Download citation
Download citation
link to html
The new asymmetric ligand 2-{5-[(pyridin-4-yl­methyl)­sul­fan­yl]-1,3,4-oxadiazol-3-yl}phenol (HL) has been used to synthesize the novel discrete title binuclear metallocycle, [Cu2(C14H10N3O2S)2(C5H7O2)2] or Cu2L2(acac)2 (acac is acetyl­acetonate). Each CuII centre is five-coordinate and adopts a square-pyramidal geometry. Two ligands are connected by two CuII cations to form the dinuclear metallocycle, which lies across a crystallographic inversion centre. Discrete mol­ecules are linked into a two-dimensional structure through weak Cu...S, C—H...π and π–π inter­actions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270111006640/bm3100sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270111006640/bm3100Isup2.hkl
Contains datablock I

CCDC reference: 824031

Comment top

Increasing effort is currently being devoted to research into supramolecular compounds, which have been widely used in molecular absorption and separation (Rowsell & Yaghi, 2005; Noro et al., 2010), heterogenous catalysis (Dang et al., 2010), magnetism (Maspoch et al., 2004) and luminescent materials (Ono et al., 2009). Many high-dimensional supramolecular networks, extended from low-dimensional molecules, have been successfully constructed through various intermolecular interactions. These interactions are fundamental for the tuning and prediction of crystal structures (Goswami et al., 2007). Over recent decades, weak Cu···S (Breneman & Parker, 1993), C—H···π (Munshi et al., 2004) and ππ (Khavasi & Fard, 2010) interactions have attracted great attention as they all have a dramatic effect on molecular packing features.

In order to investigate these three weak intermolecular interactions further, we have prepared a new asymmetric ligand, 2-(4-pyridylmethylthio)-5-(2-hydroxylphenyl)-1,3,4-oxadiazole (L), and synthesized the title complex, Cu2L2(acac)2, (I), from it. Complex (I) is a discrete binuclear metallocycle. It is soluble in common organic solvents such as chloroform, acetone and N,N-dimethylformamide.

Complex (I) crystallizes in the triclinic space group P1 with one five-coordinated CuII centre in the asymmetric unit. The dinuclear metallocycle therefore lies across a crystallographic inversion centre. Each CuII centre adopts a [4+1] square-pyramidal coordination geometry (Fig. 1): two O atoms from the acetylacetone anion, one oxadiazole N atom and one hydroxyl O atom are located in the equatorial plane, with Cu1—O1 = 1.929 (3), Cu1—O2 = 1.939 (3), Cu1—N1 = 1.978 (3) and Cu1—O3 = 1.939 (2) Å, and one pyridine N atom occupies the axial position, with Cu1—N3i = 2.354 (3) Å [symmetry code: (i) -x + 1, -y + 2, -z + 2], which is elongated due to Jahn–Teller distortion.

The benzene ring and the central oxadiazole ring of each ligand are almost coplanar: the dihedral angle is 5.5 (2)°. However, the pyridine ring is nearly perpendicular to the oxadiazole ring: the dihedral angle between them is 81.3 (1)°. The CuII···CuII distance is 8.763 (1) Å. The two pyridine rings are exactly parallel by symmetry and the corresponding centroid-to-centroid distance is 5.934 (1) Å.

In the solid state, complex (I) assembles into a two-dimensional supramolecular network through weak Cu···S, C—H···π and ππ interactions. Discrete molecules are linked into one-dimensional chains through weak Cu···S and ππ interactions (Fig. 2). The Cu···S distance is 3.235 (1) Å, comparable with the value of 3.22(s.u.?) Å for (2,2'-bipyridine)bis(thiocyanato-N)copper(II) reported by Parker et al. (1994). The ππ interactions occur between pairs of centrosymmetrically related parallel oxadiazole rings and the centroid-to-centroid distance is 3.798 (8) Å. Further, the parallel one-dimensional chains extend to form a two-dimensional sheet in the ab plane through the C—H···π interaction C15—H15A···Cgi, where Cgi denotes the centroid of the C1–C6 ring at the symmetry-related position (x, y + 1, z) (Fig. 3). The H···π distance is 3.234 (5) Å, which is close to the reported value of 3.11 Å for 3-(2,4-dimethylphenyloxymethyl)-3,4-dihydroisocoumarin (Goswami et al., 2007).

In summary, a discrete binuclear metallocycle has been successfully synthesized. Weak Cu···S, C—H···π and ππ interactions link the discrete molecules into a two-dimensional structure. This study demonstrates that weak intermolecular interactions play a crucial role in constructing high-dimensional supramolecular networks. Meanwhile, the metallocycle can also be used as a secondary building block because the five-coordinated CuII atoms have free coordination positions, and studies employing this property are underway.

Related literature top

For related literature, see: Breneman & Parker (1993); Dang et al. (2010); Goswami et al. (2007); Khavasi & Fard (2010); Maspoch et al. (2004); Munshi et al. (2004); Noro et al. (2010); Ono et al. (2009); Parker et al. (1994); Rowsell & Yaghi (2005).

Experimental top

For the preparation of L, KOH (1.52 g, 27.1 mmol) was added with stirring to a solution of 5-(2-hydroxylphenyl)-1,3,4-oxadiazole-2-thiol (1.81 g, 9.3 mmol) and 4-(chloromethyl)pyridine hydrochloride (2.28 g, 13.8 mmol) in methanol (50 ml) at ambient temperature. The mixture was stirred for 24 h at ambient temperature and the reaction monitored by thin-layer chromatography. After removal of the solvent under vacuum, the residue was purified by column chromatography on silica gel using ethyl acetate as eluent to afford L as a white solid (yield 1.08 g, 42%). Spectroscopic analysis: IR (KBr pellet, ν, cm-1): 3443 (s), 2360 (w), 1625 (s), 1597 (s), 1415 (m), 1254 (m), 1186 (m), 1060 (w), 983 (m), 907 (m), 764 (w), 701 (m), 671 (w); 1H NMR (300 MHz, CDCl3, 298 K, TMS, δ, p.p.m.): 9.76 (s, 1H, –OH), 8.63 (d, 2H, –C5H4N), 7.67–7.64 (d, 1H, –C6H4–), 7.51–7.50 (d, 2H, –C5H4N), 7.46–7.41 (q, 1H, –C6H4–), 7.27–7.21 (d, 1H, –C6H4–), 7.12–7.09 (d, 1H, –C6H4–), 7.01–6.96 (q, 1H, –C6H4–), 4.50 (s, 2H, –CH2–). Elemental analysis: calculated for C14H11N3O2S: C 58.93, H 3.89, N 14.73%; found: C 58.82, H 3.98, N 14.67%.

For the preparation of (I), a solution of Cu(acac)2 (5.57 mg, 0.028 mmol) in methanol (5 ml) was layered onto a solution of L (8.01 mg, 0.028 mmol) in CH2Cl2 (5 ml). The solutions were left for about two weeks at room temperature and green [Blue in CIF tables - please clarify] crystals of (I) were obtained (yield 10.12 mg, 75%). Spectroscopic analysis: IR (KBr pellet, ν, cm-1): 3443 (m), 2360 (w), 1610 (s), 1586 (s), 1443 (m), 1264 (s), 1152 (m), 1089 (w), 1007 (m), 977 (m), 927 (m), 768 (m), 704 (m), 669 (w).

Refinement top

H atoms were placed in idealized positions and treated as riding, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aryl H atoms and H17, C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C) for methylene H atoms, and C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms have been omitted for clarity. [Symmetry code: (i) -x + 1, -y + 2, -z + 2.]
[Figure 2] Fig. 2. The one-dimensional chain of (I), constructed by weak Cu···S interactions (green dashed lines in the electronic version of the paper) and ππ interactions (purple dashed lines). H atoms have been omitted for clarity.
[Figure 3] Fig. 3. A view, along the crystallographic c axis, of the two-dimensional sheet of (I), constructed by weak Cu···S (green dashed lines in the electronic version of the paper), ππ (purple dashed lines) and C—H···π interactions (C15—H15A···Cgi; black dashed lines between the chains). H atoms not involved in C—H···π interactions have been omitted for clarity. [Symmetry code: (i) x, y + 1, z.]
bis(µ-2-{5-[(pyridin-4-ylmethyl)sulfanyl]-1,3,4-oxadiazol- 2-yl}phenolato)bis[(acetylacetonato)copper(II)] top
Crystal data top
[Cu2(C14H10N3O2S)2(C5H7O2)2]Z = 1
Mr = 893.91F(000) = 458
Triclinic, P1Dx = 1.573 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.934 (2) ÅCell parameters from 1676 reflections
b = 10.069 (2) Åθ = 2.5–25.4°
c = 11.627 (2) ŵ = 1.30 mm1
α = 68.146 (3)°T = 298 K
β = 88.758 (3)°Block, blue
γ = 62.741 (3)°0.35 × 0.18 × 0.06 mm
V = 943.9 (3) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3455 independent reflections
Radiation source: sealed tube2864 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ϕ and ω scansθmax = 25.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 712
Tmin = 0.659, Tmax = 0.926k = 1112
4983 measured reflectionsl = 1413
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0598P)2 + 0.7514P]
where P = (Fo2 + 2Fc2)/3
3455 reflections(Δ/σ)max = 0.001
255 parametersΔρmax = 1.03 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
[Cu2(C14H10N3O2S)2(C5H7O2)2]γ = 62.741 (3)°
Mr = 893.91V = 943.9 (3) Å3
Triclinic, P1Z = 1
a = 9.934 (2) ÅMo Kα radiation
b = 10.069 (2) ŵ = 1.30 mm1
c = 11.627 (2) ÅT = 298 K
α = 68.146 (3)°0.35 × 0.18 × 0.06 mm
β = 88.758 (3)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3455 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
2864 reflections with I > 2σ(I)
Tmin = 0.659, Tmax = 0.926Rint = 0.020
4983 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.124H-atom parameters constrained
S = 1.03Δρmax = 1.03 e Å3
3455 reflectionsΔρmin = 0.29 e Å3
255 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6607 (4)0.5480 (4)0.7398 (3)0.0368 (8)
C20.5991 (5)0.4954 (5)0.6680 (4)0.0479 (10)
H20.58680.54200.58070.058*
C30.5572 (6)0.3772 (6)0.7242 (4)0.0581 (12)
H30.51630.34600.67420.070*
C40.5746 (6)0.3040 (6)0.8533 (4)0.0598 (12)
H40.54530.22430.88990.072*
C50.6350 (5)0.3490 (5)0.9275 (4)0.0519 (11)
H50.64700.29941.01460.062*
C60.6789 (4)0.4696 (4)0.8724 (3)0.0353 (8)
C70.7438 (4)0.5157 (4)0.9502 (3)0.0336 (8)
C80.8366 (4)0.5104 (4)1.1162 (3)0.0362 (8)
C90.9276 (4)0.6064 (5)1.2723 (4)0.0398 (9)
H9A1.00020.56851.34670.048*
H9B0.97160.64101.19900.048*
C100.7793 (4)0.7502 (4)1.2679 (3)0.0334 (8)
C110.7207 (4)0.7511 (4)1.3769 (3)0.0381 (8)
H110.77500.66481.45430.046*
C120.5824 (4)0.8800 (4)1.3702 (3)0.0374 (8)
H120.54490.87801.44450.045*
C130.5575 (5)1.0070 (5)1.1601 (4)0.0429 (9)
H130.50161.09601.08430.051*
C140.6956 (4)0.8837 (5)1.1572 (3)0.0394 (9)
H140.73160.89061.08180.047*
C150.9525 (6)1.0465 (7)0.8115 (5)0.0678 (14)
H15A0.90301.05750.88170.102*
H15B0.94521.14930.75730.102*
H15C1.05890.96480.84160.102*
C160.8747 (5)0.9960 (5)0.7390 (4)0.0448 (10)
C170.8383 (5)1.0743 (6)0.6085 (4)0.0546 (11)
H170.85601.16250.57030.066*
C180.7776 (4)1.0318 (5)0.5303 (4)0.0407 (9)
C190.7474 (6)1.1219 (6)0.3909 (4)0.0592 (12)
H19A0.80321.04630.35360.089*
H19B0.78041.20270.36990.089*
H19C0.63921.17470.35920.089*
Cu10.74960 (5)0.78995 (5)0.74221 (4)0.03533 (17)
N10.7770 (3)0.6339 (3)0.9165 (3)0.0348 (7)
N30.4987 (3)1.0079 (4)1.2632 (3)0.0376 (7)
N40.8382 (4)0.6303 (4)1.0261 (3)0.0399 (7)
O10.7454 (3)0.9161 (3)0.5690 (2)0.0419 (6)
O20.8497 (3)0.8818 (3)0.8052 (3)0.0470 (7)
O30.6969 (3)0.6615 (3)0.6816 (2)0.0437 (6)
O70.7792 (3)0.4311 (3)1.0781 (2)0.0374 (6)
S10.89967 (12)0.43850 (11)1.27595 (8)0.0424 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0332 (19)0.038 (2)0.0358 (19)0.0123 (16)0.0030 (16)0.0173 (16)
C20.058 (3)0.048 (2)0.040 (2)0.026 (2)0.0003 (19)0.0186 (19)
C30.068 (3)0.069 (3)0.056 (3)0.044 (3)0.005 (2)0.029 (2)
C40.077 (3)0.068 (3)0.060 (3)0.055 (3)0.018 (3)0.026 (2)
C50.064 (3)0.062 (3)0.040 (2)0.040 (2)0.009 (2)0.018 (2)
C60.036 (2)0.0324 (18)0.0350 (19)0.0146 (16)0.0046 (16)0.0134 (16)
C70.0304 (18)0.0326 (19)0.0286 (18)0.0093 (15)0.0022 (15)0.0109 (15)
C80.037 (2)0.0367 (19)0.0293 (18)0.0121 (16)0.0019 (15)0.0150 (16)
C90.034 (2)0.046 (2)0.036 (2)0.0164 (17)0.0008 (16)0.0166 (17)
C100.0307 (18)0.0340 (18)0.0354 (19)0.0149 (16)0.0012 (15)0.0149 (16)
C110.039 (2)0.0361 (19)0.0281 (18)0.0127 (17)0.0038 (16)0.0091 (15)
C120.040 (2)0.041 (2)0.0290 (18)0.0178 (18)0.0043 (16)0.0146 (16)
C130.045 (2)0.038 (2)0.0320 (19)0.0133 (18)0.0004 (17)0.0088 (16)
C140.043 (2)0.044 (2)0.0287 (18)0.0186 (18)0.0055 (16)0.0156 (17)
C150.076 (3)0.082 (4)0.077 (3)0.050 (3)0.014 (3)0.048 (3)
C160.039 (2)0.044 (2)0.059 (3)0.0208 (19)0.0086 (19)0.028 (2)
C170.067 (3)0.052 (3)0.054 (3)0.039 (2)0.011 (2)0.017 (2)
C180.038 (2)0.035 (2)0.042 (2)0.0156 (17)0.0092 (17)0.0115 (17)
C190.065 (3)0.055 (3)0.049 (3)0.032 (2)0.009 (2)0.008 (2)
Cu10.0432 (3)0.0342 (3)0.0280 (3)0.0183 (2)0.00272 (19)0.01259 (19)
N10.0423 (18)0.0312 (16)0.0272 (15)0.0145 (14)0.0010 (13)0.0120 (13)
N30.0394 (18)0.0353 (16)0.0325 (16)0.0140 (14)0.0017 (14)0.0133 (14)
N40.053 (2)0.0389 (17)0.0290 (16)0.0227 (16)0.0033 (14)0.0139 (14)
O10.0508 (16)0.0444 (15)0.0324 (14)0.0251 (13)0.0059 (12)0.0150 (12)
O20.0536 (17)0.0530 (17)0.0433 (15)0.0305 (15)0.0024 (13)0.0222 (14)
O30.0659 (18)0.0426 (15)0.0309 (13)0.0326 (14)0.0062 (13)0.0150 (12)
O70.0436 (15)0.0364 (13)0.0292 (13)0.0184 (12)0.0040 (11)0.0115 (11)
S10.0524 (6)0.0361 (5)0.0283 (5)0.0150 (5)0.0006 (4)0.0106 (4)
Geometric parameters (Å, º) top
C1—O31.297 (4)C12—N31.330 (5)
C1—C21.413 (5)C12—H120.9300
C1—C61.418 (5)C13—N31.324 (5)
C2—C31.371 (6)C13—C141.376 (5)
C2—H20.9300C13—H130.9300
C3—C41.378 (6)C14—H140.9300
C3—H30.9300C15—C161.508 (6)
C4—C51.368 (6)C15—H15A0.9600
C4—H40.9300C15—H15B0.9600
C5—C61.403 (5)C15—H15C0.9600
C5—H50.9300C16—O21.253 (5)
C6—C71.436 (5)C16—C171.388 (6)
C7—N11.298 (5)C17—C181.387 (6)
C7—O71.366 (4)C17—H170.9300
C8—N41.276 (5)C18—O11.267 (4)
C8—O71.360 (4)C18—C191.489 (6)
C8—S11.733 (4)C19—H19A0.9600
C9—C101.504 (5)C19—H19B0.9600
C9—S11.821 (4)C19—H19C0.9600
C9—H9A0.9700Cu1—O11.929 (3)
C9—H9B0.9700Cu1—O21.939 (3)
C10—C141.374 (5)Cu1—O31.939 (2)
C10—C111.385 (5)Cu1—N11.978 (3)
C11—C121.369 (5)Cu1—N3i2.354 (3)
C11—H110.9300N1—N41.406 (4)
O3—C1—C2118.9 (3)C13—C14—H14120.6
O3—C1—C6124.9 (3)C16—C15—H15A109.5
C2—C1—C6116.2 (3)C16—C15—H15B109.5
C3—C2—C1121.6 (4)H15A—C15—H15B109.5
C3—C2—H2119.2C16—C15—H15C109.5
C1—C2—H2119.2H15A—C15—H15C109.5
C2—C3—C4121.1 (4)H15B—C15—H15C109.5
C2—C3—H3119.4O2—C16—C17125.3 (4)
C4—C3—H3119.4O2—C16—C15115.0 (4)
C5—C4—C3119.8 (4)C17—C16—C15119.6 (4)
C5—C4—H4120.1C18—C17—C16125.4 (4)
C3—C4—H4120.1C18—C17—H17117.3
C4—C5—C6120.2 (4)C16—C17—H17117.3
C4—C5—H5119.9O1—C18—C17124.2 (4)
C6—C5—H5119.9O1—C18—C19115.1 (4)
C5—C6—C1121.1 (3)C17—C18—C19120.7 (4)
C5—C6—C7120.3 (3)C18—C19—H19A109.5
C1—C6—C7118.6 (3)C18—C19—H19B109.5
N1—C7—O7110.7 (3)H19A—C19—H19B109.5
N1—C7—C6128.7 (3)C18—C19—H19C109.5
O7—C7—C6120.6 (3)H19A—C19—H19C109.5
N4—C8—O7114.0 (3)H19B—C19—H19C109.5
N4—C8—S1128.1 (3)O1—Cu1—O387.28 (11)
O7—C8—S1117.9 (3)O1—Cu1—O292.62 (12)
C10—C9—S1112.1 (3)O3—Cu1—O2166.99 (12)
C10—C9—H9A109.2O1—Cu1—N1171.94 (11)
S1—C9—H9A109.2O3—Cu1—N188.68 (11)
C10—C9—H9B109.2O2—Cu1—N189.75 (12)
S1—C9—H9B109.2O1—Cu1—N3i91.34 (11)
H9A—C9—H9B107.9O3—Cu1—N3i99.97 (11)
C14—C10—C11117.3 (3)O2—Cu1—N3i93.04 (11)
C14—C10—C9122.2 (3)N1—Cu1—N3i96.23 (11)
C11—C10—C9120.5 (3)C7—N1—N4107.8 (3)
C12—C11—C10119.6 (3)C7—N1—Cu1126.5 (2)
C12—C11—H11120.2N4—N1—Cu1125.7 (2)
C10—C11—H11120.2C13—N3—C12116.2 (3)
N3—C12—C11123.6 (3)C13—N3—Cu1i122.5 (2)
N3—C12—H12118.2C12—N3—Cu1i121.1 (2)
C11—C12—H12118.2C8—N4—N1104.8 (3)
N3—C13—C14124.5 (4)C18—O1—Cu1126.0 (2)
N3—C13—H13117.7C16—O2—Cu1125.5 (3)
C14—C13—H13117.7C1—O3—Cu1130.9 (2)
C10—C14—C13118.8 (3)C8—O7—C7102.7 (3)
C10—C14—H14120.6C8—S1—C998.31 (18)
O3—C1—C2—C3179.3 (4)O3—Cu1—N1—N4171.4 (3)
C6—C1—C2—C31.1 (6)O2—Cu1—N1—N44.4 (3)
C1—C2—C3—C40.5 (7)N3i—Cu1—N1—N488.7 (3)
C2—C3—C4—C50.2 (8)C14—C13—N3—C120.8 (6)
C3—C4—C5—C60.2 (7)C14—C13—N3—Cu1i173.6 (3)
C4—C5—C6—C10.5 (6)C11—C12—N3—C131.1 (6)
C4—C5—C6—C7179.3 (4)C11—C12—N3—Cu1i173.5 (3)
O3—C1—C6—C5179.3 (4)O7—C8—N4—N10.2 (4)
C2—C1—C6—C51.1 (5)S1—C8—N4—N1179.0 (3)
O3—C1—C6—C70.8 (5)C7—N1—N4—C80.0 (4)
C2—C1—C6—C7178.7 (3)Cu1—N1—N4—C8179.2 (2)
C5—C6—C7—N1172.8 (4)C17—C18—O1—Cu17.7 (6)
C1—C6—C7—N17.4 (6)C19—C18—O1—Cu1173.1 (3)
C5—C6—C7—O77.1 (5)O3—Cu1—O1—C18177.0 (3)
C1—C6—C7—O7172.7 (3)O2—Cu1—O1—C1810.0 (3)
S1—C9—C10—C1498.3 (4)N1—Cu1—O1—C18117.0 (8)
S1—C9—C10—C1180.8 (4)N3i—Cu1—O1—C1883.1 (3)
C14—C10—C11—C121.9 (5)C17—C16—O2—Cu11.7 (6)
C9—C10—C11—C12177.3 (3)C15—C16—O2—Cu1179.1 (3)
C10—C11—C12—N30.3 (6)O1—Cu1—O2—C167.0 (3)
C11—C10—C14—C132.1 (5)O3—Cu1—O2—C1696.3 (6)
C9—C10—C14—C13177.1 (3)N1—Cu1—O2—C16179.3 (3)
N3—C13—C14—C100.8 (6)N3i—Cu1—O2—C1684.4 (3)
O2—C16—C17—C184.3 (7)C2—C1—O3—Cu1168.1 (3)
C15—C16—C17—C18174.8 (4)C6—C1—O3—Cu112.3 (5)
C16—C17—C18—O11.1 (7)O1—Cu1—O3—C1172.6 (3)
C16—C17—C18—C19178.1 (4)O2—Cu1—O3—C197.5 (6)
O7—C7—N1—N40.1 (4)N1—Cu1—O3—C114.3 (3)
C6—C7—N1—N4180.0 (3)N3i—Cu1—O3—C181.8 (3)
O7—C7—N1—Cu1179.3 (2)N4—C8—O7—C70.2 (4)
C6—C7—N1—Cu10.8 (5)S1—C8—O7—C7179.0 (2)
O1—Cu1—N1—C767.6 (9)N1—C7—O7—C80.2 (4)
O3—Cu1—N1—C77.6 (3)C6—C7—O7—C8179.9 (3)
O2—Cu1—N1—C7174.7 (3)N4—C8—S1—C910.6 (4)
N3i—Cu1—N1—C792.3 (3)O7—C8—S1—C9170.2 (3)
O1—Cu1—N1—N4111.5 (8)C10—C9—S1—C881.6 (3)
Symmetry code: (i) x+1, y+2, z+2.

Experimental details

Crystal data
Chemical formula[Cu2(C14H10N3O2S)2(C5H7O2)2]
Mr893.91
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)9.934 (2), 10.069 (2), 11.627 (2)
α, β, γ (°)68.146 (3), 88.758 (3), 62.741 (3)
V3)943.9 (3)
Z1
Radiation typeMo Kα
µ (mm1)1.30
Crystal size (mm)0.35 × 0.18 × 0.06
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.659, 0.926
No. of measured, independent and
observed [I > 2σ(I)] reflections
4983, 3455, 2864
Rint0.020
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.124, 1.03
No. of reflections3455
No. of parameters255
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.03, 0.29

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds