Download citation
Download citation
link to html
In the title compounds, [Ru(C10H15)(C11H11)], (III), [Ru(C10H15)(C19H17)], (IV), and [Ru(C19H17)2], (V), respectively, the coordinating ring systems are planar and parallel, with the Ru atoms lying at perpendicular distances of Ru–Cp* 1.790 (1) Å and Ru–indenyl 1.836 (1) Å in (III), Ru–Cp* 1.791 (1) Å and Ru–indenyl 1.837 (1) Å in (IV), and Ru–indenyl 1.812 (1) Å and 1.809 (1) Å in (V) (Cp* is penta­methyl­cyclo­penta­dienyl). The ring conformations are eclipsed for (III), staggered for (IV) and intermediate for (V). All three compounds show short intermolecular contacts from C—H groups to some ring centroids; these could be regarded as C—H...π hydrogen bonds. The mol­ecules of each compound are thus connected via the 21 screw axis to form layers parallel to the xy plane.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102008090/bm1496sup1.cif
Contains datablocks III, IV, V, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102008090/bm1496IIIsup2.hkl
Contains datablock III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102008090/bm1496IVsup3.hkl
Contains datablock IV

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102008090/bm1496Vsup4.hkl
Contains datablock V

CCDC references: 188601; 188602; 188603

Comment top

We have previously shown that indenophanes, such as (I) and (II), can be used for the preparation of novel multi-metal ferrocenophanes (Hopf & Dannheim, 1988). In an extension of these studies, we needed the title Ru complexes (III)-(V) for comparison. Whereas complex (III) can be considered as a `half' metallocenophane, the derivatives (IV) and (V) both contain cyclophane units. Here, we present the structures of compounds (III)-(V). \sch

The molecules are shown in Figs. 1–3. Compound (III) is isostructural with its Fe analogue (Jones et al., 2002). The coordinating ring systems are planar (details of the planes are given in the deposited material), except for the cyclophane bridgehead atoms, which are, as usual, displaced from the plane of the remaining four atoms of the respective rings [atoms C3 and C7 in (IV) by 0.150 (3) and 0.147 (3) Å, respectively, and atoms C12, C15, C12' and C15' in (V) by 0.150 (4), 0.144 (5), 0.149 (4) and 0.139 (4) Å, respectively]. These atoms were omitted from calculations of the best planes.

The distances of the Ru atoms from the best planes of the ligands (in Å) are, in (III), Ru—Cp* 1.790 (1) and Ru-indenyl (nine-atom plane) 1.836 (1), in (IV), Ru—Cp* 1.791 (1) and Ru-indenyl (seven-atom plane) 1.837 (1), and in (V), Ru-indenyl (seven-atom plane) 1.812 (1) and 1.809 (1). The absence of a Cp* ligand thus leads to shorter Ru-indenyl distances in (V). It is tempting to attribute this to the reduction of steric pressure from the methyl groups, but this supposition is difficult to prove. The planes are essentially parallel, with interplanar angles of 1.7 (1), 0.2 (1) and 4.5 (2)°, respectively. The individual Ru—C distances (Tables 1–3) indicate a slight distortion towards an η3 coordination of the indenyl ligands in (III) [Ru—C3a 2.220 (2) and Ru—C7a 2.226 (2) Å are somewhat longer than the other Ru—C] and in (IV) [Ru—C3a 2.224 (2) and Ru—C6a 2.221 (2) Å], but not in (V). The values may be compared with the range of 2.181–2.188 (2) Å in ruthenocene itself (Seiler & Dunitz, 1980).

The mutual ring conformation differs in the three structures. In (III), the rings are eclipsed, with a typical torsion angle of 1.3° for C1—Cg1—Cg2—C17 (Cg indicates a ring centroid); in (IV), they are staggered (C4—Cg1—Cg2—C27 - 29.8°), and in (V), the conformation is intermediate (C5—Cg1—Cg2—C5' 12.6°). Ruthenocene itself is almost ideally eclipsed (Hardgrove & Templeton, 1959; Seiler & Dunitz, 1980).

The molecular packing (Figs. 4–6) shows considerable qualitative similarity in all three compounds. All crystallize in the same space group (P21/n), all form layers of molecules parallel to the xy plane (two layers per z-axis repeat) and all involve short H···Cg contacts that could be classified as C—H···π hydrogen bonds. In (III), this contact is C6—H6···Cg(C15–19) [symmetry code: 1/2 - x, 1/2 + y, 1/2 - z], with a contact distance of 2.80 Å and an angle at H6 of 154°. For (IV), the contact is C2—H2A···Cg(C23–27) [symmetry code: 1/2 - x, 1/2 + y, 1/2 - z], with H···Cg 2.63 Å and an angle of 150°. For (V), the contact is C6'-H6'···Cg(C13/C14/C16/C17) [symmetry code: 3/2 - x, y - 1/2, 1/2 - z], with H···Cg 2.75 Å and an angle of 169°.

Experimental top

All three compounds were prepared by conventional methods, namely the metallation of the respective indene with methyl lithium in anhydrous tetrahydrofuran, followed by treatment of the anions thus formed with pentamethylcyclopentadienyl ruthenium chloride tetramer (Fagan et al., 1989) for (III) (83% yield) and (IV) (86%), and with commercial cyclooctadiene ruthenium dichloride for (V) (38%); for the original preparation see Bennett & Wilkinson (1959). All compounds were fully characterized by their spectroscopic and analytical data (Hartig, 1991). Single crystals were obtained by slow cooling of warm saturated solutions in hexane.

Refinement top

Methyl H atoms were identified in difference syntheses, idealized and then refined using rigid methyl groups allowed to rotate but not tip. Other H atoms were included using a riding model with fixed C—H bond lengths (aromatic 0.93, methyl 0.96 and methylene 0.97 Å); Uiso(H) values were fixed at 1.2 times the Ueq of the parent atom.

Computing details top

For all compounds, data collection: P3 Software (Nicolet, 1987); cell refinement: P3 Software; data reduction: XDISK (Nicolet, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecule of (III) in the crystal. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The molecule of (IV) in the crystal. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 3] Fig. 3. The molecule of (V) in the crystal. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 4] Fig. 4. The packing diagram for (III) viewed along the z axis. Weak hydrogen bonds are indicated by dashed lines.
[Figure 5] Fig. 5. The packing diagram for (IV) viewed along the z axis. Weak hydrogen bonds are indicated by dashed lines.
[Figure 6] Fig. 6. The packing diagram for (V) viewed along the z axis. Weak hydrogen bonds are indicated by dashed lines.
(III) (η5-4,7-dimethylindenyl)(η5-pentamethylcyclopentadienyl)ruthenium(II) top
Crystal data top
[Ru(C10H15)(C11H11)]F(000) = 784
Mr = 379.49Dx = 1.407 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.609 (2) ÅCell parameters from 46 reflections
b = 14.232 (3) Åθ = 10.0–11.5°
c = 14.752 (3) ŵ = 0.87 mm1
β = 97.50 (2)°T = 293 K
V = 1792.1 (7) Å3Prism, orange-yellow
Z = 40.70 × 0.50 × 0.35 mm
Data collection top
Nicolet R3
diffractometer
2605 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.011
Graphite monochromatorθmax = 25.1°, θmin = 3.1°
ω/θ scanh = 102
Absorption correction: ψ scan
(XEMP; Nicolet, 1987)
k = 016
Tmin = 0.608, Tmax = 0.737l = 1717
4248 measured reflections3 standard reflections every 147 reflections
3172 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.024H-atom parameters constrained
wR(F2) = 0.056 w = 1/[σ2(Fo2) + (0.0275P)2 + 0.4415P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.001
3172 reflectionsΔρmax = 0.33 e Å3
207 parametersΔρmin = 0.30 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: PattersonExtinction coefficient: 0.0025 (4)
Crystal data top
[Ru(C10H15)(C11H11)]V = 1792.1 (7) Å3
Mr = 379.49Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.609 (2) ŵ = 0.87 mm1
b = 14.232 (3) ÅT = 293 K
c = 14.752 (3) Å0.70 × 0.50 × 0.35 mm
β = 97.50 (2)°
Data collection top
Nicolet R3
diffractometer
2605 reflections with I > 2σ(I)
Absorption correction: ψ scan
(XEMP; Nicolet, 1987)
Rint = 0.011
Tmin = 0.608, Tmax = 0.7373 standard reflections every 147 reflections
4248 measured reflections intensity decay: none
3172 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.056H-atom parameters constrained
S = 1.10Δρmax = 0.33 e Å3
3172 reflectionsΔρmin = 0.30 e Å3
207 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

6.8824 (0.0072) x + 8.1674 (0.0156) y - 4.1403 (0.0190) z = 6.1911 (0.0063)

* -0.0102 (0.0016) C1 * 0.0119 (0.0017) C2 * -0.0087 (0.0017) C3 * 0.0024 (0.0015) C3a * 0.0047 (0.0015) C7a -1.8378 (0.0013) Ru

Rms deviation of fitted atoms = 0.0084

6.9182 (0.0068) x + 8.1553 (0.0147) y - 3.9027 (0.0176) z = 2.6375 (0.0055)

Angle to previous plane (with approximate e.s.d.) = 0.99 (0.18)

* -0.0005 (0.0015) C15 * 0.0019 (0.0015) C16 * -0.0026 (0.0015) C17 * 0.0023 (0.0015) C18 * -0.0011 (0.0015) C19 1.7898 (0.0013) Ru

Rms deviation of fitted atoms = 0.0018

6.8521 (0.0038) x + 8.1827 (0.0078) y - 4.3081 (0.0122) z = 6.1360 (0.0044)

Angle to previous plane (with approximate e.s.d.) = 1.71 (0.14)

* -0.0236 (0.0021) C1 * 0.0061 (0.0021) C2 * 0.0031 (0.0021) C3 * 0.0177 (0.0022) C3a * -0.0114 (0.0020) C4 * -0.0110 (0.0022) C5 * 0.0066 (0.0022) C6 * 0.0080 (0.0021) C7 * 0.0043 (0.0022) C7a -1.8363 (0.0013) Ru

Rms deviation of fitted atoms = 0.0120

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ru0.53074 (2)0.208586 (13)0.242271 (13)0.03617 (8)
C10.7361 (3)0.2891 (2)0.3012 (2)0.0548 (7)
H10.76740.29200.36390.066*
C20.7837 (3)0.2213 (2)0.2410 (2)0.0625 (8)
H20.85440.17280.25730.075*
C30.7065 (3)0.2387 (2)0.1520 (2)0.0555 (7)
H30.71530.20280.10020.067*
C3a0.6125 (3)0.32108 (17)0.15565 (18)0.0429 (6)
C40.5081 (3)0.36936 (19)0.08810 (18)0.0500 (6)
C50.4340 (3)0.4458 (2)0.1154 (2)0.0581 (8)
H50.36620.47850.07220.070*
C60.4548 (4)0.47847 (19)0.2063 (2)0.0577 (8)
H60.40120.53210.22050.069*
C70.5503 (3)0.43449 (19)0.2743 (2)0.0504 (7)
C7a0.6312 (3)0.35299 (17)0.24904 (17)0.0420 (6)
C80.5734 (5)0.4675 (3)0.3716 (2)0.0812 (10)
H8A0.50300.51860.37850.097*
H8B0.67950.48840.38740.097*
H8C0.55240.41680.41110.097*
C90.4842 (5)0.3333 (2)0.0084 (2)0.0750 (10)
H9A0.40470.36990.04400.090*
H9B0.45210.26870.00850.090*
H9C0.58060.33830.03430.090*
C100.3973 (5)0.0328 (2)0.1115 (2)0.0738 (9)
H10A0.31180.01090.10230.089*
H10B0.49460.00090.11980.089*
H10C0.39410.07300.05900.089*
C110.5590 (4)0.01095 (19)0.3149 (2)0.0671 (9)
H11A0.63880.00770.36320.080*
H11B0.60710.03390.26410.080*
H11C0.49610.05970.33650.080*
C120.4496 (4)0.1447 (2)0.44619 (18)0.0633 (8)
H12A0.37800.10600.47430.076*
H12B0.44320.20820.46730.076*
H12C0.55440.12170.46230.076*
C130.2228 (3)0.2890 (2)0.3235 (2)0.0608 (8)
H13A0.11350.27530.32280.073*
H13B0.23470.34140.28400.073*
H13C0.26820.30410.38470.073*
C140.1838 (4)0.2167 (2)0.1202 (2)0.0665 (9)
H14A0.21100.19350.06330.080*
H14B0.19630.28370.12250.080*
H14C0.07690.20090.12530.080*
C150.3836 (3)0.09090 (17)0.19428 (17)0.0452 (6)
C160.4577 (3)0.07186 (17)0.28518 (18)0.0432 (6)
C170.4079 (3)0.14192 (17)0.34443 (16)0.0412 (6)
C180.3044 (3)0.20450 (17)0.29048 (18)0.0426 (6)
C190.2890 (3)0.17282 (18)0.19787 (18)0.0442 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru0.02903 (11)0.03217 (11)0.04723 (12)0.00019 (9)0.00462 (7)0.00597 (9)
C10.0354 (14)0.0569 (16)0.0690 (18)0.0093 (13)0.0054 (12)0.0113 (15)
C20.0302 (14)0.0529 (17)0.104 (3)0.0033 (12)0.0089 (15)0.0148 (17)
C30.0456 (16)0.0501 (16)0.076 (2)0.0037 (13)0.0291 (15)0.0024 (14)
C3a0.0362 (14)0.0383 (13)0.0565 (16)0.0084 (10)0.0143 (12)0.0065 (11)
C40.0509 (16)0.0472 (15)0.0526 (15)0.0142 (13)0.0090 (12)0.0125 (12)
C50.0522 (17)0.0488 (16)0.071 (2)0.0039 (14)0.0013 (14)0.0240 (15)
C60.0503 (17)0.0347 (14)0.090 (2)0.0030 (12)0.0169 (16)0.0053 (14)
C70.0475 (16)0.0395 (14)0.0652 (17)0.0092 (12)0.0115 (13)0.0034 (12)
C7a0.0338 (13)0.0386 (13)0.0535 (15)0.0090 (10)0.0053 (11)0.0057 (11)
C80.090 (3)0.073 (2)0.081 (2)0.006 (2)0.014 (2)0.0219 (19)
C90.092 (3)0.077 (2)0.0551 (19)0.020 (2)0.0060 (17)0.0109 (16)
C100.091 (3)0.065 (2)0.066 (2)0.0169 (19)0.0151 (18)0.0122 (16)
C110.068 (2)0.0430 (16)0.090 (2)0.0106 (14)0.0078 (18)0.0152 (15)
C120.0618 (19)0.076 (2)0.0507 (17)0.0089 (16)0.0011 (14)0.0086 (15)
C130.0451 (16)0.0548 (17)0.086 (2)0.0082 (14)0.0212 (15)0.0065 (16)
C140.0471 (17)0.081 (2)0.0662 (18)0.0093 (16)0.0107 (14)0.0276 (17)
C150.0481 (15)0.0393 (13)0.0488 (14)0.0118 (11)0.0090 (12)0.0002 (11)
C160.0425 (14)0.0327 (12)0.0543 (15)0.0027 (11)0.0056 (12)0.0086 (11)
C170.0366 (13)0.0413 (13)0.0454 (13)0.0050 (11)0.0043 (10)0.0070 (11)
C180.0334 (13)0.0390 (13)0.0560 (15)0.0031 (11)0.0079 (11)0.0065 (12)
C190.0333 (14)0.0464 (14)0.0513 (15)0.0089 (11)0.0001 (11)0.0141 (11)
Geometric parameters (Å, º) top
Ru—C192.160 (2)C8—H8C0.9600
Ru—C182.161 (3)C9—H9A0.9600
Ru—C152.163 (2)C9—H9B0.9600
Ru—C162.165 (2)C9—H9C0.9600
Ru—C172.169 (2)C10—C151.492 (4)
Ru—C32.185 (3)C10—H10A0.9600
Ru—C22.188 (3)C10—H10B0.9600
Ru—C12.190 (3)C10—H10C0.9600
Ru—C3a2.220 (2)C11—C161.498 (3)
Ru—C7a2.227 (2)C11—H11A0.9600
C1—C21.408 (4)C11—H11B0.9600
C1—C7a1.433 (4)C11—H11C0.9600
C1—H10.9300C12—C171.498 (3)
C2—C31.415 (4)C12—H12A0.9600
C2—H20.9300C12—H12B0.9600
C3—C3a1.430 (4)C12—H12C0.9600
C3—H30.9300C13—C181.505 (4)
C3a—C41.428 (4)C13—H13A0.9600
C3a—C7a1.440 (4)C13—H13B0.9600
C4—C51.349 (4)C13—H13C0.9600
C4—C91.502 (4)C14—C191.500 (3)
C5—C61.408 (4)C14—H14A0.9600
C5—H50.9300C14—H14B0.9600
C6—C71.363 (4)C14—H14C0.9600
C6—H60.9300C15—C191.427 (4)
C7—C7a1.427 (4)C15—C161.434 (3)
C7—C81.498 (4)C16—C171.428 (4)
C8—H8A0.9600C17—C181.427 (3)
C8—H8B0.9600C18—C191.428 (4)
C19—Ru—C1838.61 (10)C7a—C7—C8119.8 (3)
C19—Ru—C1538.57 (10)C7—C7a—C1132.1 (3)
C18—Ru—C1564.66 (10)C7—C7a—C3a120.6 (2)
C19—Ru—C1664.63 (9)C1—C7a—C3a107.3 (2)
C18—Ru—C1664.57 (9)C7—C7a—Ru124.19 (18)
C15—Ru—C1638.69 (9)C1—C7a—Ru69.68 (14)
C19—Ru—C1764.51 (9)C3a—C7a—Ru70.84 (13)
C18—Ru—C1738.47 (9)C7—C8—H8A109.5
C15—Ru—C1764.59 (9)C7—C8—H8B109.5
C16—Ru—C1738.48 (9)H8A—C8—H8B109.5
C19—Ru—C3125.31 (11)C7—C8—H8C109.5
C18—Ru—C3158.77 (11)H8A—C8—H8C109.5
C15—Ru—C3112.01 (11)H8B—C8—H8C109.5
C16—Ru—C3127.24 (10)C4—C9—H9A109.5
C17—Ru—C3161.54 (10)C4—C9—H9B109.5
C19—Ru—C2159.71 (12)H9A—C9—H9B109.5
C18—Ru—C2161.18 (12)C4—C9—H9C109.5
C15—Ru—C2127.03 (11)H9A—C9—H9C109.5
C16—Ru—C2113.83 (10)H9B—C9—H9C109.5
C17—Ru—C2128.17 (11)C15—C10—H10A109.5
C3—Ru—C237.76 (12)C15—C10—H10B109.5
C19—Ru—C1160.06 (11)H10A—C10—H10B109.5
C18—Ru—C1126.85 (11)C15—C10—H10C109.5
C15—Ru—C1160.65 (11)H10A—C10—H10C109.5
C16—Ru—C1127.22 (10)H10B—C10—H10C109.5
C17—Ru—C1113.26 (10)C16—C11—H11A109.5
C3—Ru—C163.37 (12)C16—C11—H11B109.5
C2—Ru—C137.53 (11)H11A—C11—H11B109.5
C19—Ru—C3a111.16 (9)C16—C11—H11C109.5
C18—Ru—C3a125.19 (9)H11A—C11—H11C109.5
C15—Ru—C3a125.90 (10)H11B—C11—H11C109.5
C16—Ru—C3a160.52 (10)C17—C12—H12A109.5
C17—Ru—C3a159.30 (10)C17—C12—H12B109.5
C3—Ru—C3a37.88 (10)H12A—C12—H12B109.5
C2—Ru—C3a62.93 (11)C17—C12—H12C109.5
C1—Ru—C3a63.29 (10)H12A—C12—H12C109.5
C19—Ru—C7a125.75 (9)H12B—C12—H12C109.5
C18—Ru—C7a111.82 (9)C18—C13—H13A109.5
C15—Ru—C7a159.53 (9)C18—C13—H13B109.5
C16—Ru—C7a160.45 (9)H13A—C13—H13B109.5
C17—Ru—C7a126.45 (10)C18—C13—H13C109.5
C3—Ru—C7a63.30 (10)H13A—C13—H13C109.5
C2—Ru—C7a62.82 (10)H13B—C13—H13C109.5
C1—Ru—C7a37.85 (9)C19—C14—H14A109.5
C3a—Ru—C7a37.78 (9)C19—C14—H14B109.5
C2—C1—C7a108.2 (3)H14A—C14—H14B109.5
C2—C1—Ru71.15 (16)C19—C14—H14C109.5
C7a—C1—Ru72.47 (14)H14A—C14—H14C109.5
C2—C1—H1125.9H14B—C14—H14C109.5
C7a—C1—H1125.9C19—C15—C16107.8 (2)
Ru—C1—H1122.1C19—C15—C10126.1 (3)
C1—C2—C3109.0 (3)C16—C15—C10126.0 (3)
C1—C2—Ru71.32 (16)C19—C15—Ru70.60 (14)
C3—C2—Ru71.00 (16)C16—C15—Ru70.74 (13)
C1—C2—H2125.5C10—C15—Ru126.3 (2)
C3—C2—H2125.5C17—C16—C15107.9 (2)
Ru—C2—H2123.8C17—C16—C11125.5 (2)
C2—C3—C3a107.9 (3)C15—C16—C11126.4 (3)
C2—C3—Ru71.24 (16)C17—C16—Ru70.93 (13)
C3a—C3—Ru72.39 (15)C15—C16—Ru70.57 (13)
C2—C3—H3126.0C11—C16—Ru127.8 (2)
C3a—C3—H3126.0C18—C17—C16108.1 (2)
Ru—C3—H3122.0C18—C17—C12126.4 (2)
C4—C3a—C3132.5 (3)C16—C17—C12125.4 (2)
C4—C3a—C7a119.8 (2)C18—C17—Ru70.44 (14)
C3—C3a—C7a107.6 (2)C16—C17—Ru70.59 (14)
C4—C3a—Ru122.07 (17)C12—C17—Ru127.56 (18)
C3—C3a—Ru69.73 (14)C17—C18—C19108.0 (2)
C7a—C3a—Ru71.38 (13)C17—C18—C13127.0 (2)
C5—C4—C3a117.3 (3)C19—C18—C13124.9 (2)
C5—C4—C9123.2 (3)C17—C18—Ru71.09 (14)
C3a—C4—C9119.5 (3)C19—C18—Ru70.65 (15)
C4—C5—C6123.0 (3)C13—C18—Ru124.33 (18)
C4—C5—H5118.5C15—C19—C18108.1 (2)
C6—C5—H5118.5C15—C19—C14127.0 (3)
C7—C6—C5122.6 (3)C18—C19—C14124.8 (3)
C7—C6—H6118.7C15—C19—Ru70.83 (14)
C5—C6—H6118.7C18—C19—Ru70.74 (14)
C6—C7—C7a116.7 (3)C14—C19—Ru126.52 (18)
C6—C7—C8123.6 (3)
(IV) (η5-[2](4,7)indeno[2]paracyclophanyl)(η5-pentamethylcyclopentadienyl) ruthenium(II) top
Crystal data top
[Ru(C10H15)(C19H17)]F(000) = 1000
Mr = 481.62Dx = 1.385 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 11.648 (2) ÅCell parameters from 46 reflections
b = 14.757 (3) Åθ = 10.0–11.5°
c = 13.798 (3) ŵ = 0.69 mm1
β = 103.134 (15)°T = 293 K
V = 2309.7 (7) Å3Prism, orange-yellow
Z = 40.7 × 0.4 × 0.3 mm
Data collection top
Nicolet R3
diffractometer
3547 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.014
Graphite monochromatorθmax = 25.1°, θmin = 3.0°
ω/θ scanh = 1313
Absorption correction: ψ scan
(XEMP; Nicolet, 1987)
k = 017
Tmin = 0.643, Tmax = 0.819l = 1616
8161 measured reflections3 standard reflections every 147 reflections
4086 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.058H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0326P)2 + 0.5968P]
where P = (Fo2 + 2Fc2)/3
4086 reflections(Δ/σ)max = 0.003
276 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
[Ru(C10H15)(C19H17)]V = 2309.7 (7) Å3
Mr = 481.62Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.648 (2) ŵ = 0.69 mm1
b = 14.757 (3) ÅT = 293 K
c = 13.798 (3) Å0.7 × 0.4 × 0.3 mm
β = 103.134 (15)°
Data collection top
Nicolet R3
diffractometer
3547 reflections with I > 2σ(I)
Absorption correction: ψ scan
(XEMP; Nicolet, 1987)
Rint = 0.014
Tmin = 0.643, Tmax = 0.8193 standard reflections every 147 reflections
8161 measured reflections intensity decay: none
4086 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0210 restraints
wR(F2) = 0.058H-atom parameters constrained
S = 1.07Δρmax = 0.24 e Å3
4086 reflectionsΔρmin = 0.19 e Å3
276 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

8.9450 (0.0082) x + 8.6253 (0.0128) y - 5.9291 (0.0132) z = 5.6794 (0.0067)

* 0.0032 (0.0012) C23 * -0.0044 (0.0013) C24 * 0.0039 (0.0013) C25 * -0.0019 (0.0013) C26 * -0.0008 (0.0013) C27 1.7904 (0.0010) Ru

Rms deviation of fitted atoms = 0.0031

8.9599 (0.0073) x + 8.6266 (0.0098) y - 5.8795 (0.0070) z = 9.3226 (0.0045)

Angle to previous plane (with approximate e.s.d.) = 0.24 (0.14)

* 0.0165 (0.0016) C3a * -0.0080 (0.0014) C4 * -0.0070 (0.0016) C5 * -0.0043 (0.0014) C6 * 0.0163 (0.0016) C6a * -0.0098 (0.0015) C8 * -0.0037 (0.0015) C9 0.1501 (0.0027) C3 0.1471 (0.0027) C7 - 1.8373 (0.0010) Ru

Rms deviation of fitted atoms = 0.0106

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ru0.397052 (12)0.575810 (10)0.176806 (11)0.03145 (6)
C10.4906 (3)0.92382 (17)0.1263 (2)0.0680 (8)
H1A0.46470.91560.05490.082*
H1B0.49120.98830.13990.082*
C20.4006 (2)0.87628 (17)0.1786 (2)0.0620 (7)
H2A0.37740.91880.22420.074*
H2B0.33050.86040.12860.074*
C30.44888 (18)0.79210 (14)0.23512 (17)0.0422 (5)
C3a0.47379 (16)0.71415 (13)0.18143 (15)0.0347 (4)
C40.43159 (18)0.68667 (14)0.08096 (15)0.0405 (4)
H40.37220.71500.03430.049*
C50.49519 (19)0.60907 (14)0.06387 (15)0.0425 (5)
H50.48540.57820.00380.051*
C60.57674 (18)0.58600 (13)0.15385 (17)0.0408 (5)
H60.62860.53720.16290.049*
C6a0.56512 (16)0.65096 (13)0.22793 (15)0.0356 (4)
C70.63001 (19)0.66686 (15)0.32790 (16)0.0445 (5)
C80.5860 (2)0.73028 (17)0.38062 (16)0.0526 (6)
H80.61530.73320.44910.063*
C90.4968 (2)0.79255 (16)0.33491 (18)0.0523 (6)
H90.47010.83500.37450.063*
C100.7546 (2)0.63185 (18)0.3592 (2)0.0631 (7)
H10A0.75510.56780.34330.076*
H10B0.78110.63790.43080.076*
C110.8434 (2)0.6820 (2)0.3086 (3)0.0757 (8)
H11A0.91220.69920.35920.091*
H11B0.86900.64070.26300.091*
C120.7914 (2)0.76602 (19)0.2519 (2)0.0602 (6)
C130.7452 (2)0.76266 (19)0.1503 (2)0.0611 (7)
H130.77300.71970.11190.073*
C140.6577 (2)0.82285 (18)0.10524 (18)0.0583 (6)
H140.62780.81970.03680.070*
C150.6139 (2)0.88750 (16)0.16019 (18)0.0542 (6)
C160.6785 (2)0.90198 (17)0.25672 (19)0.0553 (6)
H160.66270.95260.29160.066*
C170.7655 (2)0.84280 (17)0.30148 (19)0.0585 (6)
H170.80780.85420.36600.070*
C180.1763 (2)0.4822 (2)0.01872 (18)0.0638 (7)
H18A0.11290.44000.01580.077*
H18B0.23020.45880.01840.077*
H18C0.14510.53910.00930.077*
C190.3743 (3)0.35263 (16)0.1445 (2)0.0639 (7)
H19A0.45570.34390.17680.077*
H19B0.36650.35590.07380.077*
H19C0.32860.30270.15980.077*
C200.4544 (3)0.4327 (2)0.3640 (2)0.0699 (8)
H20A0.41530.39740.40520.084*
H20B0.49880.48020.40290.084*
H20C0.50670.39450.33770.084*
C210.2956 (3)0.6053 (2)0.37816 (19)0.0668 (7)
H21A0.28350.66820.36080.080*
H21B0.37070.59790.42370.080*
H21C0.23420.58480.40890.080*
C220.1228 (2)0.6368 (2)0.1654 (2)0.0718 (8)
H22A0.10230.64590.09470.086*
H22B0.15200.69240.19780.086*
H22C0.05420.61780.18770.086*
C230.24018 (18)0.49602 (15)0.12551 (15)0.0419 (5)
C240.33080 (19)0.43906 (13)0.18064 (16)0.0417 (5)
C250.36433 (19)0.47335 (15)0.27971 (15)0.0434 (5)
C260.2932 (2)0.55080 (15)0.28601 (16)0.0447 (5)
C270.21610 (19)0.56524 (15)0.19054 (17)0.0442 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru0.03165 (9)0.02852 (9)0.03413 (9)0.00338 (6)0.00739 (6)0.00144 (6)
C10.0758 (18)0.0433 (14)0.0765 (18)0.0057 (12)0.0001 (15)0.0124 (13)
C20.0585 (15)0.0388 (13)0.0865 (19)0.0123 (11)0.0120 (13)0.0050 (12)
C30.0391 (10)0.0342 (10)0.0561 (12)0.0010 (8)0.0163 (9)0.0073 (9)
C3a0.0328 (9)0.0298 (9)0.0424 (10)0.0048 (8)0.0102 (8)0.0016 (8)
C40.0434 (11)0.0367 (10)0.0396 (10)0.0068 (9)0.0057 (8)0.0029 (9)
C50.0528 (12)0.0390 (10)0.0395 (10)0.0118 (9)0.0185 (9)0.0078 (9)
C60.0363 (10)0.0313 (10)0.0581 (13)0.0021 (8)0.0176 (9)0.0054 (9)
C6a0.0318 (9)0.0311 (10)0.0438 (10)0.0047 (8)0.0087 (8)0.0007 (8)
C70.0448 (11)0.0385 (11)0.0462 (12)0.0087 (9)0.0018 (9)0.0012 (9)
C80.0642 (14)0.0543 (13)0.0374 (11)0.0157 (12)0.0074 (10)0.0072 (10)
C90.0599 (14)0.0460 (13)0.0573 (14)0.0066 (11)0.0266 (11)0.0177 (10)
C100.0529 (14)0.0531 (14)0.0699 (16)0.0004 (11)0.0142 (12)0.0011 (13)
C110.0406 (13)0.0729 (18)0.107 (2)0.0021 (13)0.0021 (14)0.0023 (17)
C120.0371 (12)0.0622 (15)0.0801 (17)0.0139 (11)0.0107 (11)0.0042 (14)
C130.0531 (14)0.0633 (16)0.0739 (17)0.0184 (12)0.0291 (13)0.0128 (13)
C140.0658 (16)0.0632 (15)0.0475 (13)0.0272 (13)0.0163 (11)0.0024 (12)
C150.0604 (14)0.0413 (12)0.0588 (14)0.0187 (11)0.0087 (11)0.0063 (11)
C160.0629 (15)0.0413 (12)0.0595 (14)0.0170 (11)0.0095 (12)0.0060 (11)
C170.0502 (13)0.0585 (15)0.0599 (15)0.0234 (12)0.0021 (11)0.0043 (12)
C180.0541 (14)0.0853 (19)0.0491 (13)0.0233 (14)0.0056 (11)0.0052 (13)
C190.0814 (18)0.0381 (13)0.0811 (18)0.0069 (12)0.0373 (15)0.0056 (12)
C200.0766 (19)0.0716 (18)0.0567 (15)0.0036 (14)0.0052 (14)0.0210 (13)
C210.086 (2)0.0673 (16)0.0535 (15)0.0103 (15)0.0304 (14)0.0124 (13)
C220.0525 (15)0.0784 (19)0.088 (2)0.0180 (14)0.0229 (14)0.0069 (16)
C230.0387 (11)0.0466 (12)0.0408 (11)0.0134 (9)0.0094 (9)0.0008 (9)
C240.0462 (11)0.0335 (10)0.0486 (12)0.0103 (9)0.0173 (9)0.0005 (9)
C250.0453 (11)0.0438 (12)0.0410 (11)0.0074 (9)0.0097 (9)0.0070 (9)
C260.0482 (12)0.0470 (12)0.0427 (11)0.0086 (10)0.0185 (10)0.0022 (9)
C270.0363 (10)0.0478 (12)0.0508 (12)0.0043 (9)0.0151 (9)0.0020 (10)
Geometric parameters (Å, º) top
Ru—C3a2.2238 (19)C23—C241.426 (3)
Ru—C42.197 (2)C23—C271.429 (3)
Ru—C52.188 (2)C24—C251.426 (3)
Ru—C62.192 (2)C25—C261.426 (3)
Ru—C6a2.2209 (19)C26—C271.431 (3)
Ru—C232.154 (2)C1—H1A0.9700
Ru—C242.165 (2)C1—H1B0.9700
Ru—C252.166 (2)C2—H2A0.9700
Ru—C262.168 (2)C2—H2B0.9700
Ru—C272.164 (2)C4—H40.9300
C1—C151.504 (4)C5—H50.9300
C1—C21.567 (4)C6—H60.9300
C2—C31.506 (3)C8—H80.9300
C3—C91.363 (3)C9—H90.9300
C3—C3a1.433 (3)C10—H10A0.9700
C3a—C41.421 (3)C10—H10B0.9700
C3a—C6a1.450 (3)C11—H11A0.9700
C4—C51.413 (3)C11—H11B0.9700
C5—C61.423 (3)C13—H130.9300
C6—C6a1.430 (3)C14—H140.9300
C6a—C71.434 (3)C16—H160.9300
C7—C81.355 (3)C17—H170.9300
C7—C101.509 (3)C18—H18A0.9600
C8—C91.423 (4)C18—H18B0.9600
C10—C111.559 (4)C18—H18C0.9600
C11—C121.517 (4)C19—H19A0.9600
C12—C131.385 (4)C19—H19B0.9600
C12—C171.391 (4)C19—H19C0.9600
C13—C141.388 (4)C20—H20A0.9600
C14—C151.386 (4)C20—H20B0.9600
C15—C161.390 (3)C20—H20C0.9600
C16—C171.373 (4)C21—H21A0.9600
C18—C231.506 (3)C21—H21B0.9600
C19—C241.499 (3)C21—H21C0.9600
C20—C251.503 (3)C22—H22A0.9600
C21—C261.499 (3)C22—H22B0.9600
C22—C271.499 (3)C22—H22C0.9600
C23—Ru—C2738.64 (8)C25—C24—C19125.5 (2)
C23—Ru—C2438.56 (8)C23—C24—C19126.1 (2)
C27—Ru—C2464.60 (8)C25—C24—Ru70.81 (11)
C23—Ru—C2564.62 (8)C23—C24—Ru70.28 (11)
C27—Ru—C2564.69 (8)C19—C24—Ru129.45 (16)
C24—Ru—C2538.45 (8)C26—C25—C24107.84 (19)
C23—Ru—C2664.50 (8)C26—C25—C20125.9 (2)
C27—Ru—C2638.59 (8)C24—C25—C20126.2 (2)
C24—Ru—C2664.28 (8)C26—C25—Ru70.84 (12)
C25—Ru—C2638.42 (9)C24—C25—Ru70.74 (11)
C23—Ru—C5115.48 (8)C20—C25—Ru126.15 (17)
C27—Ru—C5139.07 (9)C25—C26—C27108.35 (19)
C24—Ru—C5118.25 (8)C25—C26—C21125.6 (2)
C25—Ru—C5145.25 (9)C27—C26—C21126.0 (2)
C26—Ru—C5176.28 (8)C25—C26—Ru70.74 (12)
C23—Ru—C6139.17 (8)C27—C26—Ru70.57 (12)
C27—Ru—C6176.80 (8)C21—C26—Ru126.30 (17)
C24—Ru—C6115.14 (8)C23—C27—C26107.46 (19)
C25—Ru—C6117.30 (8)C23—C27—C22126.4 (2)
C26—Ru—C6144.51 (9)C26—C27—C22126.0 (2)
C5—Ru—C637.91 (8)C23—C27—Ru70.28 (11)
C23—Ru—C4117.83 (8)C26—C27—Ru70.84 (12)
C27—Ru—C4114.93 (8)C22—C27—Ru126.79 (17)
C24—Ru—C4145.43 (8)C15—C1—H1A109.0
C25—Ru—C4175.98 (8)C2—C1—H1A109.0
C26—Ru—C4138.80 (8)C15—C1—H1B109.0
C5—Ru—C437.58 (8)C2—C1—H1B109.0
C6—Ru—C463.29 (8)H1A—C1—H1B107.8
C23—Ru—C6a176.55 (8)C3—C2—H2A108.9
C27—Ru—C6a144.48 (8)C1—C2—H2A108.9
C24—Ru—C6a138.67 (8)C3—C2—H2B108.9
C25—Ru—C6a114.46 (8)C1—C2—H2B108.9
C26—Ru—C6a117.08 (8)H2A—C2—H2B107.7
C5—Ru—C6a63.17 (8)C5—C4—H4125.8
C6—Ru—C6a37.81 (7)C3a—C4—H4125.8
C4—Ru—C6a63.30 (7)Ru—C4—H4122.8
C23—Ru—C3a144.77 (8)C4—C5—H5125.7
C27—Ru—C3a117.18 (8)C6—C5—H5125.7
C24—Ru—C3a176.38 (8)Ru—C5—H5123.2
C25—Ru—C3a138.71 (8)C5—C6—H6126.0
C26—Ru—C3a114.87 (8)C6a—C6—H6126.0
C5—Ru—C3a62.79 (7)Ru—C6—H6122.7
C6—Ru—C3a63.28 (7)C7—C8—H8118.8
C4—Ru—C3a37.48 (7)C9—C8—H8118.8
C6a—Ru—C3a38.08 (7)C3—C9—H9118.8
C15—C1—C2112.9 (2)C8—C9—H9118.8
C3—C2—C1113.4 (2)C7—C10—H10A108.8
C9—C3—C3a116.2 (2)C11—C10—H10A108.8
C9—C3—C2122.5 (2)C7—C10—H10B108.8
C3a—C3—C2119.3 (2)C11—C10—H10B108.8
C4—C3a—C3131.90 (19)H10A—C10—H10B107.7
C4—C3a—C6a107.73 (17)C12—C11—H11A109.0
C3—C3a—C6a120.12 (18)C10—C11—H11A109.0
C4—C3a—Ru70.26 (11)C12—C11—H11B109.0
C3—C3a—Ru128.64 (14)C10—C11—H11B109.0
C6a—C3a—Ru70.85 (10)H11A—C11—H11B107.8
C5—C4—C3a108.42 (18)C12—C13—H13119.8
C5—C4—Ru70.83 (12)C14—C13—H13119.8
C3a—C4—Ru72.27 (11)C15—C14—H14119.3
C4—C5—C6108.65 (18)C13—C14—H14119.3
C4—C5—Ru71.59 (12)C17—C16—H16119.4
C6—C5—Ru71.22 (12)C15—C16—H16119.4
C5—C6—C6a108.09 (18)C16—C17—H17119.4
C5—C6—Ru70.87 (12)C12—C17—H17119.4
C6a—C6—Ru72.19 (11)C23—C18—H18A109.5
C6—C6a—C7133.04 (19)C23—C18—H18B109.5
C6—C6a—C3a107.10 (17)H18A—C18—H18B109.5
C7—C6a—C3a119.59 (18)C23—C18—H18C109.5
C6—C6a—Ru70.01 (11)H18A—C18—H18C109.5
C7—C6a—Ru128.41 (14)H18B—C18—H18C109.5
C3a—C6a—Ru71.07 (10)C24—C19—H19A109.5
C8—C7—C6a116.7 (2)C24—C19—H19B109.5
C8—C7—C10122.6 (2)H19A—C19—H19B109.5
C6a—C7—C10118.8 (2)C24—C19—H19C109.5
C7—C8—C9122.4 (2)H19A—C19—H19C109.5
C3—C9—C8122.3 (2)H19B—C19—H19C109.5
C7—C10—C11113.7 (2)C25—C20—H20A109.5
C12—C11—C10113.0 (2)C25—C20—H20B109.5
C13—C12—C17116.7 (3)H20A—C20—H20B109.5
C13—C12—C11120.7 (3)C25—C20—H20C109.5
C17—C12—C11121.2 (3)H20A—C20—H20C109.5
C12—C13—C14120.5 (3)H20B—C20—H20C109.5
C15—C14—C13121.3 (2)C26—C21—H21A109.5
C14—C15—C16116.3 (2)C26—C21—H21B109.5
C14—C15—C1121.3 (2)H21A—C21—H21B109.5
C16—C15—C1120.9 (3)C26—C21—H21C109.5
C17—C16—C15121.1 (2)H21A—C21—H21C109.5
C16—C17—C12121.1 (2)H21B—C21—H21C109.5
C24—C23—C27108.26 (18)C27—C22—H22A109.5
C24—C23—C18125.7 (2)C27—C22—H22B109.5
C27—C23—C18126.0 (2)H22A—C22—H22B109.5
C24—C23—Ru71.16 (11)C27—C22—H22C109.5
C27—C23—Ru71.08 (12)H22A—C22—H22C109.5
C18—C23—Ru126.09 (15)H22B—C22—H22C109.5
C25—C24—C23108.08 (19)
(V) bis(η5-[2](4,7)indeno[2]paracyclophanyl)ruthenium(II) top
Crystal data top
[Ru(C19H17)2]F(000) = 1224
Mr = 591.72Dx = 1.414 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 12.620 (3) ÅCell parameters from 50 reflections
b = 17.026 (4) Åθ = 10.0–11.5°
c = 13.005 (3) ŵ = 0.59 mm1
β = 95.92 (2)°T = 293 K
V = 2779.5 (11) Å3Parallelepiped, orange-yellow
Z = 40.5 × 0.5 × 0.4 mm
Data collection top
Nicolet R3
diffractometer
4008 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.015
Graphite monochromatorθmax = 25.0°, θmin = 3.2°
ω scanh = 155
Absorption correction: ψ scan
(XEMP; Nicolet, 1987)
k = 020
Tmin = 0.716, Tmax = 0.775l = 1515
7056 measured reflections3 standard reflections every 147 reflections
4889 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.079 w = 1/[σ2(Fo2) + (0.0446P)2 + 0.9725P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
4889 reflectionsΔρmax = 0.56 e Å3
353 parametersΔρmin = 0.38 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0015 (3)
Crystal data top
[Ru(C19H17)2]V = 2779.5 (11) Å3
Mr = 591.72Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.620 (3) ŵ = 0.59 mm1
b = 17.026 (4) ÅT = 293 K
c = 13.005 (3) Å0.5 × 0.5 × 0.4 mm
β = 95.92 (2)°
Data collection top
Nicolet R3
diffractometer
4008 reflections with I > 2σ(I)
Absorption correction: ψ scan
(XEMP; Nicolet, 1987)
Rint = 0.015
Tmin = 0.716, Tmax = 0.7753 standard reflections every 147 reflections
7056 measured reflections intensity decay: none
4889 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.079H-atom parameters constrained
S = 1.03Δρmax = 0.56 e Å3
4889 reflectionsΔρmin = 0.38 e Å3
353 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

9.4185 (0.0178) x + 11.2633 (0.0277) y - 0.0519 (0.0171) z = 14.1634 (0.0065)

* 0.0027 (0.0015) C13 * -0.0027 (0.0015) C14 * 0.0027 (0.0015) C16 * -0.0027 (0.0015) C17 - 0.1504 (0.0043) C12 - 0.1444 (0.0049) C15

Rms deviation of fitted atoms = 0.0027

9.4985 (0.0100) x + 11.0883 (0.0159) y + 0.2431 (0.0089) z = 11.1639 (0.0042)

Angle to previous plane (with approximate e.s.d.) = 1.51 (0.24)

* -0.0127 (0.0019) C4 * -0.0224 (0.0022) C5 * -0.0022 (0.0018) C6 * 0.0325 (0.0022) C3a * 0.0340 (0.0020) C6a * -0.0241 (0.0018) C8 * -0.0051 (0.0019) C9 0.1652 (0.0037) C3 0.1448 (0.0033) C7 - 1.8123 (0.0013) Ru

Rms deviation of fitted atoms = 0.0223

9.7910 (0.0091) x + 10.7338 (0.0147) y - 0.7154 (0.0100) z = 7.4369 (0.0032)

Angle to previous plane (with approximate e.s.d.) = 4.48 (0.16)

* 0.0083 (0.0018) C4' * 0.0412 (0.0021) C5' * 0.0066 (0.0018) C6' * -0.0516 (0.0021) C3a' * -0.0511 (0.0021) C6a' * 0.0234 (0.0019) C8' * 0.0232 (0.0019) C9' -0.1738 (0.0035) C3' -0.1720 (0.0033) C7' 1.8089 (0.0013) Ru

Rms deviation of fitted atoms = 0.0342

9.7944 (0.0155) x + 10.7299 (0.0258) y - 0.7503 (0.0188) z = 4.3534 (0.0048)

Angle to previous plane (with approximate e.s.d.) = 0.15 (0.22)

* 0.0011 (0.0014) C13' * -0.0011 (0.0014) C14' * 0.0011 (0.0014) C16' * -0.0011 (0.0014) C17' 0.1491 (0.0044) C12' 0.1393 (0.0043) C15'

Rms deviation of fitted atoms = 0.0011

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ru0.550639 (16)0.368568 (11)0.142080 (14)0.03400 (9)
C10.9114 (3)0.4297 (3)0.3812 (4)0.1039 (15)
H1A0.95600.43100.44660.125*
H1B0.95430.40980.32920.125*
C20.8168 (3)0.3722 (2)0.3909 (4)0.0882 (14)
H2A0.82850.32470.35230.106*
H2B0.81600.35760.46290.106*
C30.7102 (2)0.40560 (17)0.3522 (2)0.0498 (7)
C3a0.6846 (2)0.41799 (14)0.24308 (19)0.0377 (6)
C40.7224 (2)0.38345 (18)0.1539 (2)0.0519 (7)
H40.76950.34140.15410.062*
C50.6770 (3)0.42343 (19)0.0657 (2)0.0581 (8)
H50.68950.41270.00210.070*
C60.6087 (2)0.48303 (17)0.0976 (2)0.0512 (8)
H60.56850.51770.05420.061*
C6a0.61248 (19)0.48066 (14)0.20791 (19)0.0353 (5)
C70.5660 (2)0.52881 (15)0.2820 (2)0.0465 (7)
C80.5763 (2)0.50261 (18)0.3802 (3)0.0577 (8)
H80.53440.52530.42690.069*
C90.6476 (3)0.44246 (18)0.4156 (2)0.0569 (8)
H90.65180.42760.48470.068*
C100.5318 (3)0.61097 (18)0.2516 (4)0.0792 (12)
H10A0.48270.62970.29880.095*
H10B0.49400.60980.18280.095*
C110.6264 (3)0.66976 (19)0.2526 (3)0.0772 (11)
H11A0.62860.69080.18350.093*
H11B0.61410.71320.29800.093*
C120.7320 (3)0.63333 (17)0.2875 (3)0.0584 (8)
C130.7638 (3)0.6208 (2)0.3924 (3)0.0628 (9)
H130.73710.65280.44160.075*
C140.8340 (3)0.5618 (3)0.4237 (3)0.0713 (10)
H140.85350.55400.49390.086*
C150.8760 (2)0.5138 (2)0.3522 (3)0.0704 (10)
C160.8627 (3)0.5375 (2)0.2505 (3)0.0701 (10)
H160.90220.51350.20280.084*
C170.7921 (3)0.5959 (2)0.2185 (2)0.0624 (9)
H170.78430.61070.14930.075*
C1'0.1274 (3)0.3687 (2)0.1505 (3)0.0773 (11)
H1'10.06260.38920.17450.093*
H1'20.11330.35900.07680.093*
C2'0.2165 (3)0.4319 (2)0.1685 (3)0.0776 (11)
H2'10.23110.45300.10220.093*
H2'20.19080.47460.20860.093*
C3'0.3187 (2)0.40086 (15)0.2238 (3)0.0512 (7)
C3a'0.3841 (2)0.34898 (14)0.1701 (2)0.0376 (6)
C4'0.3960 (2)0.33658 (16)0.0632 (2)0.0460 (7)
H4'0.36240.36500.00810.055*
C5'0.4679 (2)0.27358 (16)0.0557 (2)0.0491 (7)
H5'0.48920.25370.00550.059*
C6'0.5023 (2)0.24569 (15)0.1559 (2)0.0429 (6)
H6'0.54970.20460.17200.051*
C6a'0.45100 (19)0.29191 (13)0.22826 (19)0.0347 (5)
C7'0.4516 (2)0.28740 (17)0.3382 (2)0.0440 (6)
C8'0.4079 (2)0.34859 (19)0.3841 (2)0.0539 (8)
H8'0.42130.35420.45540.065*
C9'0.3425 (2)0.40451 (18)0.3283 (3)0.0583 (8)
H9'0.31440.44550.36430.070*
C10'0.4764 (3)0.2113 (2)0.3934 (2)0.0614 (8)
H10C0.48490.22100.46730.074*
H10D0.54360.19130.37410.074*
C11'0.3878 (3)0.1472 (2)0.3684 (3)0.0736 (10)
H11C0.41450.10720.32470.088*
H11D0.37260.12230.43240.088*
C12'0.2857 (3)0.18083 (16)0.3148 (3)0.0543 (7)
C13'0.2664 (3)0.17718 (17)0.2080 (3)0.0584 (8)
H13'0.29720.13730.17230.070*
C14'0.2023 (2)0.23175 (19)0.1542 (3)0.0595 (8)
H14'0.19060.22830.08260.071*
C15'0.1549 (2)0.29166 (18)0.2046 (3)0.0571 (8)
C16'0.1568 (3)0.28449 (19)0.3119 (3)0.0593 (8)
H16'0.11420.31730.34750.071*
C17'0.2205 (3)0.22993 (19)0.3656 (3)0.0590 (8)
H17'0.21990.22580.43680.071*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru0.03511 (13)0.03297 (13)0.03338 (13)0.00512 (9)0.00102 (8)0.00155 (8)
C10.052 (2)0.134 (4)0.119 (4)0.010 (3)0.021 (2)0.002 (3)
C20.089 (3)0.077 (3)0.088 (3)0.020 (2)0.045 (2)0.002 (2)
C30.0519 (17)0.0417 (15)0.0521 (16)0.0049 (13)0.0122 (14)0.0075 (13)
C3a0.0310 (13)0.0364 (13)0.0445 (14)0.0026 (11)0.0015 (11)0.0035 (11)
C40.0361 (15)0.0574 (18)0.0630 (19)0.0034 (13)0.0090 (14)0.0154 (14)
C50.0592 (19)0.069 (2)0.0489 (17)0.0275 (17)0.0189 (15)0.0112 (15)
C60.0535 (18)0.0488 (16)0.0473 (15)0.0245 (14)0.0139 (14)0.0156 (13)
C6a0.0295 (13)0.0308 (12)0.0442 (14)0.0091 (10)0.0031 (11)0.0029 (10)
C70.0281 (13)0.0338 (13)0.078 (2)0.0069 (11)0.0052 (13)0.0118 (13)
C80.0537 (19)0.0585 (19)0.066 (2)0.0253 (16)0.0284 (16)0.0273 (16)
C90.073 (2)0.0586 (18)0.0385 (15)0.0249 (17)0.0040 (15)0.0032 (14)
C100.057 (2)0.0402 (17)0.137 (4)0.0051 (16)0.005 (2)0.016 (2)
C110.084 (3)0.0375 (17)0.107 (3)0.0076 (18)0.001 (2)0.0011 (18)
C120.059 (2)0.0469 (17)0.070 (2)0.0320 (15)0.0114 (17)0.0094 (14)
C130.056 (2)0.072 (2)0.061 (2)0.0326 (18)0.0148 (17)0.0263 (17)
C140.048 (2)0.106 (3)0.058 (2)0.033 (2)0.0045 (16)0.010 (2)
C150.0302 (16)0.096 (3)0.083 (3)0.0122 (17)0.0055 (16)0.012 (2)
C160.0407 (18)0.100 (3)0.071 (2)0.0270 (19)0.0170 (17)0.026 (2)
C170.058 (2)0.077 (2)0.0529 (18)0.0365 (19)0.0094 (16)0.0054 (17)
C1'0.0432 (19)0.084 (3)0.102 (3)0.0001 (18)0.0066 (19)0.009 (2)
C2'0.052 (2)0.0517 (19)0.129 (3)0.0115 (16)0.010 (2)0.009 (2)
C3'0.0389 (16)0.0286 (13)0.086 (2)0.0013 (12)0.0068 (15)0.0014 (14)
C3a'0.0312 (13)0.0324 (13)0.0479 (15)0.0079 (10)0.0028 (11)0.0001 (11)
C4'0.0463 (16)0.0465 (15)0.0423 (14)0.0165 (13)0.0097 (12)0.0060 (12)
C5'0.0580 (18)0.0455 (16)0.0444 (15)0.0186 (14)0.0083 (14)0.0133 (12)
C6'0.0427 (15)0.0311 (13)0.0555 (16)0.0033 (12)0.0081 (13)0.0049 (11)
C6a'0.0311 (13)0.0307 (12)0.0419 (13)0.0059 (10)0.0021 (11)0.0000 (10)
C7'0.0370 (15)0.0526 (16)0.0423 (14)0.0119 (13)0.0032 (12)0.0001 (12)
C8'0.0488 (17)0.068 (2)0.0468 (16)0.0216 (16)0.0122 (14)0.0144 (15)
C9'0.0514 (18)0.0475 (17)0.080 (2)0.0134 (15)0.0251 (17)0.0280 (16)
C10'0.0548 (19)0.077 (2)0.0519 (17)0.0037 (17)0.0009 (15)0.0219 (16)
C11'0.067 (2)0.061 (2)0.093 (3)0.0050 (18)0.012 (2)0.0217 (18)
C12'0.0527 (18)0.0406 (15)0.071 (2)0.0140 (14)0.0119 (16)0.0049 (14)
C13'0.0561 (19)0.0404 (16)0.080 (2)0.0170 (14)0.0151 (17)0.0119 (15)
C14'0.0481 (18)0.066 (2)0.0637 (19)0.0242 (16)0.0015 (15)0.0124 (16)
C15'0.0310 (15)0.0560 (18)0.083 (2)0.0116 (14)0.0004 (15)0.0043 (16)
C16'0.0461 (18)0.0594 (19)0.075 (2)0.0125 (15)0.0195 (16)0.0144 (17)
C17'0.060 (2)0.0575 (19)0.0609 (19)0.0207 (16)0.0146 (16)0.0002 (15)
Geometric parameters (Å, º) top
Ru—C42.172 (3)C14—H140.9300
Ru—C5'2.174 (3)C15—C161.377 (5)
Ru—C52.175 (3)C16—C171.371 (5)
Ru—C4'2.178 (3)C16—H160.9300
Ru—C62.181 (3)C17—H170.9300
Ru—C6'2.192 (3)C1'—C15'1.512 (5)
Ru—C3a'2.195 (3)C1'—C2'1.557 (5)
Ru—C6a'2.198 (2)C1'—H1'10.9700
Ru—C3a2.198 (2)C1'—H1'20.9700
Ru—C6a2.201 (2)C2'—C3'1.506 (4)
C1—C151.534 (6)C2'—H2'10.9700
C1—C21.560 (6)C2'—H2'20.9700
C1—H1A0.9700C3'—C9'1.362 (4)
C1—H1B0.9700C3'—C3a'1.438 (4)
C2—C31.499 (5)C3a'—C4'1.430 (4)
C2—H2A0.9700C3a'—C6a'1.448 (3)
C2—H2B0.9700C4'—C5'1.415 (4)
C3—C91.353 (4)C4'—H4'0.9300
C3—C3a1.439 (4)C5'—C6'1.412 (4)
C3a—C41.426 (4)C5'—H5'0.9300
C3a—C6a1.446 (3)C6'—C6a'1.431 (4)
C4—C51.404 (5)C6'—H6'0.9300
C4—H40.9300C6a'—C7'1.431 (3)
C5—C61.421 (5)C7'—C8'1.347 (4)
C5—H50.9300C7'—C10'1.498 (4)
C6—C6a1.431 (4)C8'—C9'1.411 (5)
C6—H60.9300C8'—H8'0.9300
C6a—C71.435 (4)C9'—H9'0.9300
C7—C81.346 (4)C10'—C11'1.573 (5)
C7—C101.505 (4)C10'—H10C0.9700
C8—C91.409 (5)C10'—H10D0.9700
C8—H80.9300C11'—C12'1.513 (5)
C9—H90.9300C11'—H11C0.9700
C10—C111.557 (5)C11'—H11D0.9700
C10—H10A0.9700C12'—C13'1.386 (4)
C10—H10B0.9700C12'—C17'1.387 (4)
C11—C121.497 (5)C13'—C14'1.375 (5)
C11—H11A0.9700C13'—H13'0.9300
C11—H11B0.9700C14'—C15'1.382 (4)
C12—C171.388 (5)C14'—H14'0.9300
C12—C131.399 (5)C15'—C16'1.399 (5)
C13—C141.372 (5)C16'—C17'1.371 (5)
C13—H130.9300C16'—H16'0.9300
C14—C151.385 (5)C17'—H17'0.9300
C4—Ru—C5'123.08 (11)C10—C11—H11A108.9
C4—Ru—C537.69 (12)C12—C11—H11B108.9
C5'—Ru—C5114.79 (11)C10—C11—H11B108.9
C4—Ru—C4'154.36 (11)H11A—C11—H11B107.8
C5'—Ru—C4'37.94 (11)C17—C12—C13116.1 (3)
C5—Ru—C4'123.77 (11)C17—C12—C11121.5 (3)
C4—Ru—C663.53 (12)C13—C12—C11121.1 (3)
C5'—Ru—C6133.19 (10)C14—C13—C12120.8 (3)
C5—Ru—C638.07 (12)C14—C13—H13119.6
C4'—Ru—C6114.06 (10)C12—C13—H13119.6
C4—Ru—C6'112.94 (11)C13—C14—C15120.9 (3)
C5'—Ru—C6'37.75 (10)C13—C14—H14119.6
C5—Ru—C6'132.14 (12)C15—C14—H14119.6
C4'—Ru—C6'63.67 (11)C16—C15—C14117.1 (4)
C6—Ru—C6'168.13 (11)C16—C15—C1120.9 (4)
C4—Ru—C3a'166.28 (11)C14—C15—C1120.5 (4)
C5'—Ru—C3a'63.63 (10)C17—C16—C15121.1 (3)
C5—Ru—C3a'154.28 (12)C17—C16—H16119.5
C4'—Ru—C3a'38.17 (10)C15—C16—H16119.5
C6—Ru—C3a'122.24 (11)C16—C17—C12121.2 (3)
C6'—Ru—C3a'64.02 (10)C16—C17—H17119.4
C4—Ru—C6a'130.72 (11)C12—C17—H17119.4
C5'—Ru—C6a'63.39 (10)C15'—C1'—C2'113.7 (3)
C5—Ru—C6a'166.65 (12)C15'—C1'—H1'1108.8
C4'—Ru—C6a'63.89 (10)C2'—C1'—H1'1108.8
C6—Ru—C6a'153.04 (11)C15'—C1'—H1'2108.8
C6'—Ru—C6a'38.06 (9)C2'—C1'—H1'2108.8
C3a'—Ru—C6a'38.48 (9)H1'1—C1'—H1'2107.7
C4—Ru—C3a38.08 (10)C3'—C2'—C1'113.5 (3)
C5'—Ru—C3a153.15 (11)C3'—C2'—H2'1108.9
C5—Ru—C3a63.49 (11)C1'—C2'—H2'1108.9
C4'—Ru—C3a166.78 (10)C3'—C2'—H2'2108.9
C6—Ru—C3a63.75 (10)C1'—C2'—H2'2108.9
C6'—Ru—C3a121.31 (10)H2'1—C2'—H2'2107.7
C3a'—Ru—C3a130.48 (10)C9'—C3'—C3a'115.7 (3)
C6a'—Ru—C3a111.57 (9)C9'—C3'—C2'123.4 (3)
C4—Ru—C6a63.91 (10)C3a'—C3'—C2'119.3 (3)
C5'—Ru—C6a167.97 (10)C4'—C3a'—C3'133.3 (3)
C5—Ru—C6a63.77 (10)C4'—C3a'—C6a'107.1 (2)
C4'—Ru—C6a131.64 (10)C3'—C3a'—C6a'119.4 (2)
C6—Ru—C6a38.12 (9)C4'—C3a'—Ru70.27 (15)
C6'—Ru—C6a152.38 (10)C3'—C3a'—Ru126.50 (18)
C3a'—Ru—C6a111.97 (9)C6a'—C3a'—Ru70.88 (14)
C6a'—Ru—C6a120.99 (9)C5'—C4'—C3a'108.1 (2)
C3a—Ru—C6a38.36 (9)C5'—C4'—Ru70.87 (15)
C15—C1—C2113.5 (3)C3a'—C4'—Ru71.56 (14)
C15—C1—H1A108.9C5'—C4'—H4'125.9
C2—C1—H1A108.9C3a'—C4'—H4'125.9
C15—C1—H1B108.9Ru—C4'—H4'123.3
C2—C1—H1B108.9C6'—C5'—C4'109.2 (2)
H1A—C1—H1B107.7C6'—C5'—Ru71.83 (15)
C3—C2—C1113.7 (3)C4'—C5'—Ru71.19 (15)
C3—C2—H2A108.8C6'—C5'—H5'125.4
C1—C2—H2A108.8C4'—C5'—H5'125.4
C3—C2—H2B108.8Ru—C5'—H5'123.2
C1—C2—H2B108.8C5'—C6'—C6a'107.8 (2)
H2A—C2—H2B107.7C5'—C6'—Ru70.42 (15)
C9—C3—C3a116.6 (3)C6a'—C6'—Ru71.20 (14)
C9—C3—C2122.1 (3)C5'—C6'—H6'126.1
C3a—C3—C2119.3 (3)C6a'—C6'—H6'126.1
C4—C3a—C3133.0 (3)Ru—C6'—H6'123.9
C4—C3a—C6a107.4 (2)C6'—C6a'—C7'132.1 (2)
C3—C3a—C6a119.4 (2)C6'—C6a'—C3a'107.7 (2)
C4—C3a—Ru69.98 (15)C7'—C6a'—C3a'120.0 (2)
C3—C3a—Ru127.90 (19)C6'—C6a'—Ru70.74 (14)
C6a—C3a—Ru70.93 (13)C7'—C6a'—Ru126.64 (17)
C5—C4—C3a108.8 (3)C3a'—C6a'—Ru70.64 (14)
C5—C4—Ru71.24 (18)C8'—C7'—C6a'116.2 (3)
C3a—C4—Ru71.94 (15)C8'—C7'—C10'122.1 (3)
C5—C4—H4125.6C6a'—C7'—C10'120.3 (3)
C3a—C4—H4125.6C7'—C8'—C9'122.6 (3)
Ru—C4—H4122.8C7'—C8'—H8'118.7
C4—C5—C6108.5 (3)C9'—C8'—H8'118.7
C4—C5—Ru71.07 (17)C3'—C9'—C8'122.6 (3)
C6—C5—Ru71.22 (16)C3'—C9'—H9'118.7
C4—C5—H5125.8C8'—C9'—H9'118.7
C6—C5—H5125.8C7'—C10'—C11'113.1 (3)
Ru—C5—H5123.6C7'—C10'—H10C109.0
C5—C6—C6a108.3 (3)C11'—C10'—H10C109.0
C5—C6—Ru70.71 (16)C7'—C10'—H10D109.0
C6a—C6—Ru71.71 (14)C11'—C10'—H10D109.0
C5—C6—H6125.8H10C—C10'—H10D107.8
C6a—C6—H6125.8C12'—C11'—C10'112.7 (3)
Ru—C6—H6123.4C12'—C11'—H11C109.0
C6—C6a—C7133.1 (3)C10'—C11'—H11C109.0
C6—C6a—C3a107.0 (2)C12'—C11'—H11D109.0
C7—C6a—C3a119.8 (2)C10'—C11'—H11D109.0
C6—C6a—Ru70.18 (14)H11C—C11'—H11D107.8
C7—C6a—Ru127.10 (17)C13'—C12'—C17'116.9 (3)
C3a—C6a—Ru70.70 (13)C13'—C12'—C11'119.9 (3)
C8—C7—C6a116.2 (3)C17'—C12'—C11'121.8 (3)
C8—C7—C10123.6 (3)C14'—C13'—C12'120.9 (3)
C6a—C7—C10118.8 (3)C14'—C13'—H13'119.6
C7—C8—C9123.1 (3)C12'—C13'—H13'119.6
C7—C8—H8118.4C13'—C14'—C15'121.2 (3)
C9—C8—H8118.4C13'—C14'—H14'119.4
C3—C9—C8122.1 (3)C15'—C14'—H14'119.4
C3—C9—H9119.0C14'—C15'—C16'116.4 (3)
C8—C9—H9119.0C14'—C15'—C1'120.6 (3)
C7—C10—C11113.3 (3)C16'—C15'—C1'121.3 (3)
C7—C10—H10A108.9C17'—C16'—C15'121.1 (3)
C11—C10—H10A108.9C17'—C16'—H16'119.5
C7—C10—H10B108.9C15'—C16'—H16'119.5
C11—C10—H10B108.9C16'—C17'—C12'120.8 (3)
H10A—C10—H10B107.7C16'—C17'—H17'119.6
C12—C11—C10113.2 (3)C12'—C17'—H17'119.6
C12—C11—H11A108.9

Experimental details

(III)(IV)(V)
Crystal data
Chemical formula[Ru(C10H15)(C11H11)][Ru(C10H15)(C19H17)][Ru(C19H17)2]
Mr379.49481.62591.72
Crystal system, space groupMonoclinic, P21/nMonoclinic, P21/nMonoclinic, P21/n
Temperature (K)293293293
a, b, c (Å)8.609 (2), 14.232 (3), 14.752 (3)11.648 (2), 14.757 (3), 13.798 (3)12.620 (3), 17.026 (4), 13.005 (3)
β (°) 97.50 (2) 103.134 (15) 95.92 (2)
V3)1792.1 (7)2309.7 (7)2779.5 (11)
Z444
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.870.690.59
Crystal size (mm)0.70 × 0.50 × 0.350.7 × 0.4 × 0.30.5 × 0.5 × 0.4
Data collection
DiffractometerNicolet R3
diffractometer
Nicolet R3
diffractometer
Nicolet R3
diffractometer
Absorption correctionψ scan
(XEMP; Nicolet, 1987)
ψ scan
(XEMP; Nicolet, 1987)
ψ scan
(XEMP; Nicolet, 1987)
Tmin, Tmax0.608, 0.7370.643, 0.8190.716, 0.775
No. of measured, independent and
observed [I > 2σ(I)] reflections
4248, 3172, 2605 8161, 4086, 3547 7056, 4889, 4008
Rint0.0110.0140.015
(sin θ/λ)max1)0.5960.5960.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.056, 1.10 0.021, 0.058, 1.07 0.029, 0.079, 1.03
No. of reflections317240864889
No. of parameters207276353
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.300.24, 0.190.56, 0.38

Computer programs: P3 Software (Nicolet, 1987), P3 Software, XDISK (Nicolet, 1987), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), XP (Siemens, 1994), SHELXL97.

Selected bond lengths (Å) for (III) top
Ru—C192.160 (2)Ru—C32.185 (3)
Ru—C182.161 (3)Ru—C22.188 (3)
Ru—C152.163 (2)Ru—C12.190 (3)
Ru—C162.165 (2)Ru—C3a2.220 (2)
Ru—C172.169 (2)Ru—C7a2.227 (2)
Selected bond lengths (Å) for (IV) top
Ru—C3a2.2238 (19)Ru—C232.154 (2)
Ru—C42.197 (2)Ru—C242.165 (2)
Ru—C52.188 (2)Ru—C252.166 (2)
Ru—C62.192 (2)Ru—C262.168 (2)
Ru—C6a2.2209 (19)Ru—C272.164 (2)
Selected bond lengths (Å) for (V) top
Ru—C42.172 (3)Ru—C3a'2.195 (3)
Ru—C5'2.174 (3)Ru—C6a'2.198 (2)
Ru—C52.175 (3)Ru—C3a2.198 (2)
Ru—C4'2.178 (3)Ru—C6a2.201 (2)
Ru—C62.181 (3)C1—C151.534 (6)
Ru—C6'2.192 (3)C1—C21.560 (6)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds