Download citation
Download citation
link to html
In the title compound (systematic name: 6-benzylamino-7H-purin-3-ium p-toluene­sulfonate), C12H12N5+·C7H7O3S, the adenine moiety exists as the N3-protonated N7—H tautomer. The dihedral angle between the adenine ring system and the phenyl ring is 82.76 (11)°. Two of the sulfonate O atoms form C—H...O and N—H...O hydrogen bonds with the H atoms on the N and C atoms in the 3- and 8-positions, respectively, of the adenine moiety, leading to a zigzag chain. Two anti­parallel zigzag chains are linked by the remaining sulfonate O atom through Hoogsteen-site H atoms (i.e. those on the N atoms in the 6- and 7-positions) of the adenine moiety, leading to a double chain. An annulus formed by a pair of inversion-related anions and cations has been identified. An intra­molecular toluene­sulfonate–phenyl C—H...π inter­action is also present.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270111013424/bm3103sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270111013424/bm3103Isup2.hkl
Contains datablock I

CCDC reference: 829722

Comment top

N6-Substituted aminopurine compounds such as N6-furfuryladenine (FA), N6-benzyladenine (BA) and trans-zeatin are plant hormones classified under the name of cytokinins. They are responsible for proliferation, growth regulation, antioxidance, mutation, enzyme inhibition etc. in plant cells (Francis & Sorrell, 2001). The cyclin-dependent kinases (CDK) are important functional enzymes controlled by cytokinins during apoptosis, neuronal stimulations and transcription. These kinases are influenced particularly by 2,9-substituted cytokinins (Trávníček & Kryštof, 2004). BA enhances the apical dominance, flowering and sometimes causes heterogeneity and inhibition of rooting and growth (Trávníček et al., 2004). BA derivatives are used in neurological, antitumour and parasitic treatments (Bressi et al., 2000; Haung et al., 2007). Some of the bimetallic BA compounds mimic superoxide dismutase (SOD) and have antidiabetic activity (Dvorák et al., 2010).

The asymmetric unit of the title compound, (I), consists of one benzyladeninium cation (BAH+) and one toluenesulfonate anion (Fig. 1, Table 1). BAH+ exists as the N3-protonated N7—H tautomer as reported earlier (Umadevi et al., 2001; Nirmalram et al., 2011; Balasubramanian et al., 1996), in contrast to adenine systems where the N9—H tautomer predominates and the protonation site is N1 (Ślósarek et al., 2006). The N3 protonation of the base is confirmed from the C2—N3—C4 bond angle of 116.9 (2)°, which is wider than the value of 110.7 (2)° in neutral BA (Raghunathan et al., 1983). The dihedral angle between the benzyl substituent and the adenine ring system is 82.76 (11)°. The free N1 position, the dihedral angle of ca 80° and the distal orientation of the N6 substituent with respect to N7 are important requisites for cytokinin activity, and these features also occur in the title crystal structure.

The crystal structure of (I) comprises a three-dimensional network of N—H···O, C—H···O, C—H···π and ππ interactions which gives rise to the following supramolecular patterns. In the toluenesulfonate anion, all sulfonate O atoms act as hydrogen-bond acceptors: one (O3) forms an N—H···O hydrogen bond with the protonated N3 hydrogen of a BAH+ cation; O2 forms a C—H···O hydrogen bond with the acidic C8 hydrogen of adjacent BAH+, leading to a zigzag supramolecular chain of graph-set notation C22(9) (Fig. 2). This chain is crosslinked with an antiparallel one: the remaining oxygen of the sulfonate (O1) forms N—H···O hydrogen bonds to the Hoogsteen-site H atoms of adenine (N6—H and N7—H), forming a double chain (Fig. 3) and an R21(7) motif. This motif has been recently identified in cobalt complexes of the N6-furfuryladenine cation and N6-benzyladenine cation (Tamilselvi & Muthiah, 2010).

Because of the interplay of double chains, two inversion-related BAH+ cations and two inversion-related sulfonate anions a supramolecular annulus (Fig. 4) is formed. In this annulus the inversion-related purine rings (N1, C2, N3, C4, C5, C6, N7, C8 and N9) and [N1i–N9i; symmetry code: (i) -x+1, -y, -z+1] adopt an antiparallel stacking arrangment through face-to-face (ππ) interaction with the corresponding Cg···Cg distance of 3.377 (s.u.??) Å. The interplanar distance between stacked purine rings is 3.330 (s.u.??) Å. These values are well within the range reported earlier (Garcia-Teran et al., 2004; [##AUTHOR: Add reference to list] Verma et al., 2010). Two annuli are connected by an R44(14) motif. An edge-to-face (C—H···π) interaction is observed between C18—H18 of the toluenesulfonate and the C11–C16 phenyl ring of BAH+, with a H18···Cg distance of 2.86 Å and an C18—H18···Cg angle of 162° (Wang et al., 2007). The double chains are linked by a ππ stacking interaction between the toluenesulfonate phenyl ring and the pyrimidine ring with a Cg···Cg distance of 3.6127 (15) Å (Verma et al., 2010). [##AUTHOR: Are "Verma et al., 2009" and "Verma et al., 2010" different references, or is this a simple mistake?]

Related literature top

For related literature, see: Tamilselvi & Muthiah (2010); Balasubramanian et al. (1996); Bressi et al. (2000); Dvorák et al. (2010); Haung et al. (2007); Nirmalram et al. (2011); Raghunathan et al. (1983); Trávníček & Kryštof (2004); Trávníček et al. (2004); Umadevi et al. (2001); Verma et al. (2010); Wang et al. (2007).

Experimental top

N6-Benzyladenine (56.3 mg, 0.25 mmol) was dissolved in methanol (20 ml). p-Toluenesulfonic acid (47.4 mg, 0.25 mmol) was dissolved in ethanol (20 ml). The solutions were mixed and heated for 30 min over a water bath. Colourless, needle-shaped crystals of (I) appeared after a few days of evaporation at room temperature.

Refinement top

##AUTHOR: Please check rewording. Methyl H atoms were located in a difference Fourier synthesis and subsequently idealized and refined as a rigid rotating group, with C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C). Other C-bonded H atoms were placed in idealized positions and constrained to ride on their parent atoms, with C—H = 0.93 (aromatic) and 0.97Å (methylene), and with Uiso(H) = 1.2Ueq(C). All N-bonded H atoms were placed in idealized positions and constrained to ride 0.86 Å from their parent atoms, with Uiso(H) = 1.2Ueq(N).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. A view of the components of (I), with ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. A view of the structure of (I), showing the double chains formed by two C22(9) chains. H atoms not involved in hydrogen bonding have been omitted for clarity.
[Figure 3] Fig. 3. A view of a double chain illustrating the R44(14) motif and C—H···π interaction.
[Figure 4] Fig. 4. A view of one annulus showing the antiparallel stacking of purine moieties. ##AUTHOR: Please check slightly changed Figure captions. Having the Scheme in the same orientation as Figure 1 would be beneficial.
6-benzylamino-7H-purin-3-ium p-toluenesulfonate top
Crystal data top
C12H12N5+·C7H7O3SZ = 2
Mr = 397.46F(000) = 416
Triclinic, P1Dx = 1.401 Mg m3
Dm = 1.40 Mg m3
Dm measured by ?
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.5741 (10) ÅCell parameters from 6129 reflections
b = 9.9089 (11) Åθ = 1.8–32.6°
c = 11.3324 (12) ŵ = 0.20 mm1
α = 99.957 (6)°T = 296 K
β = 90.886 (7)°Needle, colourless
γ = 116.562 (6)°0.12 × 0.10 × 0.08 mm
V = 941.87 (18) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
6129 independent reflections
Radiation source: fine-focus sealed tube3345 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.063
ϕ and ω scansθmax = 32.6°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1414
Tmin = 0.976, Tmax = 0.984k = 1414
17454 measured reflectionsl = 1617
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.210H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.1215P)2]
where P = (Fo2 + 2Fc2)/3
6129 reflections(Δ/σ)max < 0.001
254 parametersΔρmax = 0.65 e Å3
0 restraintsΔρmin = 0.65 e Å3
Crystal data top
C12H12N5+·C7H7O3Sγ = 116.562 (6)°
Mr = 397.46V = 941.87 (18) Å3
Triclinic, P1Z = 2
a = 9.5741 (10) ÅMo Kα radiation
b = 9.9089 (11) ŵ = 0.20 mm1
c = 11.3324 (12) ÅT = 296 K
α = 99.957 (6)°0.12 × 0.10 × 0.08 mm
β = 90.886 (7)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
6129 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3345 reflections with I > 2σ(I)
Tmin = 0.976, Tmax = 0.984Rint = 0.063
17454 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.210H-atom parameters constrained
S = 0.97Δρmax = 0.65 e Å3
6129 reflectionsΔρmin = 0.65 e Å3
254 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.2288 (2)0.0368 (2)0.42733 (18)0.0461 (6)
N30.3802 (2)0.1331 (2)0.31236 (17)0.0454 (6)
N60.3323 (2)0.2193 (2)0.52475 (16)0.0435 (5)
N70.63621 (19)0.2555 (2)0.40766 (16)0.0418 (5)
N90.6483 (2)0.0534 (2)0.29301 (17)0.0487 (6)
C20.2491 (3)0.1469 (3)0.3612 (2)0.0498 (7)
C40.5046 (2)0.0095 (2)0.33370 (18)0.0383 (6)
C50.4926 (2)0.1308 (2)0.40451 (17)0.0365 (6)
C60.3506 (2)0.1085 (2)0.45389 (17)0.0370 (6)
C80.7234 (3)0.2026 (3)0.3408 (2)0.0485 (7)
C100.1829 (2)0.1985 (3)0.5686 (2)0.0533 (7)
C110.2069 (2)0.2994 (2)0.69131 (19)0.0420 (6)
C120.2777 (3)0.2814 (3)0.7901 (2)0.0551 (8)
C130.2901 (3)0.3676 (4)0.9033 (2)0.0677 (10)
C140.2287 (4)0.4700 (3)0.9185 (3)0.0678 (10)
C150.1586 (3)0.4889 (3)0.8214 (2)0.0605 (9)
C160.1493 (3)0.4058 (3)0.7077 (2)0.0482 (7)
S10.75070 (6)0.54293 (6)0.68482 (5)0.0417 (2)
O10.64140 (19)0.49619 (18)0.57668 (14)0.0533 (5)
O20.90639 (19)0.5751 (2)0.65570 (18)0.0692 (7)
O30.6900 (3)0.4334 (2)0.76371 (17)0.0684 (7)
C170.7570 (2)0.7154 (2)0.76547 (17)0.0375 (6)
C180.6204 (3)0.7118 (3)0.8061 (2)0.0475 (7)
C190.6254 (3)0.8448 (3)0.8732 (2)0.0555 (9)
C200.7627 (4)0.9811 (3)0.9006 (2)0.0562 (9)
C210.8965 (4)0.9819 (3)0.8572 (3)0.0695 (9)
C220.8957 (3)0.8505 (3)0.7899 (2)0.0552 (8)
C230.7662 (5)1.1244 (4)0.9762 (3)0.0905 (14)
H20.164100.244800.346600.0600*
H30.385300.211000.269400.0550*
H60.412700.308100.546100.0520*
H70.664800.348700.444800.0500*
H80.826900.265100.329300.0580*
H10A0.120300.091400.573500.0640*
H10B0.125700.223700.511900.0640*
H120.317600.210500.780700.0660*
H130.340200.356200.969100.0810*
H140.234900.526300.994800.0810*
H150.116800.558200.831800.0730*
H160.103800.421700.641700.0580*
H180.526400.621200.788700.0570*
H190.533400.842300.900600.0670*
H210.990001.073100.873400.0830*
H220.987500.853500.761700.0660*
H23A0.863501.212100.971100.1360*
H23B0.757101.113101.058600.1360*
H23C0.680301.138900.947000.1360*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0402 (9)0.0340 (9)0.0549 (11)0.0115 (7)0.0039 (8)0.0019 (8)
N30.0544 (11)0.0292 (9)0.0493 (10)0.0192 (8)0.0011 (8)0.0004 (7)
N60.0390 (9)0.0341 (9)0.0487 (10)0.0122 (7)0.0096 (7)0.0012 (7)
N70.0409 (9)0.0301 (8)0.0485 (10)0.0127 (7)0.0098 (7)0.0030 (7)
N90.0562 (11)0.0407 (10)0.0505 (11)0.0244 (9)0.0127 (9)0.0057 (8)
C20.0474 (12)0.0313 (11)0.0589 (14)0.0105 (9)0.0012 (10)0.0014 (9)
C40.0474 (11)0.0316 (10)0.0363 (10)0.0189 (8)0.0038 (8)0.0053 (8)
C50.0410 (10)0.0307 (10)0.0352 (10)0.0149 (8)0.0033 (8)0.0046 (7)
C60.0388 (10)0.0317 (9)0.0363 (10)0.0132 (7)0.0017 (8)0.0046 (7)
C80.0472 (12)0.0415 (12)0.0554 (13)0.0193 (10)0.0162 (10)0.0078 (10)
C100.0369 (11)0.0501 (13)0.0595 (14)0.0140 (9)0.0074 (10)0.0060 (11)
C110.0324 (9)0.0365 (11)0.0501 (12)0.0115 (8)0.0098 (8)0.0030 (9)
C120.0530 (13)0.0518 (14)0.0645 (16)0.0268 (11)0.0092 (11)0.0136 (12)
C130.0725 (18)0.075 (2)0.0500 (15)0.0274 (15)0.0013 (12)0.0170 (13)
C140.0821 (19)0.0573 (17)0.0495 (15)0.0239 (14)0.0149 (13)0.0032 (12)
C150.0688 (16)0.0466 (14)0.0652 (17)0.0298 (12)0.0124 (13)0.0009 (12)
C160.0460 (12)0.0448 (12)0.0515 (13)0.0201 (10)0.0053 (10)0.0060 (10)
S10.0430 (3)0.0298 (3)0.0471 (3)0.0162 (2)0.0001 (2)0.0037 (2)
O10.0569 (10)0.0430 (9)0.0503 (9)0.0219 (7)0.0095 (7)0.0110 (7)
O20.0451 (9)0.0602 (12)0.0951 (14)0.0284 (8)0.0039 (9)0.0146 (10)
O30.1106 (15)0.0331 (9)0.0596 (11)0.0332 (9)0.0112 (10)0.0032 (8)
C170.0426 (10)0.0307 (10)0.0361 (10)0.0163 (8)0.0007 (8)0.0006 (7)
C180.0473 (12)0.0414 (12)0.0547 (13)0.0223 (10)0.0047 (10)0.0059 (10)
C190.0712 (16)0.0576 (16)0.0533 (14)0.0433 (13)0.0132 (12)0.0098 (12)
C200.0911 (19)0.0431 (13)0.0402 (12)0.0387 (13)0.0078 (12)0.0003 (9)
C210.0762 (18)0.0341 (12)0.0686 (17)0.0069 (11)0.0080 (14)0.0109 (11)
C220.0485 (12)0.0369 (12)0.0626 (15)0.0106 (9)0.0086 (11)0.0088 (10)
C230.152 (3)0.060 (2)0.0673 (19)0.062 (2)0.016 (2)0.0067 (15)
Geometric parameters (Å, º) top
S1—O11.4636 (18)C15—C161.382 (3)
S1—O21.435 (2)C2—H20.9300
S1—O31.4500 (19)C8—H80.9300
S1—C171.768 (2)C10—H10A0.9700
N1—C61.364 (3)C10—H10B0.9700
N1—C21.304 (3)C12—H120.9300
N3—C21.340 (4)C13—H130.9300
N3—C41.357 (3)C14—H140.9300
N6—C101.459 (3)C15—H150.9300
N6—C61.324 (3)C16—H160.9300
N7—C81.349 (3)C17—C181.381 (4)
N7—C51.372 (3)C17—C221.379 (3)
N9—C41.360 (3)C18—C191.383 (4)
N9—C81.325 (3)C19—C201.380 (4)
N3—H30.8600C20—C211.377 (6)
N6—H60.8600C20—C231.512 (5)
N7—H70.8600C21—C221.387 (4)
C4—C51.377 (3)C18—H180.9300
C5—C61.417 (3)C19—H190.9300
C10—C111.513 (3)C21—H210.9300
C11—C161.380 (4)C22—H220.9300
C11—C121.378 (3)C23—H23A0.9600
C12—C131.384 (3)C23—H23B0.9600
C13—C141.372 (5)C23—H23C0.9600
C14—C151.363 (4)
S1···H63.1900C8···C15ii3.594 (4)
S1···H72.9100C15···C8ii3.594 (4)
S1···H3i3.0900C16···C2vii3.493 (4)
O1···N72.770 (2)C18···C5ii3.466 (3)
O1···O1ii3.231 (3)C19···C5ii3.411 (3)
O1···N6ii3.135 (2)C19···C4ii3.438 (3)
O1···N62.959 (3)C12···H21viii2.9000
O2···C8iii3.225 (4)C12···H63.0700
O3···N3i2.712 (3)C13···H21viii3.0000
O3···C2i3.243 (4)C13···H183.0400
O1···H71.9900C14···H183.1000
O1···H62.1200C16···H2vii2.6900
O1···H6ii2.7900C18···H13v2.8100
O2···H8iii2.3100C19···H13v3.0100
O2···H16iv2.9000H2···C16vii2.6900
O2···H222.5600H2···H16vii2.4000
O2···H15iv2.8900H3···O3i1.9500
O3···H14v2.7300H3···S1i3.0900
O3···H182.9000H6···O12.1200
O3···H3i1.9500H6···N72.8500
N3···O3i2.712 (3)H6···H72.5900
N3···C5i3.407 (3)H6···O1ii2.7900
N6···N73.116 (3)H6···C123.0700
N6···O1ii3.135 (2)H6···S13.1900
N6···O12.959 (3)H7···O11.9900
N7···O12.770 (2)H7···H62.5900
N7···N92.241 (3)H7···S12.9100
N7···N63.116 (3)H8···O2iii2.3100
N7···C2i3.342 (3)H10A···H10Avii2.5400
N9···N72.241 (3)H10A···N12.4400
N1···H10A2.4400H10B···H162.3300
N6···H122.9200H12···N9i2.7700
N7···H62.8500H12···N62.9200
N9···H12i2.7700H13···C18v2.8100
N9···H23Bvi2.9300H13···C19v3.0100
C2···O3i3.243 (4)H14···O3v2.7300
C2···N7i3.342 (3)H15···O2ix2.8900
C2···C5i3.534 (3)H16···O2ix2.9000
C2···C16vii3.493 (4)H16···H10B2.3300
C2···C8i3.539 (3)H16···H2vii2.4000
C4···C6i3.377 (3)H18···O32.9000
C4···C19ii3.438 (3)H18···C133.0400
C4···C5i3.492 (3)H18···C143.1000
C5···C4i3.492 (3)H19···H23C2.5800
C5···C18ii3.466 (3)H21···C12x2.9000
C5···C19ii3.411 (3)H21···C13x3.0000
C5···C2i3.534 (3)H21···H23A2.3700
C5···N3i3.407 (3)H22···O22.5600
C6···C4i3.377 (3)H23A···H212.3700
C8···O2iii3.225 (4)H23B···N9xi2.9300
C8···C2i3.539 (3)H23C···H192.5800
O2—S1—O3113.68 (15)N7—C8—H8123.00
O2—S1—C17108.10 (10)N6—C10—H10B109.00
O3—S1—C17105.49 (11)C11—C10—H10A109.00
O1—S1—C17105.96 (10)N6—C10—H10A109.00
O1—S1—O2111.84 (11)H10A—C10—H10B108.00
O1—S1—O3111.22 (12)C11—C10—H10B109.00
C2—N1—C6119.3 (2)C11—C12—H12120.00
C2—N3—C4116.9 (2)C13—C12—H12120.00
C6—N6—C10123.38 (19)C12—C13—H13120.00
C5—N7—C8106.15 (19)C14—C13—H13120.00
C4—N9—C8103.0 (2)C15—C14—H14120.00
C2—N3—H3122.00C13—C14—H14120.00
C4—N3—H3122.00C14—C15—H15120.00
C10—N6—H6118.00C16—C15—H15120.00
C6—N6—H6118.00C15—C16—H16120.00
C5—N7—H7127.00C11—C16—H16120.00
C8—N7—H7127.00S1—C17—C18118.62 (16)
N1—C2—N3126.5 (2)S1—C17—C22121.04 (18)
N3—C4—N9128.11 (19)C18—C17—C22120.3 (2)
N9—C4—C5112.12 (17)C17—C18—C19119.0 (2)
N3—C4—C5119.77 (19)C18—C19—C20122.0 (3)
N7—C5—C4104.87 (18)C19—C20—C21117.7 (3)
N7—C5—C6134.58 (18)C19—C20—C23121.1 (3)
C4—C5—C6120.54 (17)C21—C20—C23121.2 (3)
N1—C6—N6119.44 (19)C20—C21—C22121.8 (3)
N1—C6—C5116.95 (18)C17—C22—C21119.2 (3)
N6—C6—C5123.60 (18)C17—C18—H18120.00
N7—C8—N9113.9 (2)C19—C18—H18120.00
N6—C10—C11111.51 (19)C18—C19—H19119.00
C10—C11—C16120.2 (2)C20—C19—H19119.00
C10—C11—C12121.2 (2)C20—C21—H21119.00
C12—C11—C16118.5 (2)C22—C21—H21119.00
C11—C12—C13120.7 (3)C17—C22—H22120.00
C12—C13—C14120.0 (3)C21—C22—H22120.00
C13—C14—C15119.8 (3)C20—C23—H23A109.00
C14—C15—C16120.4 (3)C20—C23—H23B109.00
C11—C16—C15120.5 (2)C20—C23—H23C109.00
N1—C2—H2117.00H23A—C23—H23B109.00
N3—C2—H2117.00H23A—C23—H23C109.00
N9—C8—H8123.00H23B—C23—H23C109.00
O3—S1—C17—C22122.2 (2)N7—C5—C6—N1178.5 (2)
O3—S1—C17—C1856.4 (2)N7—C5—C6—N62.8 (4)
O1—S1—C17—C1861.60 (19)C4—C5—C6—N6178.47 (19)
O2—S1—C17—C18178.37 (18)C4—C5—C6—N10.3 (3)
O1—S1—C17—C22119.77 (19)N6—C10—C11—C1262.6 (3)
O2—S1—C17—C220.3 (2)N6—C10—C11—C16121.3 (2)
C2—N1—C6—N6177.4 (2)C10—C11—C12—C13175.9 (3)
C6—N1—C2—N31.3 (4)C12—C11—C16—C151.9 (4)
C2—N1—C6—C51.4 (3)C16—C11—C12—C130.3 (4)
C4—N3—C2—N10.0 (4)C10—C11—C16—C15174.3 (2)
C2—N3—C4—N9178.8 (2)C11—C12—C13—C141.4 (5)
C2—N3—C4—C51.1 (3)C12—C13—C14—C151.4 (5)
C10—N6—C6—C5175.60 (19)C13—C14—C15—C160.1 (5)
C6—N6—C10—C11149.0 (2)C14—C15—C16—C111.8 (4)
C10—N6—C6—N15.7 (3)S1—C17—C18—C19177.57 (18)
C8—N7—C5—C6179.2 (2)C22—C17—C18—C191.1 (3)
C8—N7—C5—C40.3 (2)S1—C17—C22—C21177.7 (2)
C5—N7—C8—N90.6 (3)C18—C17—C22—C210.9 (4)
C8—N9—C4—C50.4 (2)C17—C18—C19—C200.1 (4)
C8—N9—C4—N3179.7 (2)C18—C19—C20—C210.9 (4)
C4—N9—C8—N70.6 (3)C18—C19—C20—C23178.8 (3)
N9—C4—C5—N70.1 (2)C19—C20—C21—C221.1 (4)
N3—C4—C5—N7180.00 (19)C23—C20—C21—C22178.6 (3)
N3—C4—C5—C60.9 (3)C20—C21—C22—C170.2 (4)
N9—C4—C5—C6178.99 (18)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+1; (iii) x+2, y+1, z+1; (iv) x+1, y, z; (v) x+1, y+1, z+2; (vi) x, y1, z1; (vii) x, y, z+1; (viii) x1, y1, z; (ix) x1, y, z; (x) x+1, y+1, z; (xi) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O3i0.861.952.712 (3)147
N6—H6···O10.862.122.959 (3)165
N7—H7···O10.861.992.770 (2)150
C8—H8···O2iii0.932.313.225 (4)168
C10—H10A···N10.972.442.800 (3)102
C22—H22···O20.932.562.931 (3)104
Symmetry codes: (i) x+1, y, z+1; (iii) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC12H12N5+·C7H7O3S
Mr397.46
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)9.5741 (10), 9.9089 (11), 11.3324 (12)
α, β, γ (°)99.957 (6), 90.886 (7), 116.562 (6)
V3)941.87 (18)
Z2
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.12 × 0.10 × 0.08
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.976, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
17454, 6129, 3345
Rint0.063
(sin θ/λ)max1)0.758
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.210, 0.97
No. of reflections6129
No. of parameters254
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.65, 0.65

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Selected geometric parameters (Å, º) top
S1—O11.4636 (18)N6—C101.459 (3)
S1—O21.435 (2)N6—C61.324 (3)
S1—O31.4500 (19)N7—C81.349 (3)
N1—C21.304 (3)N7—C51.372 (3)
N3—C21.340 (4)
O1—S1—C17105.96 (10)C6—N6—C10123.38 (19)
O1—S1—O2111.84 (11)C5—N7—C8106.15 (19)
O1—S1—O3111.22 (12)C4—N9—C8103.0 (2)
C2—N1—C6119.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O3i0.86001.95002.712 (3)147.00
N6—H6···O10.86002.12002.959 (3)165.00
N7—H7···O10.86001.99002.770 (2)150.00
C8—H8···O2ii0.93002.31003.225 (4)168.00
Symmetry codes: (i) x+1, y, z+1; (ii) x+2, y+1, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds