Download citation
Download citation
link to html
The crystallographically centrosymmetric zwitterion bis­[tris(3,5-di­methyl-2-oxidobenzyl-κO)­ammonium]­zirconium(IV) crystallizes as the chloro­form disolvate, [Zr(C27H31NO3)2]·2CHCl3, with the two mol­ecules of chloro­form closely associated with two of the aromatic rings. The Zr atom has a distorted octahedral geometry with three phenoxy O atoms from each of the two ligands coordinated to it. Charge balance is maintained by protonation of each N atom, which then forms intramolecular hydrogen-bonding interactions to all three adjacent O atoms.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103022595/bm1541sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103022595/bm1541Isup2.hkl
Contains datablock I

CCDC reference: 199378

Comment top

When two equivalents of tris(2-hydroxy-3,5-dimethylbenzyl)amine, {N[N(YOH)3]} (Y is?), are added to [Zr(OnBu)4] in CH2Cl2, a colourless air-stable precipitate appears in the solution after ca 10 min. Analytical data are consistent with two tris(phenoxide) ligands and one Zr atom. The complex is insoluble in CH2Cl2 but readily dissolves in CHCl3 and was crystallized from the latter solvent as the chloroform disolvate, (I). \sch

The structural arrangement in (I) is shown in Fig. 1. The Zr atom lies on a centre of symmetry surrounded by a distorted octahedral arrangement of six similar phenoxy O atoms, suggesting that this part of the complex has an overall formal charge of 2-, as might be expected for a [Zr(OAr)6]2− dianion. However, whereas [ZrCl6]2− is well known (e.g. [NMe4]2[ZrCl6]; Morss et al., 1991), [Zr(OAr)6]2− is apparently not, the nearest equivalent being [Zr(SAr)6]2− (Friese et al., 2000). The alternative, whereby one of the phenoxy ligands in each ligand is protonated, is inconsistent with the observed 1H NMR spectrum, which shows a symmetrical complex. Inspection of the difference map in the vicinity of the donor O atoms also failed to show signs of any protonation. However, a potential site for the extra H atom was detected near the N atom of each ligand, giving the N atom a positive charge and thus maintaining charge balance. A similar structure has recently been reported for the zwitterion moiety when crystallized with toluene molecules of crystallization (Davidson et al., 2003).

The Zr—O bond lengths in (I) [2.066 (2), 2.064 (2) and 2.049 (2) Å] are similar to those found in phenoxide complexes where the O Zr π donation is also spread over several O atom donors, e.g. in [Zr(O—C6H4NO2-4)(acac)3], where the phenoxide Zr—O bond length is 2.045 (3) Å (Dinger & Scott, 2001)}, and in the toluene analogue of (I) (Davidson et al., 2003), where corresponding values of 2.058 (2), 2.064 (2) and 2.057 (2) Å are observed. The Zr—O—C bond angles of 158.0 (2), 162.6 (2) and 160.3 (2)° do not differ greatly from those observed in [Ti(OCHMe2)(N(YO)3)] [Ti—O—C bond angles 164.4 (6)°; Kol et al., 2001] or in the toluene solvate of (I) [Zr—O—C bond angles 157.2 (2), 154.5 (2) and 160.0 (2)°; Davidson et al., 2003]. The N-bound H atom is trapped in a cage-like arrangement, at distances of 2.27, 2.12 and 2.29 Å from atoms O1, O2 and O3, respectively, such approaches being indicative of H···O hydrogen bonding. The H atom points directly at the Zr [Zr···H—N 174 (2)°] at a distance of 2.76 (3) Å. The Zr···N separation is 3.603 (2) Å.

A further feature of the structure of (I) is the two chloroform molecules found associated with each Zr complex. In this respect the current structure differs from that of the recently reported zwitterion with toluene solvate (Davidson et al., 2003). The H atom of each chloroform points directly at one of the benzene rings of each phenoxide moiety, approaching its C atoms at 2.70, 2.74, 2.98, 3.09, 3.32 and 3.36 Å. The H···ring-centroid distance is 2.71 Å. A survey of the Cambridge Structural Database (Version?; Allen, 2002) shows that a similar feature has been previously crystallographically characterized, but only in a few phenoxide complexes (Sudbrake & Vahrenkamp, 2001, and references therein). There is NMR evidence for such an interaction in solution (Nishio et al., 1995). This weak hydrogen-bond interaction provides a possible explanation as to why the complex is soluble in CHCl3 but is almost completely insoluble in CH2Cl2.

From the coeditor: AUTHOR: the datanames such as _diffrn_reflns_limit_h_min refer to the data as measured, not the unique fraction. Please supply the correct range.

Experimental top

A solution of tetrabutoxyzirconium (0.5 g, 1.19 mmole; 0.63 g of an 80% w/w solution in butanol) in CH2Cl2 (25 ml) was added dropwise to a solution of tris(2-hydroxy-3,5-dimethylbenzylamine) (0.95 g, 2.4 mmole) in CH2Cl2 (80 ml) and the mixture was stirred for 2 h. The colourless solid was filtered, washed with CH2Cl2 (30 ml) and dried in vacuo (yield 1.0 g, 98%). Analysis for C54H62N2O6Zr, found: C 69.83, H 7.05, N 3.03%; calculated: C 70.02, H 6.75, N 3.02%. Spectroscopic analysis: 1H NMR (400.13 MHz, CDCl3, δ, p.p.m.): 1.88 (s, 9H, 3Me), 2.10 (s, 9H, 3Me), 3.18 (b, 3H, 3CH), 4.67 (b, 3H, 3CH), 6.58 (d, 3JH—H = 1.76 Hz, 3H, 3Me-H), 6.74 (d, 3JH—H = 1.76 Hz, 3H, 3Me-H), 11.78, (b, 2H, 2NH); 13C{1H} NMR (100.6 MHz, CDCl3, δ, p.p.m.): 16.4 (Me), 20.3 (Me), 56.1 (CH2), 116.7 (o-C), 124.8 (o-C), 127.9 (C), 129.5 (C), 132.6 (C), 159.0 (ipso-C). Recrystallization of this product from dry chloroform in air gave colourless crystals of the CHCl3 solvate, (I) (yield: 1.28 g, 100%). Analysis for C56H64Cl6N2O6Zr, found: C 57.60, H 5.52, N 2.30%; calculated: C 57.73, H 5.54, N 2.40%.

Refinement top

All H atoms were included in calculated positions and refined using a riding model [Uiso(H) = 1.2Ueq(C) for CH2, with C—H = 0.99 Å, for aromatic CH, with C—H = 0.95 Å, and for chloroform atom H28, with C—H = 1.00 Å, and Uiso(H) = 1.5Ueq(C) for the Me H atom, with C—H = 0.98 Å], except for atom H1, which was located from a difference Fourier synthesis and refined with N—H = 0.845 Å.

Computing details top

Data collection: SMART (Siemens 1994); cell refinement: SMART; data reduction: SAINT (Siemens 1994); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, YEAR?); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1]
Fig. 1. A view of the molecular structure of (I), showing 50% probability displacement ellipsoids. H atoms have been omitted for clarity.

Fig. 2. Caption required.
(I) top
Crystal data top
[Zr(C27H31NO3)2]·2CHCl3F(000) = 1208
Mr = 1165.01Dx = 1.388 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8192 reflections
a = 11.3902 (2) Åθ = 2–25°
b = 13.9774 (1) ŵ = 0.54 mm1
c = 18.0502 (2) ÅT = 150 K
β = 104.134 (1)°Rectangular prism, colourless
V = 2786.69 (6) Å30.40 × 0.24 × 0.18 mm
Z = 2
Data collection top
Siemens SMART CCD area-detector
diffractometer
4880 independent reflections
Radiation source: fine-focus sealed tube3907 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
ω scansθmax = 25.1°, θmin = 1.8°
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
h = 1313
Tmin = 0.814, Tmax = 0.910k = 016
14693 measured reflectionsl = 021
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.058P)2 + 2.019P]
where P = (Fo2 + 2Fc2)/3
4880 reflections(Δ/σ)max = 0.038
332 parametersΔρmax = 0.95 e Å3
0 restraintsΔρmin = 0.68 e Å3
Crystal data top
[Zr(C27H31NO3)2]·2CHCl3V = 2786.69 (6) Å3
Mr = 1165.01Z = 2
Monoclinic, P21/cMo Kα radiation
a = 11.3902 (2) ŵ = 0.54 mm1
b = 13.9774 (1) ÅT = 150 K
c = 18.0502 (2) Å0.40 × 0.24 × 0.18 mm
β = 104.134 (1)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
4880 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
3907 reflections with I > 2σ(I)
Tmin = 0.814, Tmax = 0.910Rint = 0.045
14693 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.95 e Å3
4880 reflectionsΔρmin = 0.68 e Å3
332 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zr10.50000.50000.00000.02112 (12)
O10.63538 (17)0.49429 (13)0.09969 (11)0.0271 (4)
O20.49584 (17)0.64560 (13)0.01822 (11)0.0277 (4)
O30.37773 (17)0.48842 (13)0.06602 (11)0.0279 (4)
N10.50973 (19)0.62714 (15)0.17501 (13)0.0209 (5)
C10.5968 (2)0.5714 (2)0.23602 (15)0.0261 (6)
H1A0.60370.60300.28600.031*
H1B0.56410.50630.23910.031*
C20.7203 (2)0.56386 (18)0.22100 (15)0.0242 (6)
C30.7337 (2)0.52180 (19)0.15277 (15)0.0253 (6)
C40.8516 (3)0.5080 (2)0.14256 (17)0.0314 (6)
C50.9495 (3)0.5437 (2)0.19857 (18)0.0355 (7)
H51.02850.53720.19050.043*
C60.9376 (3)0.5879 (2)0.26499 (18)0.0338 (7)
C70.8216 (2)0.59609 (19)0.27597 (16)0.0274 (6)
H70.81070.62420.32180.033*
C80.8706 (3)0.4580 (3)0.07308 (19)0.0458 (8)
H8A0.83310.49530.02750.069*
H8B0.83350.39440.06930.069*
H8C0.95750.45160.07690.069*
C91.0456 (3)0.6272 (3)0.3234 (2)0.0488 (9)
H9A1.08790.57480.35490.073*
H9B1.01800.67380.35600.073*
H9C1.10090.65860.29700.073*
C100.5523 (2)0.72804 (19)0.16716 (15)0.0256 (6)
H10A0.54720.76510.21300.031*
H10B0.63830.72630.16510.031*
C110.4798 (2)0.77852 (19)0.09713 (15)0.0230 (5)
C120.4569 (2)0.73508 (18)0.02470 (15)0.0232 (6)
C130.3955 (2)0.78637 (19)0.04029 (15)0.0265 (6)
C140.3582 (3)0.8799 (2)0.03070 (16)0.0285 (6)
H140.31550.91420.07450.034*
C150.3808 (3)0.92497 (19)0.04009 (16)0.0285 (6)
C160.4416 (2)0.87291 (19)0.10361 (16)0.0259 (6)
H160.45770.90200.15260.031*
C170.3728 (3)0.7415 (2)0.11837 (16)0.0374 (7)
H17A0.32290.78460.15610.056*
H17B0.33040.68050.11830.056*
H17C0.45020.73030.13150.056*
C180.3390 (3)1.0272 (2)0.04710 (19)0.0426 (8)
H18A0.29291.04970.00300.064*
H18B0.40961.06850.06550.064*
H18C0.28741.02920.08330.064*
C190.3820 (2)0.62293 (19)0.18349 (16)0.0255 (6)
H19A0.32890.65800.14040.031*
H19B0.37800.65600.23130.031*
C200.3342 (2)0.52238 (19)0.18528 (16)0.0239 (6)
C210.3280 (2)0.4613 (2)0.12224 (15)0.0235 (6)
C220.2682 (2)0.3725 (2)0.11978 (17)0.0288 (6)
C230.2196 (2)0.3482 (2)0.18130 (18)0.0329 (7)
H230.17700.28950.17900.039*
C240.2302 (3)0.4051 (2)0.24538 (17)0.0316 (7)
C250.2881 (2)0.4930 (2)0.24632 (16)0.0280 (6)
H250.29630.53380.28940.034*
C260.2572 (3)0.3073 (2)0.05191 (19)0.0406 (8)
H26A0.33690.28090.05200.061*
H26B0.22630.34370.00480.061*
H26C0.20130.25500.05480.061*
C270.1775 (3)0.3743 (2)0.3111 (2)0.0465 (9)
H27A0.10360.41090.30970.070*
H27B0.23670.38610.35960.070*
H27C0.15800.30590.30640.070*
C280.1333 (3)0.8117 (2)0.0938 (2)0.0428 (8)
H280.20520.81350.07130.051*
Cl10.02686 (10)0.89636 (8)0.04580 (7)0.0707 (3)
Cl20.07125 (10)0.69675 (7)0.08120 (9)0.0800 (4)
Cl30.18107 (9)0.83990 (8)0.19055 (6)0.0608 (3)
H10.507 (2)0.6016 (19)0.1322 (16)0.016 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zr10.0221 (2)0.0208 (2)0.01944 (19)0.00095 (14)0.00306 (14)0.00211 (14)
O10.0256 (10)0.0294 (10)0.0242 (9)0.0001 (8)0.0018 (8)0.0019 (8)
O20.0298 (10)0.0244 (10)0.0278 (10)0.0036 (8)0.0049 (8)0.0025 (8)
O30.0272 (10)0.0309 (11)0.0253 (10)0.0014 (8)0.0061 (8)0.0017 (8)
N10.0202 (11)0.0230 (12)0.0186 (11)0.0003 (9)0.0030 (9)0.0013 (9)
C10.0246 (14)0.0289 (14)0.0239 (14)0.0002 (11)0.0040 (11)0.0047 (11)
C20.0219 (13)0.0201 (13)0.0279 (14)0.0020 (10)0.0008 (11)0.0037 (11)
C30.0221 (14)0.0257 (14)0.0244 (14)0.0016 (11)0.0013 (11)0.0030 (11)
C40.0261 (15)0.0383 (16)0.0291 (15)0.0066 (13)0.0053 (12)0.0051 (13)
C50.0203 (14)0.0436 (18)0.0406 (17)0.0048 (13)0.0037 (13)0.0068 (15)
C60.0251 (15)0.0304 (16)0.0403 (17)0.0007 (12)0.0027 (13)0.0042 (13)
C70.0282 (15)0.0253 (14)0.0255 (14)0.0016 (11)0.0001 (11)0.0006 (11)
C80.0340 (18)0.064 (2)0.0398 (18)0.0144 (17)0.0101 (14)0.0025 (17)
C90.0269 (17)0.054 (2)0.057 (2)0.0029 (15)0.0047 (15)0.0072 (18)
C100.0240 (14)0.0223 (13)0.0284 (14)0.0042 (11)0.0022 (11)0.0025 (11)
C110.0186 (13)0.0249 (13)0.0256 (13)0.0029 (10)0.0054 (10)0.0006 (11)
C120.0197 (13)0.0206 (13)0.0292 (14)0.0017 (10)0.0060 (11)0.0005 (11)
C130.0269 (14)0.0242 (14)0.0274 (14)0.0002 (11)0.0044 (11)0.0006 (12)
C140.0272 (15)0.0283 (15)0.0286 (14)0.0043 (12)0.0038 (12)0.0062 (12)
C150.0277 (15)0.0255 (14)0.0328 (15)0.0013 (11)0.0086 (12)0.0003 (12)
C160.0248 (14)0.0262 (14)0.0263 (14)0.0012 (11)0.0058 (11)0.0040 (12)
C170.0506 (19)0.0327 (16)0.0259 (15)0.0071 (14)0.0038 (13)0.0018 (13)
C180.055 (2)0.0324 (16)0.0381 (18)0.0115 (15)0.0070 (15)0.0020 (14)
C190.0206 (13)0.0261 (14)0.0313 (14)0.0027 (11)0.0090 (11)0.0015 (12)
C200.0148 (12)0.0277 (14)0.0284 (14)0.0040 (10)0.0038 (10)0.0006 (11)
C210.0154 (13)0.0274 (13)0.0272 (14)0.0030 (11)0.0040 (10)0.0033 (11)
C220.0191 (13)0.0263 (14)0.0390 (16)0.0011 (11)0.0033 (12)0.0002 (12)
C230.0214 (14)0.0264 (15)0.0508 (19)0.0019 (11)0.0090 (13)0.0092 (13)
C240.0226 (14)0.0344 (16)0.0402 (17)0.0087 (12)0.0120 (13)0.0086 (14)
C250.0213 (14)0.0337 (15)0.0302 (14)0.0065 (12)0.0087 (11)0.0020 (12)
C260.0369 (18)0.0354 (17)0.0483 (19)0.0079 (14)0.0083 (15)0.0102 (15)
C270.045 (2)0.0422 (19)0.061 (2)0.0050 (15)0.0311 (18)0.0118 (17)
C280.0363 (18)0.0401 (18)0.052 (2)0.0066 (15)0.0118 (15)0.0047 (16)
Cl10.0697 (7)0.0652 (7)0.0746 (7)0.0233 (5)0.0123 (5)0.0325 (6)
Cl20.0520 (6)0.0440 (6)0.1264 (10)0.0070 (4)0.0121 (6)0.0067 (6)
Cl30.0613 (6)0.0692 (6)0.0497 (5)0.0150 (5)0.0097 (4)0.0101 (5)
Geometric parameters (Å, º) top
Zr1—O12.066 (2)C10—C111.506 (4)
Zr1—O22.064 (2)C11—C161.403 (4)
Zr1—O32.049 (2)C11—C121.407 (4)
Zr1—H12.76 (3)C12—C131.406 (4)
O1—C31.340 (3)C13—C141.399 (4)
O1—H12.27 (3)C13—C171.506 (4)
O2—C121.342 (3)C14—C151.391 (4)
O2—H12.12 (3)C15—C161.391 (4)
O3—C211.333 (3)C15—C181.521 (4)
O3—H12.29 (3)C19—C201.511 (4)
N1—C191.501 (3)C20—C251.393 (4)
N1—C11.506 (3)C20—C211.411 (4)
N1—C101.509 (3)C21—C221.410 (4)
C1—C21.500 (4)C22—C231.398 (4)
C2—C71.400 (4)C22—C261.507 (4)
C2—C31.406 (4)C23—C241.384 (4)
C3—C41.413 (4)C24—C251.392 (4)
C4—C51.402 (4)C24—C271.517 (4)
C4—C81.497 (4)C28—Cl11.764 (3)
C5—C61.385 (4)C28—Cl21.747 (3)
C6—C71.388 (4)C28—Cl31.742 (4)
C6—C91.515 (4)
O1—Zr1—O286.60 (7)C11—C10—N1113.2 (2)
O1—Zr1—O387.66 (8)C16—C11—C12119.5 (2)
O2—Zr1—O386.56 (7)C16—C11—C10119.2 (2)
O1—Zr1—H153.8 (5)C12—C11—C10121.1 (2)
O2—Zr1—H149.6 (6)O2—C12—C13120.7 (2)
O3—Zr1—H154.5 (6)O2—C12—C11119.5 (2)
C3—O1—Zr1158.04 (17)C13—C12—C11119.8 (2)
C3—O1—H196.0 (7)C14—C13—C12118.5 (2)
Zr1—O1—H179.0 (7)C14—C13—C17121.1 (2)
C12—O2—Zr1162.56 (17)C12—C13—C17120.3 (2)
C12—O2—H197.4 (8)C15—C14—C13122.9 (3)
Zr1—O2—H182.6 (8)C14—C15—C16117.6 (2)
C21—O3—Zr1160.29 (18)C14—C15—C18120.7 (3)
C21—O3—H198.0 (7)C16—C15—C18121.7 (3)
Zr1—O3—H178.8 (7)C15—C16—C11121.7 (3)
C19—N1—C1112.7 (2)N1—C19—C20113.7 (2)
C19—N1—C10112.8 (2)C25—C20—C21120.3 (2)
C1—N1—C10112.5 (2)C25—C20—C19119.9 (2)
C2—C1—N1112.5 (2)C21—C20—C19119.6 (2)
C7—C2—C3120.6 (3)O3—C21—C20119.7 (2)
C7—C2—C1119.7 (2)O3—C21—C22121.2 (2)
C3—C2—C1119.7 (2)C20—C21—C22119.1 (2)
O1—C3—C2119.7 (2)C23—C22—C21118.0 (3)
O1—C3—C4121.5 (2)C23—C22—C26121.9 (3)
C2—C3—C4118.8 (2)C21—C22—C26120.1 (3)
C5—C4—C3118.1 (3)C24—C23—C22123.6 (3)
C5—C4—C8121.2 (3)C23—C24—C25117.5 (3)
C3—C4—C8120.6 (3)C23—C24—C27121.3 (3)
C6—C5—C4123.6 (3)C25—C24—C27121.2 (3)
C5—C6—C7117.3 (3)C24—C25—C20121.3 (3)
C5—C6—C9122.0 (3)Cl3—C28—Cl2110.9 (2)
C7—C6—C9120.7 (3)Cl3—C28—Cl1110.45 (18)
C6—C7—C2121.4 (3)Cl2—C28—Cl1110.18 (19)

Experimental details

Crystal data
Chemical formula[Zr(C27H31NO3)2]·2CHCl3
Mr1165.01
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)11.3902 (2), 13.9774 (1), 18.0502 (2)
β (°) 104.134 (1)
V3)2786.69 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.54
Crystal size (mm)0.40 × 0.24 × 0.18
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995)
Tmin, Tmax0.814, 0.910
No. of measured, independent and
observed [I > 2σ(I)] reflections
14693, 4880, 3907
Rint0.045
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.115, 1.04
No. of reflections4880
No. of parameters332
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.95, 0.68

Computer programs: SMART (Siemens 1994), SMART, SAINT (Siemens 1994), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, YEAR?), SHELXL97.

Selected geometric parameters (Å, º) top
Zr1—O12.066 (2)O1—H12.27 (3)
Zr1—O22.064 (2)O2—C121.342 (3)
Zr1—O32.049 (2)O2—H12.12 (3)
Zr1—H12.76 (3)O3—C211.333 (3)
O1—C31.340 (3)O3—H12.29 (3)
O1—Zr1—O286.60 (7)C3—O1—Zr1158.04 (17)
O1—Zr1—O387.66 (8)C12—O2—Zr1162.56 (17)
O2—Zr1—O386.56 (7)C21—O3—Zr1160.29 (18)
O1—Zr1—H153.8 (5)C19—N1—C1112.7 (2)
O2—Zr1—H149.6 (6)C19—N1—C10112.8 (2)
O3—Zr1—H154.5 (6)C1—N1—C10112.5 (2)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds