Download citation
Download citation
link to html
Two C2-symmetric meso-alkynylporphyrins, namely 5,15-bis­[(4-butyl-2,3,5,6-tetra­fluoro­phen­yl)ethyn­yl]-10,20-dipropyl­porphyrin, C50H42F8N4, (I), and 5,15-bis­[(4-butyl­phen­yl)ethyn­yl]-10,20-dipropyl­porphyrin, C50H50N4, (II), show remarkable π–π stacking that forms columns of porphyrin centers. The tetra­fluoro­phenyl­ene moieties in (I) show inter­molecular inter­actions with each other through the F atoms, forming one-dimensional ribbons. No significant π–π inter­actions are observed in the plane of the phenyl­ene and tetra­fluoro­phenyl­ene moieties in either (I) or (II). The molecules of both compounds lie about inversion centers.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270110026405/bm3094sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110026405/bm3094Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110026405/bm3094IIsup3.hkl
Contains datablock II

CCDC references: 790643; 790644

Comment top

Porphyrin assemblies allow chemists to create mechanical architectures and to understand biological systems (Drain et al., 2009; Beletskaya et al., 2009; Nakamura et al., 2007). For the past few decades, porphyrin derivatives with acetylene connections at the meso-positions have found great utility as the motifs of self-assembling systems and electronic materials (Huang et al., 2006; Anderson et al., 1998). In particular, substitutions for the meso-alkynylporphyrins, while maintaining the coplanar molecule, are important in the development of intermolecular arrays in crystals and on surfaces (Kato et al., 2004). While many kinds of alkynyl, aryl and mono-halogeno derivatives have been investigated, few examples of fluorine-substituted meso-alkynylporphyrins have been reported, such as those exhibiting mono-substitution by –F or –CF3 groups (Kuo et al., 2007; Doerksen & Thakkar, 1999). We have been interested in the crystal packing of fully fluorinated aromatic compounds, because fluorine substitution would control the distance, direction and strength of the π-stacking based on the high electronegativity of the F atoms. Actually, the unique interactions induced by fluorine are demonstrated as the arene–perfluoroarene (Williams, 1993; Hori et al., 2007), C—H···F (Thalladi et al., 1998) and anion···π (Quiñonero et al., 2002) and other interactions. This prompted us to design the perfluorophenylene-attached meso-alkynylporphyrin (I) and to compare it with (II), which hopefully will provide a good basis for understanding the intermolecular interactions and for designing further reactions of self-assembling motifs. The butyl and propyl groups were attached in order to increase the solubility of the compounds.

The two porphyrin derivatives were synthesized in two steps using the Linsey reaction (see Experimental). Crystallization by diffusion of MeOH into a CH2Cl2 solution of the compounds yielded pure products. The UV–visible spectra of (I) and (II) in CH2Cl2 solution are very similar – both soret bands are observed at 442 nm for (I) and (II); the Q bands are observed at 603 and 698 nm for (I) and at 601 and 698 nm for (II). However, the diffuse reflection spectra of the powder samples with KBr of (I) and (II) are slightly but significantly different from the spectra in a CH2Cl2 solution. The peak tops of the broad bands are observed around 429–450, 626 and 716 nm for (I) and 448, 618 and 710 nm for (II), which means that, except for the soret band of (I), the bands are red-shifted compared with a solution, as usual for the solid state. The small blue shift in the broad soret band of (I) is attributed to the effects of intermolecular interactions.

Molecules of (I) and (II) lie across crystallographic inversion centers, with the porphyrin ring and the phenylene moieties almost coplanar (Fig. 1). However, the dihedral angle between them, N1/N2/C1–C10 (12 porphyrin atoms) and C13–C18 (six phenylene atoms), in (I) is 10.72 (7)°, which is greater than that of (II) [2.29 (8)°]. The acetylene linkers in (I) are slightly sigmoidal in a plane perpendicular to the plane of the porphyrin moiety. Accordingly, the entire framework without protons, fluorines and aliphatic groups of the molecules of (I) is less flat than that of (II): the r.m.s deviation of the aromatic atoms from their mean planes is 0.1076(s.u.??) Å in (I) and 0.0432(s.u.??) Å in (II) <— Please check these r.m.s.deviations: we cannot reproduce them. In (II), the sigmoidal form is also observed in the plane of the porphyrin moiety (Fig. 1). Bifurcated intramolecular N—H···N hydrogen bonds link the amino atom N2 via H1 to the imino atoms N1 and N1i (see Tables 1 and 2). The C5—C11, C11—C12 and C12—C13 distances around the acetylene linkage clearly indicate the localization of the triple bonds of the acetylene linkers in (I) and (II).

The crystal packing arrangements in (I) and (II) are shown in Figs. 2 and 3, respectively. In (I), the molecules are aligned in a flattened ribbon along the c axis, and an intermolecular F1···F1iii interaction [symmetry code: (iii) - x + 2, - y, - z] of 2.7808 (15) Å is observed between the tetrafluorophenylene moieties. The ribbons are aligned parallel with the overlapping of half of the porphyrin moiety through intermolecular ππ stacking along the a axis, producing molecular columns. The corresponding intermolecular atom···atom distance of the molecules through the ππ stacking is 4.7936 (8) Å, the length of the a axis. The closest distance between the two pyrrole rings in the porphyrin center, CgA···CgBiv [symmetry code: (iv) x - 1, y, z] is 3.7176 (12) Å, where CgA and CgB are the centroids of the five-membered N1/C1–C4 and N2/C6–C9 rings, respectively. The corresponding perpendicular distance from the ring centroids to the adjacent planes is 3.2399 (7) Å. In the column, the tetrafluorophenylene moieties are positioned close to each other and electrostatic ππ interactions are dominant. The intermolecular distances between the two tetrafluorophenylene rings, CgC···CgCiv and CgC···CgCv [symmetry code: (v) - x + 1, - y, - z], are 4.7936 (8) and 5.1995 (13) Å, respectively, where CgC is the centroid of the tetrafluorophenylene ring C13–C18. The short C—F···CgC distances involving C14—F1···CgCvi [symmetry code: (vi) x + 1, y, z] and C17—F3···CgCiv are 3.3590 (13) and 3.3599 (13) Å, respectively. Finally, the columns are arranged in a zigzag fashion along the b axis and the dihedral angle between the two planes of porphyrins is 87.85 (14)°, with alternation of the aligned butyl and propyl chains.

In (II) the molecules also show ππ stacking to produce columns of molecules along the b axis. The corresponding intermolecular atom···atom distance of the molecules through the ππ stacking is 5.2845 (5) Å, the length of the b axis and greater than that in (I). The closest intermolecular distance between the two pyrrole rings in the porphyrin center, CgA···CgBvii [symmetry code: (vii) x, y + 1, z] is 3.5863 (10) Å and the perpendicular distance from the ring centroids to the adjacent planes is 3.3016 (7) Å. The lateral interaction along [1 0 2] between the columns is much weaker than that in (I). The phenylene ring is close to a butyl group and the acetylene linker of the other molecules; the short distances H15···H20Aviii [symmetry code: (viii) x, y - 1, z] and C12···H17ix [symmetry code: (ix) - x + 1/2, y - 1/2, - z + 1/2] being 2.31 and 2.83 Å, respectively. No remarkable ππ intermolecular interactions are observed for the phenylene moiety and the closest intermolecular distance between the two phenylene rings, CgC···CgCix is 4.9821 (10) Å. Along the c axis, the columns are arranged in a zigzag arrangement and the inclination of the two planes of the porphyrins is 78.2 (13)°.

In conclusion, both C2-symmetric porphyrins show intermolecular ππ stacking between the porphyrin centers, and no unusual stackings were observed between the phenylene moieties in (I) and (II). On the other hand, the tetrafluorophenylene moieties in (I) interact with each other through F···F interactions to give planar porphyrin ribbons. Accordingly, the ππ overlap is more significant in (I) than in (II), which probably increases the H-aggregate character of porphyrin (I) to produce small blue shifts in the solid state.

Related literature top

For related literature, see: Anderson et al. (1998); Beletskaya et al. (2009); Doerksen & Thakkar (1999); Drain et al. (2009); Hori et al. (2007); Huang et al. (2006); Kato et al. (2004); Kuo et al. (2007); Nakamura et al. (2007); Quiñonero, Garay, Rotger, Frontera, Ballester, Costa & Deyà (2002); Thalladi et al. (1998); Williams (1993).

Experimental top

The porphyrins (I) and (II) were prepared in two steps using the general Linsey method (Anderson et al., 1998). Typically, BF3.Et2O (0.40 mmol) was added to a solution of 4-butyl-2,3,5,6-tetrafluorophenylpropiolaldehyde (1.35 mmol) in CH2Cl2 (35 ml) and an excess amount of pyrrole (68 mmol) at 248 K. The reaction mixture was stirred for 30 min, the solution was washed with 10% aqueous NaOH and water, dried over MgSO4, and purified by column chromatography to give the meso-4-butyl-2,3,5,6-tetrafluorophenyl-2,2'-dipyrrylmethane in 86% yield. The product (1.17 mmol) was further reacted with n-butylaldehyde (1.17 mmol), BF3.Et2O (0.40 mmol) and DDQ (1.17 mmol) under the Linsey conditions to produce the porphyrin (I) as a dark blue powder in 6% yield. The porphyrin (I) was also obtained in the same yield from 4-butyl-2,3,5,6-tetrafluorophenylpropiolaldehyde and meso-propyl-2,2'-dipyrrylmethane, which was prepared from n-butylaldehyde and an excess amount of pyrrole, under the same conditions as the first method. The porphyrin (II) was prepared from 4-butylphenylpropiolaldehyde and meso-propyl-2,2'-dipyrrylmethane as a dark blue powder in 1% yield.

For (I), UV–visible spectra in a solution (MeCN): 442 nm (ε = 410000 M-1cm-1), 603 nm (ε = 54400 M-1cm-1), 698 nm (ε = 37000 M-1cm-1); in solid (KBr): 429–450, 626 and 716 nm. Elemental analysis: Calculated for C50H42F8N4 (%): C, 70.58; H, 4.98; N, 6.58. Found: C, 70.23; H, 4.98; N, 6.53. For (II), UV–visible spectra in a solution (MeCN): 442 nm (ε = 413000 M-1cm-1), 601 nm (ε = 60000 M-1cm-1), 698 nm (ε = 48300 M-1cm-1); in solid (KBr): 448, 618 and 710 nm. Elemental analysis: Calculated for C50H50N4 (%): C, 84.95; H, 7.13; N, 7.92. Found: C, 84.91; H,7.01; N, 7.95.

Refinement top

H atoms attached to C atoms were placed in geometrically idealized positions and refined riding on their carrier atoms, with aromatic, methyl and methylene C—H distances of 0.95, 0.98 and 0.99 Å, respectively, and with Uiso(H) = 1.5Ueq(C) for methyl H atoms and Uiso(H) = 1.2Ueq(C) for others. Atom H1 (attached to N2) was located in a difference Fourier density map and refined freely to give N—H distances of 0.85 (3) and 0.906 (18) Å for (I) and (II), respectively.

Computing details top

For both compounds, data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structures of (a) (I) and (b) (II) at 100 K, showing the atom-labeling schemes. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A view of part of the crystal structure of (I) along the a axis.
[Figure 3] Fig. 3. A view of part of the crystal structure of (II) along the b axis.
(I) 5,15-bis[(4-butyl-2,3,5,6-tetrafluorophenyl)ethynyl]-10,20-dipropylporphyrin top
Crystal data top
C50H42F8N4F(000) = 884
Mr = 850.88Dx = 1.425 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2297 reflections
a = 4.7936 (8) Åθ = 2.5–26.6°
b = 23.483 (4) ŵ = 0.11 mm1
c = 17.628 (3) ÅT = 100 K
β = 91.824 (2)°Prismatic, dark blue
V = 1983.4 (6) Å30.28 × 0.08 × 0.06 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
4444 independent reflections
Radiation source: fine-focus sealed tube3019 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
Detector resolution: 8.333 pixels mm-1θmax = 27.5°, θmin = 2.9°
ϕ and ω scansh = 65
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
k = 3028
Tmin = 0.970, Tmax = 0.993l = 2216
10839 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0484P)2 + 0.259P]
where P = (Fo2 + 2Fc2)/3
4444 reflections(Δ/σ)max < 0.001
286 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C50H42F8N4V = 1983.4 (6) Å3
Mr = 850.88Z = 2
Monoclinic, P21/nMo Kα radiation
a = 4.7936 (8) ŵ = 0.11 mm1
b = 23.483 (4) ÅT = 100 K
c = 17.628 (3) Å0.28 × 0.08 × 0.06 mm
β = 91.824 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
4444 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
3019 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 0.993Rint = 0.038
10839 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.30 e Å3
4444 reflectionsΔρmin = 0.25 e Å3
286 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.7231 (3)0.05805 (6)0.45808 (8)0.0181 (3)
N21.1486 (3)0.01859 (6)0.39257 (9)0.0176 (3)
C10.5313 (3)0.09036 (7)0.49578 (10)0.0177 (4)
C20.3769 (4)0.12542 (8)0.44186 (10)0.0213 (4)
H20.23390.15180.45310.026*
C30.4733 (4)0.11374 (8)0.37283 (10)0.0210 (4)
H30.41170.13030.32610.025*
C40.6872 (3)0.07136 (7)0.38311 (10)0.0174 (4)
C50.8296 (3)0.04661 (7)0.32281 (10)0.0173 (4)
C61.0383 (4)0.00462 (7)0.32744 (10)0.0173 (4)
C71.1731 (4)0.02054 (8)0.26464 (10)0.0202 (4)
H71.13560.01230.21250.024*
C81.3640 (4)0.05820 (8)0.29265 (10)0.0197 (4)
H81.48500.08100.26370.024*
C91.3507 (3)0.05737 (7)0.37386 (10)0.0176 (4)
C101.5082 (4)0.09036 (7)0.42555 (10)0.0182 (4)
C110.7440 (4)0.06466 (7)0.24792 (10)0.0197 (4)
C120.6599 (4)0.07884 (8)0.18624 (10)0.0198 (4)
C130.5474 (4)0.09299 (7)0.11293 (9)0.0175 (4)
C140.6410 (4)0.06667 (7)0.04753 (10)0.0191 (4)
C150.5263 (4)0.07866 (7)0.02279 (10)0.0200 (4)
C160.3110 (4)0.11773 (8)0.03378 (10)0.0201 (4)
C170.2229 (4)0.14469 (7)0.03123 (10)0.0195 (4)
C180.3335 (4)0.13268 (7)0.10226 (10)0.0186 (4)
C190.1800 (4)0.12897 (8)0.11140 (10)0.0250 (4)
H19A0.01290.14290.10520.030*
H19B0.16850.09260.13970.030*
C200.3375 (4)0.17225 (8)0.15856 (10)0.0244 (4)
H20A0.53040.15830.16460.029*
H20B0.24700.17430.20980.029*
C210.3507 (4)0.23186 (8)0.12539 (11)0.0282 (5)
H21A0.46050.23100.07690.034*
H21B0.15940.24470.11440.034*
C220.4825 (5)0.27430 (9)0.17876 (12)0.0352 (5)
H22A0.67580.26310.18740.053*
H22B0.47990.31240.15600.053*
H22C0.37670.27480.22720.053*
C231.7267 (4)0.13026 (7)0.39568 (10)0.0189 (4)
H23A1.89040.13040.43130.023*
H23B1.78880.11570.34630.023*
C241.6221 (4)0.19151 (7)0.38523 (11)0.0213 (4)
H24A1.52480.20340.43130.026*
H24B1.48560.19280.34190.026*
C251.8570 (4)0.23293 (8)0.37087 (11)0.0250 (4)
H25A1.95890.22050.32650.038*
H25B1.77940.27100.36150.038*
H25C1.98470.23410.41540.038*
F10.8467 (2)0.02776 (4)0.05451 (6)0.0254 (3)
F20.6238 (2)0.05077 (4)0.08358 (6)0.0273 (3)
F30.0145 (2)0.18338 (4)0.02522 (6)0.0280 (3)
F40.2343 (2)0.15987 (4)0.16276 (6)0.0256 (3)
H11.100 (6)0.0115 (13)0.4377 (18)0.089 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0205 (8)0.0192 (8)0.0144 (8)0.0016 (6)0.0004 (6)0.0024 (6)
N20.0200 (8)0.0182 (8)0.0145 (8)0.0002 (6)0.0008 (7)0.0006 (6)
C10.0180 (9)0.0168 (9)0.0181 (9)0.0001 (7)0.0019 (7)0.0000 (7)
C20.0225 (10)0.0208 (10)0.0205 (10)0.0045 (8)0.0013 (8)0.0011 (8)
C30.0238 (10)0.0219 (10)0.0171 (9)0.0032 (8)0.0033 (8)0.0026 (7)
C40.0187 (9)0.0177 (9)0.0156 (9)0.0018 (7)0.0017 (7)0.0011 (7)
C50.0194 (9)0.0186 (9)0.0136 (9)0.0018 (8)0.0029 (7)0.0003 (7)
C60.0192 (9)0.0184 (9)0.0141 (9)0.0036 (7)0.0021 (7)0.0010 (7)
C70.0237 (9)0.0230 (10)0.0138 (9)0.0022 (8)0.0014 (7)0.0002 (7)
C80.0215 (9)0.0216 (10)0.0161 (9)0.0003 (8)0.0019 (7)0.0025 (8)
C90.0176 (9)0.0188 (9)0.0163 (9)0.0027 (7)0.0003 (7)0.0009 (7)
C100.0175 (9)0.0177 (9)0.0193 (9)0.0034 (7)0.0005 (7)0.0019 (7)
C110.0212 (9)0.0172 (9)0.0208 (10)0.0010 (8)0.0010 (8)0.0008 (7)
C120.0215 (9)0.0201 (9)0.0180 (10)0.0012 (8)0.0017 (8)0.0003 (7)
C130.0216 (9)0.0168 (9)0.0139 (9)0.0053 (7)0.0007 (7)0.0016 (7)
C140.0200 (9)0.0163 (9)0.0210 (10)0.0007 (7)0.0004 (8)0.0025 (7)
C150.0267 (10)0.0187 (9)0.0149 (9)0.0044 (8)0.0032 (8)0.0042 (7)
C160.0248 (10)0.0190 (9)0.0164 (9)0.0060 (8)0.0028 (8)0.0024 (7)
C170.0197 (9)0.0171 (9)0.0216 (10)0.0015 (8)0.0014 (8)0.0027 (7)
C180.0240 (10)0.0174 (9)0.0145 (9)0.0027 (8)0.0031 (8)0.0021 (7)
C190.0306 (11)0.0265 (11)0.0175 (10)0.0047 (9)0.0066 (8)0.0020 (8)
C200.0316 (11)0.0256 (10)0.0156 (9)0.0021 (9)0.0047 (8)0.0018 (8)
C210.0365 (11)0.0268 (11)0.0209 (10)0.0020 (9)0.0040 (9)0.0015 (8)
C220.0467 (13)0.0309 (11)0.0276 (12)0.0117 (10)0.0072 (10)0.0020 (9)
C230.0179 (9)0.0213 (10)0.0174 (9)0.0002 (8)0.0000 (7)0.0001 (7)
C240.0213 (9)0.0210 (10)0.0217 (10)0.0003 (8)0.0013 (8)0.0005 (8)
C250.0276 (10)0.0229 (10)0.0245 (11)0.0033 (8)0.0007 (8)0.0000 (8)
F10.0277 (6)0.0249 (6)0.0237 (6)0.0066 (5)0.0011 (5)0.0012 (5)
F20.0378 (6)0.0273 (6)0.0169 (6)0.0011 (5)0.0054 (5)0.0053 (5)
F30.0277 (6)0.0270 (6)0.0290 (6)0.0075 (5)0.0033 (5)0.0030 (5)
F40.0306 (6)0.0280 (6)0.0183 (6)0.0025 (5)0.0047 (5)0.0038 (4)
Geometric parameters (Å, º) top
N1—C41.364 (2)C14—C151.369 (2)
N1—C11.379 (2)C15—F21.3521 (19)
N2—C61.362 (2)C15—C161.390 (2)
N2—C91.377 (2)C16—C171.387 (3)
N2—H10.85 (3)C16—C191.510 (2)
C1—N11.379 (2)C17—F31.352 (2)
C1—C10i1.406 (2)C17—C181.373 (2)
C1—C21.444 (2)C18—F41.3429 (19)
C2—C31.344 (2)C19—C201.528 (3)
C2—H20.9500C19—H19A0.9900
C3—C41.436 (2)C19—H19B0.9900
C3—H30.9500C20—C211.517 (3)
C4—N11.364 (2)C20—H20A0.9900
C4—C51.407 (2)C20—H20B0.9900
C5—C61.405 (2)C21—C221.522 (3)
C5—C111.434 (2)C21—H21A0.9900
C6—C71.427 (2)C21—H21B0.9900
C7—C81.355 (2)C22—H22A0.9800
C7—H70.9500C22—H22B0.9800
C8—C91.435 (2)C22—H22C0.9800
C8—H80.9500C23—C241.532 (2)
C9—C101.399 (2)C23—H23A0.9900
C10—C1i1.406 (2)C23—H23B0.9900
C10—C231.512 (2)C24—C251.515 (2)
C11—C121.195 (2)C24—H24A0.9900
C12—C131.424 (2)C24—H24B0.9900
C13—C181.394 (2)C25—H25A0.9800
C13—C141.395 (2)C25—H25B0.9800
C14—F11.3472 (19)C25—H25C0.9800
C4—N1—C1106.00 (14)C17—C16—C19122.68 (17)
C6—N2—C9108.65 (15)C15—C16—C19121.82 (16)
C6—N2—H1127 (2)F3—C17—C18118.18 (16)
C9—N2—H1125 (2)F3—C17—C16119.07 (15)
N1—C1—C10i126.03 (15)C18—C17—C16122.73 (16)
N1—C1—C10i126.03 (15)F4—C18—C17119.35 (16)
N1—C1—C2109.40 (15)F4—C18—C13119.23 (15)
N1—C1—C2109.40 (15)C17—C18—C13121.41 (16)
C10i—C1—C2124.57 (16)C16—C19—C20114.26 (15)
C3—C2—C1107.21 (16)C16—C19—H19A108.7
C3—C2—H2126.4C20—C19—H19A108.7
C1—C2—H2126.4C16—C19—H19B108.7
C2—C3—C4106.98 (16)C20—C19—H19B108.7
C2—C3—H3126.5H19A—C19—H19B107.6
C4—C3—H3126.5C21—C20—C19114.79 (16)
N1—C4—C5126.04 (15)C21—C20—H20A108.6
N1—C4—C5126.04 (15)C19—C20—H20A108.6
N1—C4—C3110.39 (15)C21—C20—H20B108.6
N1—C4—C3110.39 (15)C19—C20—H20B108.6
C5—C4—C3123.54 (16)H20A—C20—H20B107.5
C6—C5—C4127.41 (16)C20—C21—C22112.27 (17)
C6—C5—C11116.30 (16)C20—C21—H21A109.2
C4—C5—C11116.24 (15)C22—C21—H21A109.2
N2—C6—C5125.89 (16)C20—C21—H21B109.2
N2—C6—C7108.35 (15)C22—C21—H21B109.2
C5—C6—C7125.76 (16)H21A—C21—H21B107.9
C8—C7—C6107.75 (15)C21—C22—H22A109.5
C8—C7—H7126.1C21—C22—H22B109.5
C6—C7—H7126.1H22A—C22—H22B109.5
C7—C8—C9107.68 (16)C21—C22—H22C109.5
C7—C8—H8126.2H22A—C22—H22C109.5
C9—C8—H8126.2H22B—C22—H22C109.5
N2—C9—C10125.41 (16)C10—C23—C24113.33 (14)
N2—C9—C8107.57 (15)C10—C23—H23A108.9
C10—C9—C8127.02 (16)C24—C23—H23A108.9
C9—C10—C1i123.78 (16)C10—C23—H23B108.9
C9—C10—C23118.80 (16)C24—C23—H23B108.9
C1i—C10—C23117.38 (15)H23A—C23—H23B107.7
C12—C11—C5176.83 (19)C25—C24—C23112.38 (14)
C11—C12—C13176.46 (19)C25—C24—H24A109.1
C18—C13—C14116.06 (15)C23—C24—H24A109.1
C18—C13—C12122.29 (16)C25—C24—H24B109.1
C14—C13—C12121.62 (16)C23—C24—H24B109.1
F1—C14—C15119.59 (16)H24A—C24—H24B107.9
F1—C14—C13118.61 (15)C24—C25—H25A109.5
C15—C14—C13121.79 (16)C24—C25—H25B109.5
F2—C15—C14118.62 (16)H25A—C25—H25B109.5
F2—C15—C16118.89 (15)C24—C25—H25C109.5
C14—C15—C16122.48 (16)H25A—C25—H25C109.5
C17—C16—C15115.50 (16)H25B—C25—H25C109.5
C4—N1—C1—C10i179.68 (16)C8—C9—C10—C232.5 (3)
C4—N1—C1—C21.15 (18)C18—C13—C14—F1179.73 (14)
N1—C1—C2—C30.6 (2)C12—C13—C14—F11.3 (2)
N1—C1—C2—C30.6 (2)C18—C13—C14—C150.9 (2)
C10i—C1—C2—C3179.81 (16)C12—C13—C14—C15177.60 (17)
C1—C2—C3—C40.1 (2)F1—C14—C15—F20.1 (2)
C1—N1—C4—C5176.85 (16)C13—C14—C15—F2178.79 (15)
C1—N1—C4—C31.25 (18)F1—C14—C15—C16179.07 (15)
C2—C3—C4—N10.9 (2)C13—C14—C15—C160.2 (3)
C2—C3—C4—N10.9 (2)F2—C15—C16—C17179.84 (15)
C2—C3—C4—C5177.27 (16)C14—C15—C16—C171.2 (3)
N1—C4—C5—C61.3 (3)F2—C15—C16—C191.2 (3)
N1—C4—C5—C61.3 (3)C14—C15—C16—C19177.84 (16)
C3—C4—C5—C6179.20 (17)C15—C16—C17—F3179.87 (15)
N1—C4—C5—C11175.94 (16)C19—C16—C17—F31.1 (3)
N1—C4—C5—C11175.94 (16)C15—C16—C17—C181.9 (3)
C3—C4—C5—C111.9 (2)C19—C16—C17—C18177.06 (17)
C9—N2—C6—C5178.90 (16)F3—C17—C18—F40.7 (2)
C9—N2—C6—C70.45 (19)C16—C17—C18—F4178.91 (16)
C4—C5—C6—N22.5 (3)F3—C17—C18—C13179.56 (15)
C11—C5—C6—N2179.74 (16)C16—C17—C18—C131.3 (3)
C4—C5—C6—C7178.29 (17)C14—C13—C18—F4179.64 (15)
C11—C5—C6—C71.0 (3)C12—C13—C18—F41.9 (2)
N2—C6—C7—C80.4 (2)C14—C13—C18—C170.1 (2)
C5—C6—C7—C8178.91 (17)C12—C13—C18—C17178.34 (17)
C6—C7—C8—C90.25 (19)C17—C16—C19—C2096.9 (2)
C6—N2—C9—C10179.17 (16)C15—C16—C19—C2084.1 (2)
C6—N2—C9—C80.30 (19)C16—C19—C20—C2163.4 (2)
C7—C8—C9—N20.02 (19)C19—C20—C21—C22173.90 (16)
C7—C8—C9—C10178.87 (17)C9—C10—C23—C2495.93 (19)
N2—C9—C10—C1i3.7 (3)C1i—C10—C23—C2481.73 (19)
C8—C9—C10—C1i174.95 (17)C10—C23—C24—C25168.34 (15)
N2—C9—C10—C23178.80 (15)
Symmetry code: (i) x+2, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1···N10.85 (3)2.47 (3)2.980 (2)119 (2)
N2—H1···N1i0.85 (3)2.28 (3)2.840 (2)124 (3)
Symmetry code: (i) x+2, y, z+1.
(II) 5,15-bis[(4-butylphenyl)ethynyl]-10,20-dipropylporphyrin top
Crystal data top
C50H50N4F(000) = 1512
Mr = 706.94Dx = 1.225 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2683 reflections
a = 33.613 (3) Åθ = 2.6–27.2°
b = 5.2845 (5) ŵ = 0.07 mm1
c = 23.152 (2) ÅT = 100 K
β = 111.252 (1)°Prismatic, dark blue
V = 3832.7 (6) Å30.28 × 0.14 × 0.06 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
4292 independent reflections
Radiation source: sealed tube3128 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 8.333 pixels mm-1θmax = 27.5°, θmin = 2.6°
ϕ and ω scansh = 3642
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
k = 66
Tmin = 0.980, Tmax = 0.996l = 2629
10125 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0477P)2 + 1.9292P]
where P = (Fo2 + 2Fc2)/3
4292 reflections(Δ/σ)max = 0.001
250 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C50H50N4V = 3832.7 (6) Å3
Mr = 706.94Z = 4
Monoclinic, C2/cMo Kα radiation
a = 33.613 (3) ŵ = 0.07 mm1
b = 5.2845 (5) ÅT = 100 K
c = 23.152 (2) Å0.28 × 0.14 × 0.06 mm
β = 111.252 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
4292 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
3128 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.996Rint = 0.028
10125 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.24 e Å3
4292 reflectionsΔρmin = 0.23 e Å3
250 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.04748 (4)0.7578 (2)0.01432 (5)0.0202 (3)
N20.02993 (4)0.3394 (2)0.08792 (5)0.0195 (3)
C10.05081 (4)0.9507 (3)0.02369 (6)0.0204 (3)
C20.08937 (5)1.0980 (3)0.00689 (7)0.0237 (3)
H20.09901.23960.00970.028*
C30.10870 (4)0.9937 (3)0.06334 (7)0.0233 (3)
H30.13471.04740.09420.028*
C40.08223 (4)0.7844 (3)0.06778 (6)0.0207 (3)
C50.09127 (4)0.6358 (3)0.12180 (6)0.0198 (3)
C60.06712 (4)0.4330 (3)0.13039 (6)0.0196 (3)
C70.07656 (5)0.2848 (3)0.18515 (7)0.0229 (3)
H70.10050.30620.22250.028*
C80.04548 (5)0.1079 (3)0.17489 (6)0.0227 (3)
H80.04390.01590.20370.027*
C90.01550 (4)0.1402 (3)0.11302 (6)0.0200 (3)
C100.02150 (4)0.0029 (3)0.08350 (6)0.0197 (3)
C110.12819 (4)0.7034 (3)0.17452 (6)0.0216 (3)
C120.15816 (4)0.7621 (3)0.21982 (7)0.0222 (3)
C130.19470 (4)0.8152 (3)0.27460 (6)0.0217 (3)
C140.20357 (5)0.6575 (3)0.32616 (7)0.0274 (4)
H140.18460.52350.32550.033*
C150.23992 (5)0.6954 (3)0.37827 (7)0.0283 (4)
H150.24540.58670.41300.034*
C160.26840 (4)0.8889 (3)0.38082 (7)0.0225 (3)
C170.25905 (5)1.0491 (3)0.32999 (7)0.0257 (3)
H170.27791.18470.33120.031*
C180.22252 (5)1.0147 (3)0.27728 (7)0.0259 (3)
H180.21661.12700.24310.031*
C190.30802 (4)0.9266 (3)0.43841 (7)0.0254 (3)
H19A0.33150.99010.42600.031*
H19B0.31700.76130.45920.031*
C200.30077 (5)1.1123 (3)0.48413 (7)0.0271 (4)
H20A0.29481.28160.46450.033*
H20B0.27521.05850.49250.033*
C210.33820 (5)1.1349 (3)0.54565 (7)0.0260 (3)
H21A0.34310.96910.56700.031*
H21B0.36431.17970.53750.031*
C220.33023 (5)1.3342 (3)0.58772 (7)0.0298 (4)
H22A0.32851.50160.56870.045*
H22B0.35371.33220.62800.045*
H22C0.30341.29700.59350.045*
C230.03103 (4)0.2186 (3)0.11947 (7)0.0226 (3)
H23A0.00380.28380.14970.027*
H23B0.04480.35770.09050.027*
C240.06012 (5)0.1403 (3)0.15405 (7)0.0275 (4)
H24A0.04620.00300.18350.033*
H24B0.08710.07270.12390.033*
C250.07016 (5)0.3585 (3)0.18939 (7)0.0326 (4)
H25A0.08320.49720.16070.049*
H25B0.09000.30090.20890.049*
H25C0.04370.41790.22140.049*
H10.0177 (6)0.394 (4)0.0483 (8)0.043 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0150 (6)0.0278 (7)0.0161 (6)0.0011 (5)0.0035 (5)0.0022 (5)
N20.0145 (6)0.0271 (7)0.0145 (6)0.0002 (5)0.0025 (5)0.0008 (5)
C10.0156 (7)0.0264 (8)0.0197 (7)0.0008 (6)0.0070 (6)0.0015 (6)
C20.0174 (7)0.0288 (8)0.0238 (8)0.0036 (6)0.0063 (6)0.0014 (6)
C30.0155 (7)0.0311 (8)0.0213 (7)0.0021 (6)0.0040 (6)0.0037 (6)
C40.0134 (7)0.0277 (8)0.0188 (7)0.0010 (6)0.0033 (6)0.0037 (6)
C50.0128 (6)0.0268 (8)0.0175 (7)0.0016 (6)0.0028 (5)0.0041 (6)
C60.0142 (6)0.0265 (8)0.0156 (7)0.0029 (6)0.0023 (5)0.0029 (6)
C70.0192 (7)0.0287 (8)0.0176 (7)0.0037 (6)0.0028 (6)0.0013 (6)
C80.0210 (7)0.0276 (8)0.0170 (7)0.0020 (6)0.0041 (6)0.0005 (6)
C90.0170 (7)0.0242 (8)0.0192 (7)0.0026 (6)0.0070 (6)0.0011 (6)
C100.0155 (6)0.0248 (7)0.0190 (7)0.0022 (6)0.0064 (5)0.0015 (6)
C110.0175 (7)0.0257 (8)0.0204 (7)0.0000 (6)0.0055 (6)0.0005 (6)
C120.0174 (7)0.0259 (8)0.0214 (7)0.0003 (6)0.0046 (6)0.0005 (6)
C130.0154 (7)0.0267 (8)0.0201 (7)0.0019 (6)0.0030 (6)0.0031 (6)
C140.0220 (8)0.0268 (8)0.0275 (8)0.0035 (7)0.0018 (6)0.0026 (7)
C150.0259 (8)0.0287 (8)0.0232 (8)0.0005 (7)0.0002 (6)0.0052 (7)
C160.0166 (7)0.0268 (8)0.0217 (7)0.0034 (6)0.0038 (6)0.0028 (6)
C170.0206 (7)0.0309 (8)0.0238 (8)0.0051 (7)0.0061 (6)0.0019 (7)
C180.0243 (8)0.0318 (8)0.0189 (7)0.0024 (7)0.0047 (6)0.0018 (7)
C190.0157 (7)0.0317 (8)0.0232 (8)0.0004 (6)0.0001 (6)0.0010 (7)
C200.0207 (7)0.0299 (8)0.0234 (8)0.0015 (7)0.0009 (6)0.0018 (7)
C210.0190 (7)0.0298 (8)0.0229 (8)0.0027 (6)0.0001 (6)0.0002 (7)
C220.0254 (8)0.0330 (9)0.0266 (8)0.0064 (7)0.0042 (7)0.0027 (7)
C230.0183 (7)0.0251 (8)0.0213 (7)0.0012 (6)0.0033 (6)0.0006 (6)
C240.0269 (8)0.0314 (9)0.0258 (8)0.0001 (7)0.0114 (7)0.0017 (7)
C250.0327 (9)0.0375 (10)0.0271 (8)0.0075 (8)0.0103 (7)0.0012 (7)
Geometric parameters (Å, º) top
N1—C41.3668 (17)C14—H140.9500
N1—C11.3775 (18)C15—C161.387 (2)
N2—C61.3723 (17)C15—H150.9500
N2—C91.3733 (19)C16—C171.390 (2)
N2—H10.906 (18)C16—C191.5178 (19)
C1—N11.3775 (18)C17—C181.394 (2)
C1—C10i1.4053 (19)C17—H170.9500
C1—C21.456 (2)C18—H180.9500
C2—C31.348 (2)C19—C201.527 (2)
C2—H20.9500C19—H19A0.9900
C3—C41.446 (2)C19—H19B0.9900
C3—H30.9500C20—C211.5254 (19)
C4—N11.3668 (17)C20—H20A0.9900
C4—C51.413 (2)C20—H20B0.9900
C5—C61.401 (2)C21—C221.523 (2)
C5—C111.4350 (19)C21—H21A0.9900
C6—C71.425 (2)C21—H21B0.9900
C7—C81.357 (2)C22—H22A0.9800
C7—H70.9500C22—H22B0.9800
C8—C91.4317 (19)C22—H22C0.9800
C8—H80.9500C23—C241.528 (2)
C9—C101.403 (2)C23—H23A0.9900
C10—C1i1.4054 (19)C23—H23B0.9900
C10—C231.513 (2)C24—C251.521 (2)
C11—C121.202 (2)C24—H24A0.9900
C12—C131.4375 (19)C24—H24B0.9900
C13—C181.395 (2)C25—H25A0.9800
C13—C141.397 (2)C25—H25B0.9800
C14—C151.386 (2)C25—H25C0.9800
C4—N1—C1105.17 (12)C15—C16—C19120.41 (14)
C6—N2—C9110.06 (12)C17—C16—C19121.40 (14)
C6—N2—H1124.8 (12)C16—C17—C18121.24 (14)
C9—N2—H1125.0 (12)C16—C17—H17119.4
N1—C1—C10i125.75 (13)C18—C17—H17119.4
N1—C1—C10i125.75 (13)C17—C18—C13120.06 (14)
N1—C1—C2110.43 (12)C17—C18—H18120.0
N1—C1—C2110.43 (12)C13—C18—H18120.0
C10i—C1—C2123.82 (13)C16—C19—C20112.56 (12)
C3—C2—C1106.51 (13)C16—C19—H19A109.1
C3—C2—H2126.7C20—C19—H19A109.1
C1—C2—H2126.7C16—C19—H19B109.1
C2—C3—C4106.77 (13)C20—C19—H19B109.1
C2—C3—H3126.6H19A—C19—H19B107.8
C4—C3—H3126.6C21—C20—C19114.37 (12)
N1—C4—C5125.68 (13)C21—C20—H20A108.7
N1—C4—C5125.68 (13)C19—C20—H20A108.7
N1—C4—C3111.11 (13)C21—C20—H20B108.7
N1—C4—C3111.11 (13)C19—C20—H20B108.7
C5—C4—C3123.18 (12)H20A—C20—H20B107.6
C6—C5—C4126.91 (12)C22—C21—C20111.99 (13)
C6—C5—C11115.87 (13)C22—C21—H21A109.2
C4—C5—C11117.18 (13)C20—C21—H21A109.2
N2—C6—C5126.74 (13)C22—C21—H21B109.2
N2—C6—C7106.89 (13)C20—C21—H21B109.2
C5—C6—C7126.37 (13)H21A—C21—H21B107.9
C8—C7—C6108.30 (13)C21—C22—H22A109.5
C8—C7—H7125.9C21—C22—H22B109.5
C6—C7—H7125.9H22A—C22—H22B109.5
C7—C8—C9108.12 (13)C21—C22—H22C109.5
C7—C8—H8125.9H22A—C22—H22C109.5
C9—C8—H8125.9H22B—C22—H22C109.5
N2—C9—C10126.40 (13)C10—C23—C24112.79 (12)
N2—C9—C8106.64 (12)C10—C23—H23A109.0
C10—C9—C8126.96 (13)C24—C23—H23A109.0
C9—C10—C1i123.73 (13)C10—C23—H23B109.0
C9—C10—C23117.70 (12)C24—C23—H23B109.0
C1i—C10—C23118.53 (12)H23A—C23—H23B107.8
C12—C11—C5177.62 (15)C25—C24—C23112.67 (13)
C11—C12—C13176.30 (17)C25—C24—H24A109.1
C18—C13—C14118.74 (13)C23—C24—H24A109.1
C18—C13—C12122.10 (13)C25—C24—H24B109.1
C14—C13—C12119.12 (14)C23—C24—H24B109.1
C15—C14—C13120.36 (14)H24A—C24—H24B107.8
C15—C14—H14119.8C24—C25—H25A109.5
C13—C14—H14119.8C24—C25—H25B109.5
C14—C15—C16121.39 (15)H25A—C25—H25B109.5
C14—C15—H15119.3C24—C25—H25C109.5
C16—C15—H15119.3H25A—C25—H25C109.5
C15—C16—C17118.17 (13)H25B—C25—H25C109.5
C4—N1—C1—C10i178.47 (14)C6—N2—C9—C10180.00 (14)
C4—N1—C1—C21.20 (15)C6—N2—C9—C80.06 (15)
N1—C1—C2—C30.59 (16)C7—C8—C9—N20.06 (16)
N1—C1—C2—C30.59 (16)C7—C8—C9—C10180.00 (14)
C10i—C1—C2—C3179.08 (14)N2—C9—C10—C1i3.7 (2)
C1—C2—C3—C40.25 (16)C8—C9—C10—C1i176.18 (14)
C1—N1—C4—C5176.60 (13)N2—C9—C10—C23178.81 (13)
C1—N1—C4—C31.36 (15)C8—C9—C10—C231.3 (2)
C2—C3—C4—N11.03 (17)C18—C13—C14—C151.6 (2)
C2—C3—C4—N11.03 (17)C12—C13—C14—C15176.26 (15)
C2—C3—C4—C5176.99 (13)C13—C14—C15—C160.1 (2)
N1—C4—C5—C61.2 (2)C14—C15—C16—C171.5 (2)
N1—C4—C5—C61.2 (2)C14—C15—C16—C19179.96 (15)
C3—C4—C5—C6178.96 (14)C15—C16—C17—C181.2 (2)
N1—C4—C5—C11176.41 (13)C19—C16—C17—C18179.69 (14)
N1—C4—C5—C11176.41 (13)C16—C17—C18—C130.5 (2)
C3—C4—C5—C111.3 (2)C14—C13—C18—C171.9 (2)
C9—N2—C6—C5179.94 (13)C12—C13—C18—C17175.87 (14)
C9—N2—C6—C70.04 (15)C15—C16—C19—C2092.00 (18)
C4—C5—C6—N20.0 (2)C17—C16—C19—C2086.47 (17)
C11—C5—C6—N2177.62 (13)C16—C19—C20—C21173.83 (13)
C4—C5—C6—C7179.92 (14)C19—C20—C21—C22176.50 (13)
C11—C5—C6—C72.3 (2)C9—C10—C23—C2492.90 (16)
N2—C6—C7—C80.00 (16)C1i—C10—C23—C2484.67 (16)
C5—C6—C7—C8179.90 (14)C10—C23—C24—C25179.15 (13)
C6—C7—C8—C90.03 (16)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1···N1i0.906 (18)2.290 (18)2.8586 (16)120.5 (15)
N2—H1···N10.906 (18)2.425 (19)2.9779 (17)119.5 (14)
Symmetry code: (i) x, y+1, z.

Experimental details

(I)(II)
Crystal data
Chemical formulaC50H42F8N4C50H50N4
Mr850.88706.94
Crystal system, space groupMonoclinic, P21/nMonoclinic, C2/c
Temperature (K)100100
a, b, c (Å)4.7936 (8), 23.483 (4), 17.628 (3)33.613 (3), 5.2845 (5), 23.152 (2)
β (°) 91.824 (2) 111.252 (1)
V3)1983.4 (6)3832.7 (6)
Z24
Radiation typeMo KαMo Kα
µ (mm1)0.110.07
Crystal size (mm)0.28 × 0.08 × 0.060.28 × 0.14 × 0.06
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Bruker APEXII CCD
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
Empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.970, 0.9930.980, 0.996
No. of measured, independent and
observed [I > 2σ(I)] reflections
10839, 4444, 3019 10125, 4292, 3128
Rint0.0380.028
(sin θ/λ)max1)0.6490.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.108, 1.01 0.044, 0.110, 1.03
No. of reflections44444292
No. of parameters286250
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.250.24, 0.23

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N2—H1···N10.85 (3)2.47 (3)2.980 (2)119 (2)
N2—H1···N1i0.85 (3)2.28 (3)2.840 (2)124 (3)
Symmetry code: (i) x+2, y, z+1.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N2—H1···N1i0.906 (18)2.290 (18)2.8586 (16)120.5 (15)
N2—H1···N10.906 (18)2.425 (19)2.9779 (17)119.5 (14)
Symmetry code: (i) x, y+1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds