Download citation
Download citation
link to html
Molecules of the title compound (alternative name: p-nitro­benz­aldehyde phenyl­hydrazone), C13H11N3O2, adopt an E configuration about the azomethine C=N double bond. Molecules are approximately planar and the dihedral angle between the planes of the phenyl rings is 11.62 (9)°. Hydro­gen bonding links mol­ecules related by 42 screw axes to form helices with a pitch of 7.7186 (8) Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103016019/bm1538sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103016019/bm1538Isup2.hkl
Contains datablock I

CCDC reference: 221086

Comment top

Hydrazones are formed when hydrazines condense with aldehydes and ketones, e.g. by the condensation of aldehydes (or substituted aldehydes) with pheyl hydrazine at a pH of 4–5 (McMurry, 1999), and typically are crystalline compounds with sharp melting points. Hydrazones are frequently more suitable than oximes for this purpose, since the greater molecular weight of the hydrazones causes a lower solubility in most solvents,and they can therefore often be more easily isolated and recrystallized. Hydrazones have been widely studied as chelating ligants for the spectrophotometric and fluorimetric determination of trace metal ions (Katyal & Dutt, 1975; Galiano-Roth & Collum, 1988). Many of these compounds have found widespread application in medicine, technology and analytical chemistry (Kitaev, 1977).

Molecules of the title compound, (I), adopt an E configuration about the azomethine CN double bond, with an N1—N2—C7—C8 torsion angle of 178.67 (11)°. The N1—N2 [1.348 (14) Å], O1—N3 [1.219 (15) Å] and O2—N3 bond lengths [1.219 (14) Å], which are consistent with those of 1.216 (8) and 1.214 (7) Å in the related compound 2-nitrobenzaldehyde methylhydrazone, indicate that these bonds correspond to double and single bonds. The dihedral angle between the planes of the phenyl rings is 11.62 (9)°, and the nitrophenyl and phenyl rings make dihedral angles with the central hydrazone bridge (N1/N2/C7) of 3.25 (11) and 9.47 (13)°, respectively. There is only slight asymmetry in the exocyclic angles at C11 [C12—C11—N3 = 119.68 (13)° and C10—C11—N3 = 118.40 (13)°], in contrast to the situation in 2-nitrobenzaldehyde phenylhydrazone (Tosi et al., 1988), where enhanced asymmetry is ascribed to steric contacts involving the 2-nitro group. The more pronounced asymmetry at C8 [C13—C8—C7 = 122.35 (12)° and C9—C8—C7 = 119.55 (12)°] is also seen in studies with a methoxy group on the phenyl ring (Shanmuga Sundara Raj et al., 1999, 2000; Tun˛c et al., 2003).

Intermolecular hydrogen bonding, between the H atom attached to the N atom of the hydrazone bridge (N1) and the O atom (O1) of a nitro group related by the 42 screw axis, link molecules into helices with a pitch of 7.7186 (8) Å running along the c axis (Fig. 2). The N—H···O and N···O distances are short compared with sum of the relevant van der Waals radii (Bondi,1964).

Experimental top

A solution of 4-nitrobenzaldehyde (3.02 g, 0.02 mol) in hot methanol (50 ml) was added dropwise to a solution of phenylhydrazine (2.16 g, 0.02 mol) in hot methanol (50 ml) at a pH of 5–6. The resulting red solid was filtered off, dried and recrystallized after refluxing in hot methanol for 3 h. The red crystals thus obtained were filtered off and dried in air.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2001); software used to prepare material for publication: SHELXS97.

Figures top
[Figure 1] Fig. 1. The molecular sructure and atomic labelling scheme of the title compound (ORTEP-3; Farrugia, 1997). Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram showing the hydrogen bonding which links molecules related by 42 screw axes into helices.
(I) top
Crystal data top
C13H11N3O2Dx = 1.355 Mg m3
Mr = 241.25Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P42/nCell parameters from 2629 reflections
Hall symbol: -P 4bcθ = 1.7–27.2°
a = 17.5017 (17) ŵ = 0.10 mm1
c = 7.7186 (8) ÅT = 293 K
V = 2364.3 (4) Å3Square prism, dark red
Z = 80.40 × 0.40 × 0.25 mm
F(000) = 1008
Data collection top
Stoe IPDS2
diffractometer
2629 independent reflections
Radiation source: fine-focus sealed tube1280 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
Detector resolution: 6.67 pixels mm-1θmax = 27.2°, θmin = 1.7°
rotation method scansh = 2222
Absorption correction: integration
[Specify computer program used]
k = 2222
Tmin = 0.963, Tmax = 0.977l = 99
2636 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.070 w = 1/[σ2(Fo2) + (0.0254P)2 + ]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
2629 reflectionsΔρmax = 0.09 e Å3
164 parametersΔρmin = 0.11 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.010 (2)
Crystal data top
C13H11N3O2Z = 8
Mr = 241.25Mo Kα radiation
Tetragonal, P42/nµ = 0.10 mm1
a = 17.5017 (17) ÅT = 293 K
c = 7.7186 (8) Å0.40 × 0.40 × 0.25 mm
V = 2364.3 (4) Å3
Data collection top
Stoe IPDS2
diffractometer
2629 independent reflections
Absorption correction: integration
[Specify computer program used]
1280 reflections with I > 2σ(I)
Tmin = 0.963, Tmax = 0.977Rint = 0.038
2636 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.070H-atom parameters constrained
S = 1.00Δρmax = 0.09 e Å3
2629 reflectionsΔρmin = 0.11 e Å3
164 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.33210 (6)0.57511 (7)0.68510 (17)0.1070 (4)
O20.31395 (6)0.68290 (7)0.56216 (18)0.1187 (5)
N10.08522 (6)0.50860 (6)0.13878 (14)0.0694 (3)
N20.02088 (6)0.54146 (6)0.19933 (14)0.0652 (3)
N30.29504 (7)0.61715 (8)0.59140 (19)0.0842 (4)
C10.13815 (7)0.55098 (7)0.04695 (18)0.0658 (4)
C20.20855 (8)0.51898 (9)0.00835 (19)0.0782 (4)
C30.26147 (9)0.56013 (11)0.08280 (2)0.0961 (5)
C40.24605 (11)0.63237 (11)0.13760 (3)0.1121 (7)
C50.17608 (11)0.66349 (10)0.10090 (3)0.1187 (8)
C60.12227 (9)0.62350 (8)0.00900 (2)0.0926 (5)
C70.02552 (7)0.49942 (8)0.28568 (17)0.0660 (4)
C80.09519 (7)0.53061 (7)0.35850 (16)0.0618 (3)
C90.14244 (7)0.48417 (8)0.45634 (18)0.0697 (4)
C100.20768 (7)0.51175 (8)0.53237 (18)0.0712 (4)
C110.22577 (7)0.58752 (8)0.50909 (18)0.0678 (4)
C120.18095 (8)0.63542 (8)0.41120 (2)0.0773 (4)
C130.11606 (7)0.60706 (8)0.33716 (18)0.0722 (4)
H10.09340.46090.15750.083*
H20.21980.46950.04440.094*
H30.30870.53840.10780.115*
H40.28240.66020.19890.145*
H50.16490.71260.13910.154*
H60.07510.64560.01530.111*
H70.01430.44800.30190.079*
H90.12960.43300.47090.084*
H100.23890.48000.59810.085*
H120.19460.68630.39570.093*
H130.08520.63920.27140.087*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.075 (7)0.121 (9)0.126 (1)0.016 (8)0.019 (7)0.006 (6)
O20.094 (8)0.102 (9)0.160 (1)0.016 (8)0.020 (8)0.026 (7)
N10.074 (7)0.064 (6)0.070 (8)0.004 (6)0.001 (6)0.008 (6)
N20.064 (7)0.068 (7)0.064 (8)0.006 (6)0.007 (6)0.002 (6)
N30.063 (8)0.092 (1)0.097 (1)0.000 (8)0.009 (7)0.001 (7)
C10.066 (8)0.065 (8)0.067 (9)0.014 (7)0.006 (7)0.002 (7)
C20.074 (9)0.081 (9)0.080 (1)0.017 (8)0.006 (8)0.008 (8)
C30.073 (1)0.103 (1)0.112 (1)0.037 (1)0.009 (1)0.006 (9)
C40.106 (1)0.086 (1)0.171 (2)0.029 (1)0.052 (1)0.027 (1)
C50.122 (2)0.068 (1)0.195 (2)0.001 (1)0.062 (2)0.008 (1)
C60.085 (1)0.063 (9)0.113 (1)0.003 (9)0.022 (1)0.002 (7)
C70.072 (8)0.063 (8)0.063 (9)0.005 (7)0.010 (7)0.000 (7)
C80.063 (8)0.065 (8)0.058 (8)0.003 (7)0.014 (7)0.005 (6)
C90.071 (9)0.064 (8)0.074 (1)0.003 (7)0.010 (8)0.005 (7)
C100.067 (9)0.074 (9)0.072 (1)0.007 (8)0.009 (7)0.013 (7)
C110.055 (7)0.078 (9)0.071 (9)0.001 (8)0.009 (7)0.001 (7)
C120.070 (9)0.069 (9)0.094 (1)0.008 (8)0.004 (8)0.002 (7)
C130.067 (8)0.068 (8)0.081 (1)0.008 (8)0.002 (8)0.004 (7)
Geometric parameters (Å, º) top
O1—N31.2188 (15)C5—C61.371 (2)
O2—N31.2185 (14)C5—H50.9300
N1—N21.3479 (14)C6—H60.9300
N1—C11.3823 (16)C7—C81.4494 (17)
N1—H10.8600C7—H70.9300
N2—C71.2826 (15)C8—C91.3837 (17)
N3—C111.4637 (17)C8—C131.3967 (17)
C1—C61.3690 (19)C9—C101.3714 (17)
C1—C21.3859 (18)C9—H90.9300
C2—C31.368 (2)C10—C111.3753 (18)
C2—H20.9300C10—H100.9300
C3—C41.360 (2)C11—C121.3742 (17)
C3—H30.9300C12—C131.3649 (17)
C4—C51.370 (2)C12—H120.9300
C4—H40.9300C13—H130.9300
N2—N1—C1120.58 (11)C1—C6—H6120.1
N2—N1—H1119.7C5—C6—H6120.1
C1—N1—H1119.7N2—C7—C8121.21 (12)
C7—N2—N1117.67 (11)N2—C7—H7119.4
O2—N3—O1122.38 (14)C8—C7—H7119.4
O2—N3—C11118.64 (14)C9—C8—C13118.09 (12)
O1—N3—C11118.98 (13)C9—C8—C7119.55 (12)
C6—C1—N1121.54 (12)C13—C8—C7122.35 (12)
C6—C1—C2119.17 (14)C10—C9—C8121.62 (13)
N1—C1—C2119.28 (13)C10—C9—H9119.2
C3—C2—C1119.98 (15)C8—C9—H9119.2
C3—C2—H2120.0C9—C10—C11118.37 (13)
C1—C2—H2120.0C9—C10—H10120.8
C4—C3—C2120.99 (16)C11—C10—H10120.8
C4—C3—H3119.5C12—C11—C10121.91 (13)
C2—C3—H3119.5C12—C11—N3119.68 (13)
C3—C4—C5118.86 (17)C10—C11—N3118.40 (13)
C3—C4—H4120.6C13—C12—C11118.91 (13)
C5—C4—H4120.6C13—C12—H12120.5
C4—C5—C6121.20 (17)C11—C12—H12120.5
C4—C5—H5119.4C12—C13—C8121.09 (13)
C6—C5—H5119.4C12—C13—H13119.5
C1—C6—C5119.80 (15)C8—C13—H13119.5
C1—N1—N2—C7179.04 (11)C13—C8—C9—C100.62 (19)
N2—N1—C1—C610.36 (19)C7—C8—C9—C10177.91 (12)
N2—N1—C1—C2170.59 (11)C8—C9—C10—C110.14 (19)
C6—C1—C2—C30.8 (2)C9—C10—C11—C120.7 (2)
N1—C1—C2—C3179.83 (13)C9—C10—C11—N3179.49 (12)
C1—C2—C3—C40.3 (3)O2—N3—C11—C124.5 (2)
C2—C3—C4—C50.4 (3)O1—N3—C11—C12176.23 (14)
C3—C4—C5—C60.7 (3)O2—N3—C11—C10175.35 (14)
N1—C1—C6—C5179.49 (15)O1—N3—C11—C103.91 (19)
C2—C1—C6—C50.4 (2)C10—C11—C12—C130.9 (2)
C4—C5—C6—C10.3 (3)N3—C11—C12—C13179.20 (12)
N1—N2—C7—C8178.67 (11)C11—C12—C13—C80.4 (2)
N2—C7—C8—C9177.60 (12)C9—C8—C13—C120.32 (19)
N2—C7—C8—C130.86 (19)C7—C8—C13—C12178.16 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.293.115 (2)162
Symmetry code: (i) y1/2, x, z1/2.

Experimental details

Crystal data
Chemical formulaC13H11N3O2
Mr241.25
Crystal system, space groupTetragonal, P42/n
Temperature (K)293
a, c (Å)17.5017 (17), 7.7186 (8)
V3)2364.3 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.40 × 0.40 × 0.25
Data collection
DiffractometerStoe IPDS2
diffractometer
Absorption correctionIntegration
[Specify computer program used]
Tmin, Tmax0.963, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
2636, 2629, 1280
Rint0.038
(sin θ/λ)max1)0.643
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.070, 1.00
No. of reflections2629
No. of parameters164
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.09, 0.11

Computer programs: X-AREA (Stoe & Cie, 2002), X-AREA, X-RED (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2001), SHELXS97.

Selected geometric parameters (Å, º) top
O1—N31.2188 (15)N2—C71.2826 (15)
O2—N31.2185 (14)N3—C111.4637 (17)
N1—N21.3479 (14)C7—C81.4494 (17)
N1—C11.3823 (16)
N2—N1—C1120.58 (11)N2—C7—C8121.21 (12)
C7—N2—N1117.67 (11)C9—C8—C7119.55 (12)
O2—N3—O1122.38 (14)C13—C8—C7122.35 (12)
O2—N3—C11118.64 (14)C12—C11—N3119.68 (13)
O1—N3—C11118.98 (13)C10—C11—N3118.40 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.293.115 (2)162
Symmetry code: (i) y1/2, x, z1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds