Download citation
Download citation
link to html
The title compound, tetra­carbonyl-1κ4C-tris­(tri­phenyl­phos­phino)-1κP,2κP,3κP-triangulo-chromiumdigold(AuAu)(2 CrAu) tetra­hydro­furan solvate, [Au2Cr(C18H15P)3(CO)4]·C4H8O, is a stable isolobal analogue of the extremely labile [(η2-H2)CrLn–1] molecular hydrogen complex (n = 6; L is a neutral ligand, e.g. CO or PPh3), and features the shortest known separation [2.6937 (2) Å] between two Au atoms in a triangular heteronuclear metal-cluster framework.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103010370/bm1531sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103010370/bm1531Isup2.hkl
Contains datablock I

CCDC reference: 217131

Comment top

Triangular metal cluster compounds are of manifold interest as a result of their interesting metal–metal bonding modes and their application as catalysts or catalyst precursors (Pignolet & Krogstad, 1999). In particular, cluster complexes containing Au atoms have received a lot of attention because of the frequent occurrence of Au—Au aurophilic interactions in such compounds (Pyykkö, 1988). Early work by Lewis and Nyholm (Coffey et al., 1964) paved the way for the systematic synthesis of heteronuclear cluster complexes containing Au atoms and lead to the many structurally characterized examples, exhibiting a wide variety of gold/metal ratios, that are known today (Pignolet & Krogstad, 1999). Stone et al. (Green et al., 1982) demonstrated the use of transition metal hydrides in the synthesis of the first bimetallic chromium–gold compounds, when they prepared [(Ph3PAu)(µ-H)Cr(CO)5]. This complex provided both a rare example of a hydrido complex of gold and an isolobal model for the unstable (η2-H2)Cr(CO)5 molecular hydrogen complex (Green et al., 1982; Sweany, 1985; Sweany & Moroz, 1987). The analogous η2-digold–Cr(CO)5 complex has, however, never been reported. The title complex, (I), which is reported here, is therefore the first example of a η2-digold complex with chromium. The closest structurally characterized analogue to (I) is the cationic η2-(Ph3PAu)2PMe3MoCp(CO)2 complex reported by Poli et al. (Galassi et al., 1997).

In the course of our investigations regarding the electrophilic addition of Ph3PAu+ to anionic Fischer type carbene complexes (Raubenheimer et al. 2002), we isolated (I) as a brightly coloured by-product of the reaction between N-deprotonated Fischer type aminocarbene complexes and Ph3PAuCl. Low-temperature (−15°C) silica-gel chromatographic separation of the crude reaction mixture revealed (I) as a bright-red polar band, which could be eluted from the column with tetrahydrofuran (THF). Crystallization from THF layered with n-pentane yielded the pure compound in up to 10% yield. Complex (I) is soluble in polar organic solvents like THF, CH2Cl2 and CHCl3, insoluble in non-polar solvents like n-pentane and n-hexane, and moderately sensitive to air and moisture. However, in the solid state, (I) can be stored at freezer temperatures under an atmosphere of dry argon for prolonged periods.

The molecular structure of (I) (Fig. 1) exhibits a PPh3Cr(CO)4 fragment in a pseudo-octahedral configuration, with two Ph3PAu fragments interacting with the central Cr atom and with one another, thus filling the sixth coordination position on the Cr atom and forming a trinuclear triangular CrAu2 metal cluster centre. This bonding mode of the two Ph3PAu fragments to a neutral metal centre has also been described as a three-centre two-electron system in which the PPh3Au–AuPPh3 grouping is regarded as a single η2-(AuPPh3)2 `ligand' (Hall & Mingos, 1984). This description of the metal–metal bonding in (I) relates the current complex to the extremely labile isolobal (η2-H2)(PiPr3)2Cr(CO)3 complex (Kubas et al. 1994).

The metal–metal separations and bond angles within the trimetallo-cyclopropane ring in (I) show that an almost perfect equilateral triangle is formed [Au1—Cr = 2.6932 (6) Å, Au2—Cr = 2.7038 (7) Å, Au1—Au2 = 2.6937 (2) Å, Au1—Cr—Au2 = 59.881 (15)°, Cr—Au1-=-Au2 = 60.254 (16)° and Cr—Au2—Au1 = 59.865 (15)°]. Of greatest interest here is the Au1—Au2 distance, which is the shortest known crystallographically determined separation between two AuI atoms in a trinuclear cluster compound. Slightly shorter Au—Au separations have been reported for gold cluster compounds in which three or more Au atoms are linked to one another, but the bonding situation is difficult to describe in such compounds (Cheetham et al., 1993; Gabbai et al., 1995). The Au1—Au2 distance in (I) is 0.1903 (2) Å shorter than that in metallic gold (2.884 Å; Jones, 1983) and thus clearly within bonding distance [the sum of the van der Waals radii for two Au atoms is 3.32 Å (Jones, 1981)]. This result supports our description of (I) as an {η2-(AuPPh3)2}PPh3Cr(CO)4 complex.

The shortening of Au—Au distances in triangular MAu2 cluster compounds has been linked to the electron density at the metal centre (M; Gallasi, 1997). A higher electron density on M corresponds to better interaction with electrophilic Ph3PAu fragments and also decreases the Auδ+—Auδ+ repulsion. Thus, the electron density on the Au atoms effectively increases and the Au—Au aurophilic interaction is strengthened to a point where the Au2 configuration in the MAu2 cluster can be formally regarded as an Au—Au σ-bond coordinated to a neutral metal centre (M). The presence of an excellent σ-donating PPh3 ligand in (I) is consistent with an increase in the electron density on the Cr atom, thus reinforcing our explanation for the extremely short Au—Au separation observed in this compound. The P—Cr bond [Cr—P3 = 2.3986 (12) Å] is significantly longer than that in other structurally characterized R3PCr(CO)5 complexes (Affandi et al., 1988; Hengefeld et al., 1983; Lee & Brown, 1992). This fact, together with the downfield-shifted 31P NMR resonance for this P atom and the relatively low frequency at which the CO stretching frequencies in (I) appear, as discussed below, also supports our interpretation of the metal–metal bonding mode in (I). A C4—C3—Au1—Au2 torsion angle of 29.19 (8)° describes how the η2-(AuPPh3)2 `ligand' is orientated relative to the PPh3Cr(CO)3 coordination plane. Distortion of this coordination plane is described by respective deviations of −0.0240 (16), −0.023 (2), 0.032 (2), 0.032 (2) and −0.0167 (15) Å from the least-squares plane through atoms Cr, C2, C3, C4 and P3. An angle of 86.91 (6)° describes the orientation of the Cr—Au1—Au2 triangle relative to the least- squares mean plane through atoms Cr, C2, C3, C4 and P3.

The Cr—Au1—P1 and Cr—Au2—P2 angles of 168.12 (4)° and 169.74 (3)° reflect the distortion of the normally linear AuI coordination mode due to the strong Au···Au interaction, which draws the Au atoms into closer proximity with each other while the bulky PPh3 ligands are unable to form such a tight fit. Furthermore, the three PPh3 ligands in (I) rotate so as to minimize the steric hindrance with one another and with the CO ligands; the staggered PPh3 conformations are indicated by the C91—P1—Cr—P3 [178.20 (18)°], C21—P2—Cr—P3 [171.33 (14)°] and C81—P1—P2—C31 [179.7 (5)°] torsion angles.

In the crystal, molecules of (I) pack together with a non-coordinated and slightly disordered THF solvent molecule (Fig. 1). All attempts to model this disorder were unsuccessful, as it appears to be the result of a combination of dynamic and static effects. There are no significant intermolecular interactions present in the lattice of (I).

The IR spectrum of (I) was recorded as a KBr pellet. The C2v local symmetry about the metal in complexes of the type cis-L2M(CO)4 allows for four IR– active vibrational modes in the carbonyl region [2 × A1, B1 and B2]. All four of these were clearly visible in the IR spectrum of (I), where they appeared at relatively low frequencies compared with the modes observed in other reported chromium carbonyl compounds (Raubenheimer et al., 2002). This shift to lower energy is ascribed both to efficient electron donation from the PPh3 ligand coordinated to the Cr atom in (I), which increases the electron density on this atom, and to the back-donation of electrons to the CO and AuPPh3 fragments. In the gold fragments, this electron density is believed to play an important role in cancelling out Auδ+—Auδ+ repulsive effects between the two Ph3PAu fragments, which allows the Au atoms to interact more effectively and explains the extremely short Au—Au separation found in (I).

Experimental top

All reactions and manipulations were carried out under a dry argon atmosphere using standard Schlenk and vacuum-line techniques. All solvents were dried and purified by conventional methods and were freshly distilled under argon shortly before use. Melting points were measured with a Büchi 535 melting point determination apparatus and are uncorrected. NMR spectra were recorded on a Varian INOVA 600 spectrometer (1H, 600 MHz; 13C{1H}, 151 MHz; 31P{1H}, 243 MHz) at 298 K. Chemical shifts are reported in units of p.p.m. relative to residual 1H and 13C signals from the deuterated solvents. The IR spectra were recorded on a Perkin Elmer 1600 Series FTIR spectrometer. Elemental analyses were performed on a Fisons CHNS elemental analyser 1108. Ph3PAuCl and the various Fischer type aminocarbene complexes were prepared according to published procedures (Fischer & Leopold, 1972). BuLi (ca 1.6 M solution in diethyl ether) was purchased from Merck and standardized before use. For the preparation of (I), solution of the Fischer type aryl/alkyl aminocarbene complex (0.8 mmol) in THF (15 ml) was slowly reacted at 195 K with BuLi (1 mole equivalent 1.6M, 0.4 ml). The mixture was stirred for 10 min and then Ph3PAuCl (395 mg, 0.8 mmol) was added to the solution. The mixture was stirred for 30 min at this temperature, after which it was allowed to warm to room temperature over a period of 2 h. Removal of the solvent in vacuo resulted in dark-yellow to brown oily residues containing a mixture of products (TLC). Purification by column chromatography (SiO2, THF) and crystallization from THF/n-pentane yielded bright-red crystals of (I) [yield up to 108 mg, 10%; m.p. 440 K (dec.)]. NMR (CD2Cl2) 1H: 6.9–7.7 (m, 45H, Ph); 13C{1H}: 129.0 [t, 2JCP = 3.3 Hz, Ph—C(ortho)], 132.4 [t, 1JCP = 22.9 Hz, Ph—C(ipso)], 134.4 [t,3JCP = 4.8 Hz, Ph—C(meta)], 130.8 [s, Ph—C(para)], 231.5 [d, 2JPC = 9.9 Hz, CO(cis)], 233.9 [d, 2JPC = 18.3 Hz, CO(trans)]; 31P{1H}: 50.9 (d, 3JPP = 5.4 Hz, 2P, Ph3PAu), 71.5 (d, 3JPP = 5.3 Hz, 1P, Ph3PCr) IR (KBr): ν(CO) = 1839 (st), 1864 (st), 1942 (st), 2004 cm−1 (w). Analysis calculated for C58H45O4P3Au2Cr (1344.84 g.mol−1): C 51.80, H 3.37, O 4.76%; found: C 52.05, H 3.43, O 4.82%. Crystals of (I) suitable for single-crystal X-ray diffraction analysis were obtained by recrystallization from THF/n-pentane.

Refinement top

Although it was possible to locate most of the H atoms in (I) from a Fourier map, all H atoms were placed in idealized positions and refined as riding [C–Haryl = 0.95, C—Hmethylene = 0.99 Å, and Uiso(H) = 1.2Ueq(C)].

Computing details top

Data collection: COLLECT (Nonius, 1999); cell refinement: DENZO–SMN (Otwinowski & Minor, 1997); data reduction: DENZO–SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Faruggia, 1997); software used to prepare material for publication: WinGX (Faruggia, 1999).

Figures top
[Figure 1] Fig. 1. ORTEP-3 (Farrugia, 1997) plot of (I), showing the atom-numbering scheme and displacement ellipsoids at the 50% probability level). H atoms have been omitted for clarity.
tetracarbonyl-1κ4C-tris(triphenylphosphino)-1κP,2κP,3κP-triangulo- chromiumdisilver(Au—Au)(2 Cr—Au) tetrahydrofuran solvate top
Crystal data top
[Ag2Cr(C18H15P)3(CO)4]·C4H8OZ = 2
Mr = 1417.01F(000) = 1384
Triclinic, P1Dx = 1.748 Mg m3
a = 11.4841 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 13.5642 (3) ÅCell parameters from 5717 reflections
c = 17.5171 (4) Åθ = 1.0–27.5°
α = 87.147 (1)°µ = 5.78 mm1
β = 88.062 (1)°T = 173 K
γ = 81.073 (1)°Monoclinic prism, red
V = 2691.35 (10) Å30.35 × 0.27 × 0.17 mm
Data collection top
Nonius KappaCCD
diffractometer
10345 independent reflections
Radiation source: fine-focus sealed tube7951 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ϕ and ω scansθmax = 26.0°, θmin = 1.8°
Absorption correction: empirical (using intensity measurements)
(DENZO–SMN; Otwinowski & Minor, 1997)
h = 1414
Tmin = 0.169, Tmax = 0.375k = 1316
14365 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.057H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0107P)2]
where P = (Fo2 + 2Fc2)/3
10345 reflections(Δ/σ)max = 0.001
658 parametersΔρmax = 1.13 e Å3
0 restraintsΔρmin = 0.98 e Å3
Crystal data top
[Ag2Cr(C18H15P)3(CO)4]·C4H8Oγ = 81.073 (1)°
Mr = 1417.01V = 2691.35 (10) Å3
Triclinic, P1Z = 2
a = 11.4841 (2) ÅMo Kα radiation
b = 13.5642 (3) ŵ = 5.78 mm1
c = 17.5171 (4) ÅT = 173 K
α = 87.147 (1)°0.35 × 0.27 × 0.17 mm
β = 88.062 (1)°
Data collection top
Nonius KappaCCD
diffractometer
10345 independent reflections
Absorption correction: empirical (using intensity measurements)
(DENZO–SMN; Otwinowski & Minor, 1997)
7951 reflections with I > 2σ(I)
Tmin = 0.169, Tmax = 0.375Rint = 0.025
14365 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.057H-atom parameters constrained
S = 0.99Δρmax = 1.13 e Å3
10345 reflectionsΔρmin = 0.98 e Å3
658 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Mean-plane data from final SHELXL refinement run:

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

7.7075 (0.0083) x + 10.1966 (0.0100) y + 6.9700 (0.0253) z = 9.6598 (0.0074)

* −0.0232 (0.0021) C2 * 0.0316 (0.0020) C3 * 0.0323 (0.0020) C4 * −0.0167 (0.0015) P3 * −0.0240 (0.0016) Cr

Rms deviation of fitted atoms = 0.0262

− 8.6431 (0.0019) x + 4.0584 (0.0028) y + 8.7400 (0.0022) z = 5.8386 (0.0020)

Angle to previous plane (with approximate e.s.d.) = 86.91 (0.06)

* 0.0000 (0.0000) Au1 * 0.0000 (0.0000) Au2 * 0.0000 (0.0000) Cr

Rms deviation of fitted atoms = 0.0000

Tortion-angle data from final SHELXL refinement run:

Selected torsion angles

−29.19 (0.08) C4 - C3 - Au1 - Au2 178.20 (0.18) C91 - P1 - Cr - P3 − 171.33 (0.14) C21 - P2 - Cr - P3 179.74 (0.47) C81 - P1 - P2 - C31

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0618 (4)0.8684 (3)0.3059 (3)0.0255 (11)
C20.1022 (4)0.6880 (3)0.2630 (3)0.0233 (10)
C30.0560 (4)0.7360 (3)0.3757 (3)0.0265 (11)
C40.0040 (3)0.8291 (3)0.1732 (3)0.0250 (11)
C50.3894 (7)0.1139 (6)0.4155 (5)0.097 (3)
H5A0.45880.06190.42450.117*
H5B0.31940.08040.41080.117*
C60.3718 (8)0.1796 (8)0.4784 (5)0.130 (4)
H6A0.30630.16390.51270.156*
H6B0.44430.17430.50830.156*
C70.3437 (11)0.2774 (7)0.4421 (8)0.175 (6)
H7A0.25860.30190.45010.209*
H7B0.38830.32390.46630.209*
C80.3705 (8)0.2778 (8)0.3638 (6)0.122 (3)
H8A0.43490.31700.35100.146*
H8B0.30040.30650.33410.146*
C110.4260 (3)0.6993 (3)0.0714 (2)0.0181 (10)
C120.4840 (3)0.6431 (3)0.0258 (3)0.0269 (11)
H120.44110.60410.01230.032*
C130.6044 (4)0.6436 (3)0.0357 (3)0.0315 (12)
H130.64420.60530.00420.038*
C140.6659 (4)0.6999 (3)0.0915 (3)0.0273 (11)
H140.74840.70050.09810.033*
C150.6093 (4)0.7551 (3)0.1374 (3)0.0305 (12)
H150.65260.79350.17590.037*
C160.4888 (3)0.7550 (3)0.1278 (3)0.0249 (11)
H160.44940.79290.15990.030*
C210.2075 (3)0.5922 (3)0.0117 (3)0.0202 (10)
C220.1968 (4)0.5833 (3)0.0667 (3)0.0307 (12)
H220.22640.63830.09990.037*
C230.1432 (4)0.4945 (4)0.0968 (3)0.0410 (14)
H230.13540.48880.15060.049*
C240.1010 (4)0.4143 (4)0.0485 (4)0.0433 (15)
H240.06310.35380.06920.052*
C250.1134 (4)0.4217 (3)0.0286 (3)0.0377 (14)
H250.08540.36620.06190.045*
C260.1671 (3)0.5104 (3)0.0584 (3)0.0293 (12)
H260.17620.51490.11220.035*
C310.2675 (4)0.8068 (3)0.0176 (3)0.0234 (11)
C320.1666 (4)0.8530 (3)0.0266 (3)0.0282 (11)
H320.10110.83090.00490.034*
C330.1607 (4)0.9296 (3)0.0801 (3)0.0355 (13)
H330.09140.95990.08560.043*
C340.2552 (4)0.9624 (3)0.1259 (3)0.0417 (14)
H340.25161.01620.16240.050*
C350.3547 (4)0.9178 (4)0.1190 (3)0.0504 (16)
H350.41930.94000.15120.060*
C360.3611 (4)0.8408 (4)0.0652 (3)0.0409 (14)
H360.43040.81070.06070.049*
C410.3521 (3)0.8698 (3)0.2992 (3)0.0240 (11)
C420.3624 (4)0.7732 (3)0.3272 (3)0.0319 (12)
H420.29300.72650.33590.038*
C430.4711 (4)0.7441 (4)0.3426 (3)0.0399 (14)
H430.47540.67770.36090.048*
C440.5723 (4)0.8100 (4)0.3316 (3)0.0390 (14)
H440.64680.78960.34240.047*
C450.5658 (4)0.9069 (4)0.3044 (3)0.0428 (14)
H450.63600.95300.29660.051*
C460.4570 (4)0.9366 (3)0.2888 (3)0.0317 (12)
H460.45351.00330.27070.038*
C510.2108 (3)0.9947 (3)0.3617 (3)0.0238 (11)
C520.1472 (4)0.9717 (3)0.4274 (3)0.0325 (12)
H520.09510.91010.43150.039*
C530.1567 (4)1.0348 (3)0.4873 (3)0.0385 (13)
H530.11171.01670.53170.046*
C540.2320 (4)1.1246 (4)0.4823 (3)0.0395 (14)
H540.23961.16850.52330.047*
C550.2955 (4)1.1497 (3)0.4178 (3)0.0398 (14)
H550.34671.21170.41400.048*
C560.2860 (4)1.0858 (3)0.3579 (3)0.0335 (12)
H560.33131.10430.31360.040*
C610.2204 (4)0.9946 (3)0.2011 (3)0.0264 (11)
C620.1448 (4)1.0656 (3)0.1932 (3)0.0356 (13)
H620.09101.07040.23240.043*
C630.1474 (4)1.1294 (4)0.1285 (3)0.0465 (15)
H630.09651.17850.12440.056*
C640.2230 (5)1.1223 (4)0.0704 (3)0.0500 (16)
H640.22361.16570.02620.060*
C650.2972 (4)1.0525 (4)0.0766 (3)0.0418 (14)
H650.34981.04770.03670.050*
C660.2960 (4)0.9884 (3)0.1412 (3)0.0339 (12)
H660.34740.93980.14460.041*
C710.2216 (4)0.4483 (3)0.4160 (3)0.0265 (11)
C720.1529 (4)0.4705 (4)0.4740 (3)0.0501 (15)
H720.07910.49120.46120.060*
C730.1881 (5)0.4634 (4)0.5501 (3)0.0589 (17)
H730.13810.47710.58910.071*
C740.2962 (5)0.4363 (4)0.5687 (3)0.0488 (15)
H740.32180.43120.62060.059*
C750.3667 (5)0.4169 (4)0.5117 (3)0.0480 (15)
H750.44210.39950.52450.058*
C760.3306 (4)0.4219 (3)0.4363 (3)0.0384 (13)
H760.38070.40710.39770.046*
C810.2862 (4)0.4279 (3)0.2625 (3)0.0263 (11)
C820.2993 (4)0.3329 (4)0.2422 (3)0.0432 (14)
H820.23990.27820.25510.052*
C830.3969 (5)0.3161 (4)0.2037 (3)0.0541 (16)
H830.40360.25050.18950.065*
C840.4848 (5)0.3946 (4)0.1857 (3)0.0511 (15)
H840.55310.38320.16040.061*
C850.4727 (4)0.4897 (4)0.2048 (3)0.0439 (14)
H850.53280.54400.19250.053*
C860.3745 (4)0.5064 (3)0.2414 (3)0.0369 (13)
H860.36620.57280.25270.044*
C910.0542 (4)0.3430 (3)0.3113 (3)0.0262 (11)
C920.0405 (4)0.2661 (3)0.3661 (3)0.0362 (13)
H920.08840.27070.41150.043*
C930.0429 (4)0.1817 (4)0.3555 (3)0.0510 (16)
H930.05440.13010.39450.061*
C940.1083 (4)0.1731 (4)0.2888 (4)0.0503 (16)
H940.16270.11400.28090.060*
C950.0967 (4)0.2479 (4)0.2337 (3)0.0485 (15)
H950.14460.24170.18840.058*
C960.0142 (4)0.3341 (4)0.2436 (3)0.0406 (14)
H960.00470.38600.20480.049*
Au10.105869 (14)0.603121 (12)0.283282 (10)0.02339 (6)
Au20.167512 (13)0.730279 (11)0.163277 (10)0.01894 (5)
P10.16536 (10)0.45385 (8)0.31848 (7)0.0250 (3)
P20.27028 (9)0.70806 (8)0.05647 (7)0.0191 (3)
P30.20445 (9)0.90613 (8)0.28399 (7)0.0217 (3)
Cr0.03191 (5)0.78239 (5)0.27318 (4)0.01811 (16)
O10.1278 (3)0.9200 (2)0.3242 (2)0.0404 (9)
O20.1909 (2)0.6338 (2)0.25704 (19)0.0385 (9)
O30.0640 (3)0.7124 (2)0.4392 (2)0.0461 (10)
O40.0402 (3)0.8585 (2)0.11510 (19)0.0339 (8)
O110.4075 (4)0.1715 (6)0.3477 (3)0.117 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.019 (2)0.023 (3)0.032 (3)0.0028 (19)0.004 (2)0.003 (2)
C20.026 (2)0.027 (3)0.018 (3)0.008 (2)0.006 (2)0.001 (2)
C30.032 (3)0.015 (2)0.030 (3)0.0037 (19)0.001 (2)0.001 (2)
C40.017 (2)0.019 (2)0.041 (3)0.0069 (18)0.000 (2)0.006 (2)
C50.093 (6)0.131 (7)0.072 (6)0.032 (5)0.020 (5)0.021 (6)
C60.171 (9)0.162 (10)0.076 (7)0.077 (8)0.057 (6)0.066 (7)
C70.225 (12)0.081 (8)0.211 (16)0.016 (8)0.077 (11)0.021 (9)
C80.104 (7)0.150 (10)0.114 (9)0.033 (6)0.003 (6)0.024 (8)
C110.020 (2)0.014 (2)0.019 (3)0.0017 (17)0.002 (2)0.003 (2)
C120.019 (2)0.031 (3)0.031 (3)0.005 (2)0.000 (2)0.007 (2)
C130.028 (3)0.036 (3)0.034 (3)0.013 (2)0.009 (2)0.005 (2)
C140.016 (2)0.028 (3)0.037 (3)0.0015 (19)0.001 (2)0.004 (2)
C150.026 (3)0.030 (3)0.034 (3)0.000 (2)0.005 (2)0.008 (2)
C160.027 (2)0.018 (2)0.031 (3)0.0050 (19)0.001 (2)0.006 (2)
C210.014 (2)0.023 (3)0.026 (3)0.0071 (18)0.001 (2)0.005 (2)
C220.032 (3)0.033 (3)0.029 (3)0.012 (2)0.003 (2)0.005 (2)
C230.038 (3)0.053 (4)0.038 (4)0.023 (3)0.016 (3)0.023 (3)
C240.027 (3)0.028 (3)0.077 (5)0.006 (2)0.003 (3)0.026 (3)
C250.024 (3)0.021 (3)0.069 (5)0.002 (2)0.009 (3)0.010 (3)
C260.027 (2)0.026 (3)0.036 (3)0.006 (2)0.002 (2)0.004 (2)
C310.027 (2)0.022 (3)0.021 (3)0.0014 (19)0.003 (2)0.002 (2)
C320.024 (2)0.032 (3)0.029 (3)0.004 (2)0.001 (2)0.001 (2)
C330.041 (3)0.026 (3)0.039 (4)0.007 (2)0.014 (3)0.003 (3)
C340.053 (3)0.027 (3)0.039 (4)0.005 (3)0.012 (3)0.016 (3)
C350.044 (3)0.058 (4)0.044 (4)0.000 (3)0.014 (3)0.033 (3)
C360.034 (3)0.044 (3)0.044 (4)0.008 (2)0.008 (3)0.016 (3)
C410.024 (2)0.027 (3)0.022 (3)0.006 (2)0.000 (2)0.005 (2)
C420.030 (3)0.030 (3)0.034 (3)0.000 (2)0.006 (2)0.001 (2)
C430.034 (3)0.042 (3)0.046 (4)0.014 (2)0.008 (3)0.003 (3)
C440.024 (3)0.055 (4)0.041 (4)0.016 (2)0.011 (2)0.009 (3)
C450.023 (3)0.053 (4)0.050 (4)0.004 (2)0.003 (3)0.012 (3)
C460.025 (3)0.032 (3)0.038 (3)0.000 (2)0.006 (2)0.006 (2)
C510.023 (2)0.025 (3)0.025 (3)0.009 (2)0.000 (2)0.002 (2)
C520.041 (3)0.023 (3)0.033 (3)0.000 (2)0.009 (2)0.004 (2)
C530.055 (3)0.035 (3)0.027 (3)0.010 (3)0.007 (3)0.002 (3)
C540.045 (3)0.035 (3)0.041 (4)0.012 (3)0.009 (3)0.019 (3)
C550.043 (3)0.022 (3)0.051 (4)0.007 (2)0.004 (3)0.009 (3)
C560.031 (3)0.028 (3)0.041 (3)0.001 (2)0.008 (2)0.006 (3)
C610.025 (2)0.023 (3)0.030 (3)0.002 (2)0.002 (2)0.001 (2)
C620.030 (3)0.035 (3)0.041 (4)0.007 (2)0.003 (2)0.006 (3)
C630.039 (3)0.040 (3)0.056 (4)0.001 (2)0.011 (3)0.018 (3)
C640.070 (4)0.035 (3)0.037 (4)0.011 (3)0.005 (3)0.020 (3)
C650.057 (3)0.038 (3)0.025 (3)0.011 (3)0.011 (3)0.005 (3)
C660.032 (3)0.034 (3)0.034 (3)0.003 (2)0.003 (2)0.003 (3)
C710.030 (3)0.025 (3)0.024 (3)0.004 (2)0.003 (2)0.006 (2)
C720.038 (3)0.085 (4)0.028 (4)0.017 (3)0.000 (3)0.007 (3)
C730.049 (4)0.098 (5)0.028 (4)0.009 (3)0.009 (3)0.005 (3)
C740.051 (4)0.062 (4)0.027 (4)0.006 (3)0.013 (3)0.012 (3)
C750.043 (3)0.058 (4)0.041 (4)0.008 (3)0.007 (3)0.007 (3)
C760.042 (3)0.040 (3)0.035 (4)0.012 (2)0.005 (3)0.002 (3)
C810.030 (2)0.027 (3)0.023 (3)0.007 (2)0.002 (2)0.008 (2)
C820.041 (3)0.027 (3)0.061 (4)0.001 (2)0.014 (3)0.002 (3)
C830.062 (4)0.034 (3)0.072 (5)0.012 (3)0.032 (3)0.015 (3)
C840.053 (3)0.060 (4)0.046 (4)0.021 (3)0.022 (3)0.003 (3)
C850.038 (3)0.044 (4)0.049 (4)0.005 (3)0.016 (3)0.014 (3)
C860.045 (3)0.027 (3)0.040 (4)0.011 (2)0.005 (3)0.007 (3)
C910.033 (3)0.020 (3)0.026 (3)0.008 (2)0.003 (2)0.007 (2)
C920.036 (3)0.035 (3)0.034 (3)0.000 (2)0.005 (2)0.015 (3)
C930.047 (3)0.038 (3)0.060 (4)0.008 (3)0.001 (3)0.023 (3)
C940.039 (3)0.033 (3)0.073 (5)0.005 (2)0.015 (3)0.008 (3)
C950.054 (3)0.041 (3)0.046 (4)0.005 (3)0.017 (3)0.004 (3)
C960.048 (3)0.035 (3)0.036 (4)0.004 (2)0.011 (3)0.011 (3)
Au10.02761 (10)0.01764 (10)0.02508 (12)0.00517 (7)0.00312 (8)0.00449 (8)
Au20.01955 (9)0.01765 (10)0.02003 (11)0.00398 (7)0.00376 (8)0.00071 (8)
P10.0289 (6)0.0197 (6)0.0264 (8)0.0057 (5)0.0033 (6)0.0071 (6)
P20.0183 (6)0.0183 (6)0.0212 (7)0.0038 (5)0.0020 (5)0.0006 (5)
P30.0224 (6)0.0191 (6)0.0234 (7)0.0030 (5)0.0018 (5)0.0010 (5)
Cr0.0187 (3)0.0164 (4)0.0190 (4)0.0015 (3)0.0026 (3)0.0004 (3)
O10.0333 (19)0.042 (2)0.050 (3)0.0155 (16)0.0066 (17)0.0134 (19)
O20.0266 (18)0.044 (2)0.039 (2)0.0112 (16)0.0011 (16)0.0025 (18)
O30.071 (3)0.039 (2)0.025 (2)0.0007 (18)0.001 (2)0.0011 (18)
O40.0369 (19)0.041 (2)0.027 (2)0.0178 (15)0.0041 (17)0.0020 (17)
O110.104 (4)0.157 (6)0.082 (5)0.008 (4)0.024 (3)0.028 (4)
Geometric parameters (Å, º) top
C1—O11.171 (5)C45—H450.9500
C1—Cr1.829 (5)C46—H460.9500
C2—O21.165 (4)C51—C521.380 (6)
C2—Cr1.853 (4)C51—C561.394 (6)
C3—O31.147 (5)C51—P31.852 (4)
C3—Cr1.899 (5)C52—C531.378 (6)
C3—Au12.621 (5)C52—H520.9500
C4—O41.162 (5)C53—C541.380 (6)
C4—Cr1.887 (5)C53—H530.9500
C4—Au22.564 (4)C54—C551.364 (7)
C5—O111.417 (8)C54—H540.9500
C5—C61.440 (9)C55—C561.386 (6)
C5—H5A0.9900C55—H550.9500
C5—H5B0.9900C56—H560.9500
C6—C71.438 (12)C61—C621.393 (6)
C6—H6A0.9900C61—C661.399 (6)
C6—H6B0.9900C61—P31.832 (5)
C7—C81.395 (12)C62—C631.390 (7)
C7—H7A0.9900C62—H620.9500
C7—H7B0.9900C63—C641.376 (7)
C8—O111.477 (10)C63—H630.9500
C8—H8A0.9900C64—C651.367 (7)
C8—H8B0.9900C64—H640.9500
C11—C121.384 (6)C65—C661.390 (6)
C11—C161.387 (5)C65—H650.9500
C11—P21.820 (4)C66—H660.9500
C12—C131.387 (5)C71—C721.379 (7)
C12—H120.9500C71—C761.385 (6)
C13—C141.377 (6)C71—P11.808 (5)
C13—H130.9500C72—C731.384 (7)
C14—C151.370 (6)C72—H720.9500
C14—H140.9500C73—C741.372 (7)
C15—C161.388 (5)C73—H730.9500
C15—H150.9500C74—C751.367 (7)
C16—H160.9500C74—H740.9500
C21—C261.375 (6)C75—C761.373 (7)
C21—C221.385 (6)C75—H750.9500
C21—P21.827 (4)C76—H760.9500
C22—C231.385 (6)C81—C821.384 (6)
C22—H220.9500C81—C861.396 (6)
C23—C241.380 (7)C81—P11.814 (5)
C23—H230.9500C82—C831.383 (7)
C24—C251.362 (7)C82—H820.9500
C24—H240.9500C83—C841.381 (7)
C25—C261.381 (6)C83—H830.9500
C25—H250.9500C84—C851.377 (7)
C26—H260.9500C84—H840.9500
C31—C361.390 (6)C85—C861.371 (6)
C31—C321.401 (5)C85—H850.9500
C31—P21.821 (4)C86—H860.9500
C32—C331.373 (6)C91—C921.377 (6)
C32—H320.9500C91—C961.400 (6)
C33—C341.376 (7)C91—P11.822 (4)
C33—H330.9500C92—C931.389 (6)
C34—C351.373 (6)C92—H920.9500
C34—H340.9500C93—C941.367 (7)
C35—C361.380 (6)C93—H930.9500
C35—H350.9500C94—C951.360 (7)
C36—H360.9500C94—H940.9500
C41—C421.396 (6)C95—C961.399 (6)
C41—C461.403 (6)C95—H950.9500
C41—P31.845 (4)C96—H960.9500
C42—C431.380 (6)Au1—P12.2854 (11)
C42—H420.9500Au1—Cr2.6932 (6)
C43—C441.365 (6)Au1—Au22.6937 (2)
C43—H430.9500Au2—P22.3022 (12)
C44—C451.387 (6)Au2—Cr2.7038 (7)
C44—H440.9500P3—Cr2.3986 (12)
C45—C461.385 (6)
O1—C1—Cr175.6 (4)C62—C61—P3118.4 (4)
O2—C2—Cr175.4 (4)C66—C61—P3123.6 (4)
O3—C3—Cr174.5 (4)C63—C62—C61120.5 (5)
O3—C3—Au1113.7 (3)C63—C62—H62119.8
Cr—C3—Au171.12 (15)C61—C62—H62119.8
O4—C4—Cr171.3 (4)C64—C63—C62120.7 (5)
O4—C4—Au2114.9 (3)C64—C63—H63119.6
Cr—C4—Au273.04 (13)C62—C63—H63119.6
O11—C5—C6108.4 (7)C65—C64—C63119.8 (5)
O11—C5—H5A110.0C65—C64—H64120.1
C6—C5—H5A110.0C63—C64—H64120.1
O11—C5—H5B110.0C64—C65—C66120.2 (5)
C6—C5—H5B110.0C64—C65—H65119.9
H5A—C5—H5B108.4C66—C65—H65119.9
C7—C6—C5104.0 (9)C65—C66—C61121.0 (5)
C7—C6—H6A111.0C65—C66—H66119.5
C5—C6—H6A111.0C61—C66—H66119.5
C7—C6—H6B111.0C72—C71—C76117.6 (5)
C5—C6—H6B111.0C72—C71—P1119.0 (4)
H6A—C6—H6B109.0C76—C71—P1123.5 (4)
C8—C7—C6112.2 (9)C71—C72—C73122.0 (5)
C8—C7—H7A109.2C71—C72—H72119.0
C6—C7—H7A109.2C73—C72—H72119.0
C8—C7—H7B109.2C74—C73—C72119.2 (5)
C6—C7—H7B109.2C74—C73—H73120.4
H7A—C7—H7B107.9C72—C73—H73120.4
C7—C8—O11104.6 (8)C75—C74—C73119.4 (5)
C7—C8—H8A110.8C75—C74—H74120.3
O11—C8—H8A110.8C73—C74—H74120.3
C7—C8—H8B110.8C74—C75—C76121.4 (5)
O11—C8—H8B110.8C74—C75—H75119.3
H8A—C8—H8B108.9C76—C75—H75119.3
C12—C11—C16119.6 (4)C75—C76—C71120.4 (5)
C12—C11—P2121.9 (3)C75—C76—H76119.8
C16—C11—P2118.4 (3)C71—C76—H76119.8
C11—C12—C13120.3 (4)C82—C81—C86117.5 (4)
C11—C12—H12119.9C82—C81—P1123.5 (4)
C13—C12—H12119.9C86—C81—P1118.9 (4)
C14—C13—C12119.5 (4)C83—C82—C81121.3 (5)
C14—C13—H13120.2C83—C82—H82119.3
C12—C13—H13120.2C81—C82—H82119.3
C15—C14—C13120.8 (4)C84—C83—C82120.0 (5)
C15—C14—H14119.6C84—C83—H83120.0
C13—C14—H14119.6C82—C83—H83120.0
C14—C15—C16120.0 (4)C85—C84—C83119.4 (5)
C14—C15—H15120.0C85—C84—H84120.3
C16—C15—H15120.0C83—C84—H84120.3
C11—C16—C15119.9 (4)C86—C85—C84120.4 (5)
C11—C16—H16120.1C86—C85—H85119.8
C15—C16—H16120.1C84—C85—H85119.8
C26—C21—C22118.5 (4)C85—C86—C81121.3 (4)
C26—C21—P2118.3 (4)C85—C86—H86119.4
C22—C21—P2123.2 (4)C81—C86—H86119.4
C23—C22—C21120.2 (5)C92—C91—C96119.4 (4)
C23—C22—H22119.9C92—C91—P1123.4 (3)
C21—C22—H22119.9C96—C91—P1117.1 (3)
C24—C23—C22119.9 (5)C91—C92—C93120.4 (5)
C24—C23—H23120.0C91—C92—H92119.8
C22—C23—H23120.0C93—C92—H92119.8
C25—C24—C23120.2 (5)C94—C93—C92119.8 (5)
C25—C24—H24119.9C94—C93—H93120.1
C23—C24—H24119.9C92—C93—H93120.1
C24—C25—C26119.6 (5)C95—C94—C93121.0 (5)
C24—C25—H25120.2C95—C94—H94119.5
C26—C25—H25120.2C93—C94—H94119.5
C21—C26—C25121.5 (5)C94—C95—C96120.1 (5)
C21—C26—H26119.3C94—C95—H95119.9
C25—C26—H26119.3C96—C95—H95119.9
C36—C31—C32117.6 (4)C95—C96—C91119.2 (5)
C36—C31—P2123.8 (3)C95—C96—H96120.4
C32—C31—P2118.7 (3)C91—C96—H96120.4
C33—C32—C31121.2 (5)P1—Au1—C3126.31 (11)
C33—C32—H32119.4P1—Au1—Cr168.12 (4)
C31—C32—H32119.4C3—Au1—Cr41.84 (11)
C32—C33—C34119.9 (5)P1—Au1—Au2130.12 (3)
C32—C33—H33120.1C3—Au1—Au297.11 (11)
C34—C33—H33120.1Cr—Au1—Au260.254 (16)
C35—C34—C33120.2 (5)P2—Au2—C4128.21 (12)
C35—C34—H34119.9P2—Au2—Au1129.75 (3)
C33—C34—H34119.9C4—Au2—Au195.51 (11)
C34—C35—C36120.1 (5)P2—Au2—Cr169.74 (3)
C34—C35—H35119.9C4—Au2—Cr41.88 (12)
C36—C35—H35119.9Au1—Au2—Cr59.865 (15)
C35—C36—C31121.0 (5)C71—P1—C81103.9 (2)
C35—C36—H36119.5C71—P1—C91104.8 (2)
C31—C36—H36119.5C81—P1—C91104.5 (2)
C42—C41—C46117.0 (4)C71—P1—Au1113.25 (15)
C42—C41—P3119.6 (3)C81—P1—Au1112.87 (15)
C46—C41—P3123.2 (3)C91—P1—Au1116.38 (14)
C43—C42—C41121.6 (4)C11—P2—C31104.41 (19)
C43—C42—H42119.2C11—P2—C21104.76 (17)
C41—C42—H42119.2C31—P2—C21105.8 (2)
C44—C43—C42120.5 (5)C11—P2—Au2116.53 (15)
C44—C43—H43119.7C31—P2—Au2113.69 (15)
C42—C43—H43119.7C21—P2—Au2110.71 (15)
C43—C44—C45119.7 (4)C61—P3—C41104.3 (2)
C43—C44—H44120.1C61—P3—C5199.9 (2)
C45—C44—H44120.1C41—P3—C5198.61 (19)
C46—C45—C44120.1 (4)C61—P3—Cr112.33 (13)
C46—C45—H45120.0C41—P3—Cr121.02 (14)
C44—C45—H45120.0C51—P3—Cr117.68 (15)
C45—C46—C41121.1 (4)C1—Cr—C288.24 (18)
C45—C46—H46119.5C1—Cr—C486.33 (19)
C41—C46—H46119.5C2—Cr—C486.47 (18)
C52—C51—C56117.1 (4)C1—Cr—C390.2 (2)
C52—C51—P3122.1 (3)C2—Cr—C390.77 (18)
C56—C51—P3120.8 (4)C4—Cr—C3175.63 (19)
C53—C52—C51122.3 (4)C1—Cr—P391.52 (13)
C53—C52—H52118.8C2—Cr—P3178.88 (14)
C51—C52—H52118.8C4—Cr—P392.43 (13)
C52—C53—C54119.6 (5)C3—Cr—P390.32 (13)
C52—C53—H53120.2C1—Cr—Au1150.29 (15)
C54—C53—H53120.2C2—Cr—Au173.89 (13)
C55—C54—C53119.5 (5)C4—Cr—Au1115.28 (12)
C55—C54—H54120.3C3—Cr—Au167.04 (13)
C53—C54—H54120.3P3—Cr—Au1106.77 (3)
C54—C55—C56120.8 (4)C1—Cr—Au2148.92 (15)
C54—C55—H55119.6C2—Cr—Au2101.20 (13)
C56—C55—H55119.6C4—Cr—Au265.08 (13)
C55—C56—C51120.8 (5)C3—Cr—Au2118.86 (14)
C55—C56—H56119.6P3—Cr—Au278.46 (3)
C51—C56—H56119.6Au1—Cr—Au259.881 (15)
C62—C61—C66117.7 (5)C5—O11—C8107.8 (6)

Experimental details

Crystal data
Chemical formula[Ag2Cr(C18H15P)3(CO)4]·C4H8O
Mr1417.01
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)11.4841 (2), 13.5642 (3), 17.5171 (4)
α, β, γ (°)87.147 (1), 88.062 (1), 81.073 (1)
V3)2691.35 (10)
Z2
Radiation typeMo Kα
µ (mm1)5.78
Crystal size (mm)0.35 × 0.27 × 0.17
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(DENZO–SMN; Otwinowski & Minor, 1997)
Tmin, Tmax0.169, 0.375
No. of measured, independent and
observed [I > 2σ(I)] reflections
14365, 10345, 7951
Rint0.025
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.057, 0.99
No. of reflections10345
No. of parameters658
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.13, 0.98

Computer programs: COLLECT (Nonius, 1999), DENZO–SMN (Otwinowski & Minor, 1997), DENZO–SMN, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Faruggia, 1997), WinGX (Faruggia, 1999).

Selected geometric parameters (Å, º) top
C1—O11.171 (5)C4—Cr1.887 (5)
C1—Cr1.829 (5)C4—Au22.564 (4)
C2—O21.165 (4)Au1—P12.2854 (11)
C2—Cr1.853 (4)Au1—Cr2.6932 (6)
C3—O31.147 (5)Au1—Au22.6937 (2)
C3—Cr1.899 (5)Au2—P22.3022 (12)
C3—Au12.621 (5)Au2—Cr2.7038 (7)
C4—O41.162 (5)P3—Cr2.3986 (12)
O1—C1—Cr175.6 (4)C1—Cr—Au1150.29 (15)
O2—C2—Cr175.4 (4)C2—Cr—Au173.89 (13)
O3—C3—Cr174.5 (4)C4—Cr—Au1115.28 (12)
O4—C4—Cr171.3 (4)C3—Cr—Au167.04 (13)
P1—Au1—Cr168.12 (4)P3—Cr—Au1106.77 (3)
P1—Au1—Au2130.12 (3)C1—Cr—Au2148.92 (15)
Cr—Au1—Au260.254 (16)C2—Cr—Au2101.20 (13)
P2—Au2—Au1129.75 (3)C4—Cr—Au265.08 (13)
P2—Au2—Cr169.74 (3)C3—Cr—Au2118.86 (14)
Au1—Au2—Cr59.865 (15)P3—Cr—Au278.46 (3)
C4—Cr—C3175.63 (19)Au1—Cr—Au259.881 (15)
C2—Cr—P3178.88 (14)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds