)0.14871 (18)0.0342 (6)
H180.16790.47840.19600.041*
C190.2848 (4)0.3066 (2)0.18863 (18)0.0339 (6)
H19A0.37950.33940.24350.041*
H19B0.17180.27520.20700.041*
C200.4000 (4)0.4599 (3)0.11934 (19)0.0410 (7)
H20A0.36030.52570.09410.049*
H20B0.49650.49490.17310.049*
C210.3746 (3)0.1996 (2)0.11479 (17)0.0282 (6)
C220.4886 (4)0.3548 (2)0.04611 (18)0.0333 (6)
H220.60270.38710.02800.040*
C230.5508 (4)0.2512 (3)0.08576 (18)0.0342 (6)
H23A0.60820.18460.03920.041*
H23B0.64860.28380.13930.041*
C240.4308 (4)0.0980 (2)0.15667 (17)0.0319 (6)
O10.0981 (3)0.08431 (19)0.64206 (13)0.0472 (5)
O20.2074 (3)0.0308 (2)0.65109 (14)0.0557 (6)
O30.6788 (2)0.22620 (18)0.29161 (13)0.0390 (5)
O40.4473 (2)0.11580 (16)0.26990 (12)0.0307 (4)
O50.0584 (2)0.11589 (16)0.17021 (11)0.0292 (4)
O60.1645 (2)0.22741 (18)0.09567 (12)0.0383 (5)
O70.6078 (3)0.08638 (19)0.18251 (15)0.0474 (5)
O80.2981 (3)0.0323 (2)0.16616 (16)0.0545 (6)
Mg10.24942 (11)0.01551 (8)0.24454 (6)0.0287 (2)
Mg20.75194 (11)0.09054 (8)0.22683 (6)0.0269 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0308 (14)0.0416 (16)0.0247 (14)0.0006 (12)0.0020 (11)0.0122 (12)
C20.0261 (13)0.0361 (14)0.0207 (13)0.0031 (10)0.0000 (10)0.0092 (11)
C30.0264 (13)0.0488 (17)0.0300 (15)0.0070 (12)0.0003 (11)0.0127 (13)
C40.0362 (15)0.0425 (16)0.0249 (14)0.0061 (12)0.0011 (11)0.0155 (12)
C50.0236 (12)0.0330 (14)0.0252 (13)0.0013 (10)0.0015 (10)0.0102 (11)
C60.0470 (16)0.0341 (15)0.0340 (15)0.0001 (12)0.0013 (12)0.0176 (13)
C70.0597 (19)0.0325 (15)0.0320 (16)0.0149 (14)0.0021 (14)0.0077 (13)
C80.0308 (14)0.0458 (16)0.0249 (14)0.0145 (12)0.0031 (11)0.0088 (12)
C90.0289 (13)0.0396 (15)0.0238 (13)0.0044 (11)0.0012 (10)0.0112 (12)
C100.0331 (14)0.0339 (15)0.0283 (14)0.0034 (11)0.0014 (11)0.0112 (12)
C110.0232 (12)0.0346 (14)0.0224 (13)0.0026 (10)0.0007 (10)0.0128 (11)
C120.0255 (13)0.0321 (14)0.0197 (12)0.0009 (10)0.0022 (10)0.0073 (11)
C130.0256 (13)0.0305 (14)0.0266 (14)0.0001 (10)0.0026 (10)0.0139 (11)
C140.0238 (12)0.0327 (14)0.0221 (13)0.0004 (10)0.0013 (10)0.0102 (11)
C150.0296 (13)0.0371 (15)0.0247 (13)0.0051 (11)0.0013 (10)0.0128 (12)
C160.0239 (12)0.0303 (14)0.0241 (13)0.0013 (10)0.0007 (10)0.0099 (11)
C170.0334 (14)0.0317 (14)0.0282 (14)0.0055 (11)0.0028 (11)0.0092 (12)
C180.0435 (15)0.0298 (14)0.0245 (14)0.0019 (12)0.0031 (12)0.0032 (11)
C190.0346 (14)0.0421 (16)0.0250 (14)0.0038 (12)0.0005 (11)0.0121 (12)
C200.0532 (18)0.0381 (16)0.0296 (15)0.0107 (13)0.0076 (13)0.0123 (13)
C210.0243 (12)0.0354 (14)0.0250 (13)0.0014 (10)0.0013 (10)0.0116 (11)
C220.0284 (13)0.0442 (16)0.0286 (14)0.0115 (11)0.0026 (11)0.0154 (13)
C230.0261 (13)0.0465 (16)0.0290 (14)0.0039 (11)0.0029 (11)0.0132 (13)
C240.0317 (14)0.0381 (15)0.0239 (14)0.0009 (11)0.0020 (11)0.0093 (12)
O10.0326 (11)0.0612 (14)0.0349 (11)0.0010 (9)0.0069 (9)0.0025 (10)
O20.0392 (12)0.0703 (15)0.0347 (12)0.0169 (11)0.0048 (9)0.0092 (11)
O30.0228 (9)0.0539 (12)0.0450 (12)0.0026 (8)0.0059 (8)0.0259 (10)
O40.0258 (9)0.0424 (11)0.0297 (10)0.0025 (7)0.0015 (7)0.0204 (8)
O50.0242 (9)0.0384 (10)0.0207 (9)0.0005 (7)0.0005 (7)0.0050 (8)
O60.0250 (10)0.0528 (12)0.0303 (10)0.0071 (8)0.0023 (8)0.0071 (9)
O70.0324 (11)0.0628 (14)0.0584 (14)0.0056 (9)0.0029 (9)0.0384 (11)
O80.0396 (12)0.0651 (14)0.0738 (16)0.0119 (10)0.0139 (11)0.0495 (13)
Mg10.0198 (4)0.0404 (5)0.0265 (5)0.0014 (3)0.0007 (3)0.0131 (4)
Mg20.0203 (4)0.0366 (5)0.0242 (5)0.0014 (3)0.0007 (3)0.0117 (4)
Geometric parameters (Å, º) top
Mg1—O1i1.922 (2)C13—O61.234 (3)
Mg1—O41.9443 (18)C13—O51.295 (3)
Mg1—O51.9470 (18)C13—C141.513 (3)
Mg1—O7ii1.919 (2)C13—Mg2v2.502 (2)
Mg2—O2iii1.971 (2)C14—C171.528 (3)
Mg2—O32.116 (2)C14—C151.530 (3)
Mg2—O42.1713 (17)C14—C161.546 (3)
Mg2—O5iv2.1739 (17)C15—C221.534 (3)
Mg2—O6iv2.1147 (19)C15—H15A0.9700
Mg2—O8ii1.969 (2)C15—H15B0.9700
C1—O21.240 (3)C16—C211.538 (3)
C1—O11.253 (3)C16—H16A0.9700
C1—C21.521 (3)C16—H16B0.9700
C2—C31.529 (3)C17—C181.536 (3)
C2—C51.536 (3)C17—H17A0.9700
C2—C41.536 (4)C17—H17B0.9700
C3—C81.526 (4)C18—C201.520 (4)
C3—H3A0.9700C18—C191.530 (4)
C3—H3B0.9700C18—H180.9800
C4—C61.534 (4)C19—C211.542 (4)
C4—H4A0.9700C19—H19A0.9700
C4—H4B0.9700C19—H19B0.9700
C5—C111.551 (3)C20—C221.522 (4)
C5—H5A0.9700C20—H20A0.9700
C5—H5B0.9700C20—H20B0.9700
C6—C101.527 (4)C21—C241.519 (4)
C6—C71.527 (4)C21—C231.531 (3)
C6—H60.9800C22—C231.527 (4)
C7—C81.521 (4)C22—H220.9800
C7—H7A0.9700C23—H23A0.9700
C7—H7B0.9700C23—H23B0.9700
C8—C91.530 (3)C24—O81.242 (3)
C8—H80.9800C24—O71.257 (3)
C9—C111.534 (3)O1—Mg1i1.9223 (19)
C9—H9A0.9700O2—Mg2iii1.971 (2)
C9—H9B0.9700O5—Mg2v2.1739 (17)
C10—C111.533 (3)O6—Mg2v2.1147 (19)
C10—H10A0.9700O7—Mg1ii1.919 (2)
C10—H10B0.9700O8—Mg2ii1.969 (2)
C11—C121.508 (3)Mg2—C13iv2.502 (2)
C12—O31.235 (3)Mg2—Mg13.5419 (11)
C12—O41.295 (3)Mg2—Mg1iv3.5463 (11)
C12—Mg22.497 (3)Mg1—Mg2v3.5463 (11)
O1i—Mg1—O4111.03 (9)C21—C16—C14109.82 (19)
O1i—Mg1—O5104.53 (8)C21—C16—H16A109.7
O4—Mg1—O5112.92 (8)C14—C16—H16A109.7
O7ii—Mg1—O1i111.52 (10)C21—C16—H16B109.7
O7ii—Mg1—O4104.95 (8)C14—C16—H16B109.7
O7ii—Mg1—O5112.07 (9)H16A—C16—H16B108.2
O2iii—Mg2—O389.61 (9)C14—C17—C18110.0 (2)
O2iii—Mg2—O493.73 (8)C14—C17—H17A109.7
O2iii—Mg2—O5iv96.04 (8)C18—C17—H17A109.7
O3—Mg2—O460.72 (7)C14—C17—H17B109.7
O3—Mg2—O5iv108.79 (7)C18—C17—H17B109.7
O5iv—Mg2—O6iv60.59 (7)H17A—C17—H17B108.2
O6iv—Mg2—O392.72 (8)C20—C18—C19110.2 (2)
O6iv—Mg2—O4108.27 (7)C20—C18—C17109.3 (2)
O8ii—Mg2—O2iii96.80 (11)C19—C18—C17108.7 (2)
O8ii—Mg2—O495.76 (8)C20—C18—H18109.5
O8ii—Mg2—O5iv93.49 (8)C19—C18—H18109.5
O8ii—Mg2—O6iv90.71 (9)C17—C18—H18109.5
O2—C1—O1123.2 (2)C18—C19—C21109.8 (2)
O2—C1—C2118.1 (2)C18—C19—H19A109.7
O1—C1—C2118.6 (2)C21—C19—H19A109.7
C1—C2—C3111.8 (2)C18—C19—H19B109.7
C1—C2—C5110.1 (2)C21—C19—H19B109.7
C3—C2—C5109.7 (2)H19A—C19—H19B108.2
C1—C2—C4107.3 (2)C18—C20—C22109.8 (2)
C3—C2—C4109.1 (2)C18—C20—H20A109.7
C5—C2—C4108.7 (2)C22—C20—H20A109.7
C8—C3—C2110.3 (2)C18—C20—H20B109.7
C8—C3—H3A109.6C22—C20—H20B109.7
C2—C3—H3A109.6H20A—C20—H20B108.2
C8—C3—H3B109.6C24—C21—C23112.0 (2)
C2—C3—H3B109.6C24—C21—C16109.7 (2)
H3A—C3—H3B108.1C23—C21—C16109.1 (2)
C6—C4—C2109.7 (2)C24—C21—C19108.1 (2)
C6—C4—H4A109.7C23—C21—C19109.0 (2)
C2—C4—H4A109.7C16—C21—C19108.8 (2)
C6—C4—H4B109.7C20—C22—C23109.7 (2)
C2—C4—H4B109.7C20—C22—C15109.6 (2)
H4A—C4—H4B108.2C23—C22—C15109.2 (2)
C2—C5—C11109.7 (2)C20—C22—H22109.4
C2—C5—H5A109.7C23—C22—H22109.4
C11—C5—H5A109.7C15—C22—H22109.4
C2—C5—H5B109.7C22—C23—C21110.3 (2)
C11—C5—H5B109.7C22—C23—H23A109.6
H5A—C5—H5B108.2C21—C23—H23A109.6
C10—C6—C7109.4 (2)C22—C23—H23B109.6
C10—C6—C4108.5 (2)C21—C23—H23B109.6
C7—C6—C4110.2 (2)H23A—C23—H23B108.1
C10—C6—H6109.6O8—C24—O7122.9 (3)
C7—C6—H6109.6O8—C24—C21118.1 (2)
C4—C6—H6109.6O7—C24—C21119.0 (2)
C8—C7—C6110.0 (2)C1—O1—Mg1i135.88 (18)
C8—C7—H7A109.7C1—O2—Mg2iii141.11 (18)
C6—C7—H7A109.7C12—O3—Mg292.54 (16)
C8—C7—H7B109.7C12—O4—Mg1152.84 (16)
C6—C7—H7B109.7C12—O4—Mg288.41 (14)
H7A—C7—H7B108.2Mg1—O4—Mg2118.67 (9)
C7—C8—C3109.6 (2)C13—O5—Mg1152.80 (16)
C7—C8—C9109.4 (2)C13—O5—Mg2v88.52 (13)
C3—C8—C9109.3 (2)Mg1—O5—Mg2v118.65 (8)
C7—C8—H8109.5C13—O6—Mg2v92.88 (15)
C3—C8—H8109.5C24—O7—Mg1ii135.40 (19)
C9—C8—H8109.5C24—O8—Mg2ii141.77 (19)
C8—C9—C11109.8 (2)O2iii—Mg2—O6iv155.94 (9)
C8—C9—H9A109.7O8ii—Mg2—O3156.07 (9)
C11—C9—H9A109.7O4—Mg2—O5iv165.66 (8)
C8—C9—H9B109.7O8ii—Mg2—C12126.99 (9)
C11—C9—H9B109.7O2iii—Mg2—C1289.87 (9)
H9A—C9—H9B108.2O6iv—Mg2—C12103.79 (8)
C6—C10—C11110.2 (2)O3—Mg2—C1229.61 (7)
C6—C10—H10A109.6O4—Mg2—C1231.23 (7)
C11—C10—H10A109.6O5iv—Mg2—C12138.13 (8)
C6—C10—H10B109.6O8ii—Mg2—C13iv90.58 (9)
C11—C10—H10B109.6O2iii—Mg2—C13iv127.17 (9)
H10A—C10—H10B108.1O6iv—Mg2—C13iv29.53 (7)
C12—C11—C10110.42 (19)O3—Mg2—C13iv103.87 (8)
C12—C11—C9110.60 (19)O4—Mg2—C13iv137.56 (8)
C10—C11—C9110.1 (2)O5iv—Mg2—C13iv31.17 (7)
C12—C11—C5108.78 (19)C12—Mg2—C13iv125.61 (8)
C10—C11—C5108.1 (2)O8ii—Mg2—Mg167.01 (6)
C9—C11—C5108.76 (19)O2iii—Mg2—Mg195.26 (7)
O3—C12—O4117.9 (2)O6iv—Mg2—Mg1108.69 (6)
O3—C12—C11122.1 (2)O3—Mg2—Mg189.51 (5)
O4—C12—C11120.1 (2)O4—Mg2—Mg128.79 (5)
O3—C12—Mg257.84 (13)O5iv—Mg2—Mg1158.50 (6)
O4—C12—Mg260.36 (12)C12—Mg2—Mg160.01 (6)
C11—C12—Mg2173.50 (17)C13iv—Mg2—Mg1134.81 (6)
O6—C13—O5117.6 (2)O8ii—Mg2—Mg1iv94.73 (7)
O6—C13—C14122.2 (2)O2iii—Mg2—Mg1iv67.30 (6)
O5—C13—C14120.2 (2)O6iv—Mg2—Mg1iv89.38 (5)
O6—C13—Mg2v57.60 (13)O3—Mg2—Mg1iv108.98 (6)
O5—C13—Mg2v60.31 (12)O4—Mg2—Mg1iv159.29 (6)
C14—C13—Mg2v173.55 (17)O5iv—Mg2—Mg1iv28.80 (5)
C13—C14—C17110.6 (2)C12—Mg2—Mg1iv135.26 (6)
C13—C14—C15110.06 (19)C13iv—Mg2—Mg1iv59.96 (6)
C17—C14—C15109.9 (2)Mg1—Mg2—Mg1iv153.78 (4)
C13—C14—C16108.55 (19)O7ii—Mg1—Mg272.41 (6)
C17—C14—C16108.59 (19)O1i—Mg1—Mg2123.81 (7)
C15—C14—C16109.10 (19)O4—Mg1—Mg232.54 (5)
C14—C15—C22109.5 (2)O5—Mg1—Mg2126.52 (6)
C14—C15—H15A109.8O7ii—Mg1—Mg2v124.43 (7)
C22—C15—H15A109.8O1i—Mg1—Mg2v71.99 (6)
C14—C15—H15B109.8O4—Mg1—Mg2v126.12 (6)
C22—C15—H15B109.8O5—Mg1—Mg2v32.54 (5)
H15A—C15—H15B108.2Mg2—Mg1—Mg2v153.78 (4)
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z; (iii) x+1, y, z+1; (iv) x+1, y, z; (v) x1, y, z.

Experimental details

Crystal data
Chemical formula[Mg2(C12H14O4)2]
Mr246.5
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)6.9034 (2), 11.3549 (4), 15.3196 (6)
α, β, γ (°)70.713 (4), 83.131 (3), 89.141 (3)
V3)1124.95 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.15
Crystal size (mm)0.3 × 0.1 × 0.05
Data collection
DiffractometerOxford Xcalibur Atlas Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.979, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
28700, 4605, 3157
Rint0.061
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.154, 1.02
No. of reflections4605
No. of parameters307
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.46, 0.28

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Burnett & Johnson, 1996) and CrystalMaker (Palmer, 2009).

Selected geometric parameters (Å, º) top
Mg1—O1i1.922 (2)Mg2—O32.116 (2)
Mg1—O41.9443 (18)Mg2—O42.1713 (17)
Mg1—O51.9470 (18)Mg2—O5iv2.1739 (17)
Mg1—O7ii1.919 (2)Mg2—O6iv2.1147 (19)
Mg2—O2iii1.971 (2)Mg2—O8ii1.969 (2)
O1i—Mg1—O4111.03 (9)O3—Mg2—O460.72 (7)
O1i—Mg1—O5104.53 (8)O3—Mg2—O5iv108.79 (7)
O4—Mg1—O5112.92 (8)O5iv—Mg2—O6iv60.59 (7)
O7ii—Mg1—O1i111.52 (10)O6iv—Mg2—O392.72 (8)
O7ii—Mg1—O4104.95 (8)O6iv—Mg2—O4108.27 (7)
O7ii—Mg1—O5112.07 (9)O8ii—Mg2—O2iii96.80 (11)
O2iii—Mg2—O389.61 (9)O8ii—Mg2—O495.76 (8)
O2iii—Mg2—O493.73 (8)O8ii—Mg2—O5iv93.49 (8)
O2iii—Mg2—O5iv96.04 (8)O8ii—Mg2—O6iv90.71 (9)
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z; (iii) x+1, y, z+1; (iv) x+1, y, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds