Download citation
Download citation
link to html
The title isomers 4,16- (pseudo-ortho), 4,15- (pseudo-gem) and 4,12-bis­(methoxy­carbonyl)[2.2]­para­cyclo­phane (pseudo-para), C20H20O4, all show the typical structural features of [2.2]­para­cyclo­phanes (flattened boat conformation of the rings, lengthened single bonds in the bridges and narrow ring angles at the bridgehead atoms). The 4,12-isomer displays crystallographic inversion symmetry. The carbonyl groups adopt a conformation in which they are directed away from the ring systems towards the nearest bridge; the corresponding angle at the ring substituent atom is widened. Crystal packing involves C—H...π interactions for the 4,15-isomer and weak C—H...O hydrogen bonds for the other two isomers.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102005140/bm1493sup1.cif
Contains datablocks IVa, IVb, IVd, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102005140/bm1493IVasup2.hkl
Contains datablock IVa

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102005140/bm1493IVbsup3.hkl
Contains datablock IVb

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102005140/bm1493IVdsup4.hkl
Contains datablock IVd

CCDC references: 187941; 187942; 187943

Comment top

When triple-bond dienophiles bearing electron-withdrawing groups are added to 1,2,4,5-hexatetraene, (I), a Diels-Alder reaction occurs, yielding a p-xylylene (p-quinodimethane) intermediate that subsequently dimerizes to a derivative of [2.2]paracyclophane (Hopf, 1972). With an unsymmetrically substituted dienophile, (II), the initial [2 + 4] cycloadduct is the monofunctionalized p-xylylene (III), which has four potential dimerization modes, yielding the isomeric disubstituted cyclophane derivatives, (IVa)-(IVd) (Hopf et al., 1978). We have carried out this addition with methyl propiolate for (II), i.e. with R = CO2CH3, and have obtained the expected mixture of isomeric bis(methoxycarbonyl)[2.2]paracyclophanes: 4,16-, (IVa) (the chiral pseudo-ortho isomer), 4,15-, (IVb) (pseudo-gem, achiral), 4,13-, (IVc) (pseudo-meta, chiral) and 4,12-, (IVd) (pseudo-para, achiral). We are interested in the structures of [2.2]paracyclophane derivatives (for recent examples see Jones et al., 2002; Focken et al., 2001), and report here the structures of (IVa), (IVb) and (IVd); despite repeated attempts, we were unable to obtain good single crystals of (IVc). \sch

All three compounds crystallize in the monoclinic system. By chance, (IVb) and (IVd) have closely similar unit-cell dimensions, although (IVb) has Z' = 1 in P21 and (IVd) has Z' = 1/2 (inversion symmetry) in P21/c. The molecules are shown in Figs. 1–3; (IVa) has approximate twofold and (IVb) approximate mirror symmetry.

The three isomers show features typical of [2.2]paracyclophane structures. The flattened boat form of the rings is observed in each case; atoms C3, C6, C11 and C14 are displaced by 0.157 (2), 0.156 (2), 0.165 (2) and 0.161 (2) Å, respectively, for (IVa), 0.158 (3), 0.148 (3), 0.159 (3) and 0.175 (3) Å, respectively, for (IVb), and atoms C3 and C6 by 0.175 (2) and 0.165 (2) Å, respectively, for (IVd), from the plane of the remaining four ring atoms (respective mean deviations are 0.002, 0.003, 0.008, 0.008 and 0.0004 Å Please clarify what these five values relate to). The two planes thus generated in each molecule are essentially parallel, with interplanar angles all <1° [zero in (IVd), by symmetry]. The C1—C2 and C9—C10 bridgehead bonds are lengthened to 1.588 (3) Å [(IVa), × 2], 1.590 (3) and 1.584 (3) Å [(IVb)], and 1.587 (2) Å [(IVd)]. The ring angles at the bridgeheads are all significantly less than 120° (Tables 1–3).

The four non-bridgehead atoms of each ring may also be used to calculate a centroid, Cg. Torsion angles such as C3—Cg1—Cg2—C14 show that the rings are mutually rotated by ca 2.5° in (IVa) and 6.4° in (IVb); in (IVd), the values are zero by symmetry.

The methoxycarbonyl groups all adopt a similar conformation, in which the C O bond is directed outwards towards the bridge [absolute C(bridgehead)-C—CO torsion angles 16–31°] and the substituent is extended [absolute CCOC(methyl) torsion angles 173–180°]. There appears to be some repulsive steric interaction between the carbonyl O atoms and the corresponding bridge regions, because the angles from the substituent-bearing C atom through the bridgehead to the bridge are all appreciably greater than 120° (Tables 1–3). The pseudo-geminal subsitution pattern in (IVb) is associated with a close approach of 3.338 (3) Å between the substituent atoms C17 and C19. This relaxes to 4.109 (3) Å in the pseudo-ortho (IVa).

The crystal packing of (IVa) (Fig. 4) involves three weak hydrogen bonds of the form C(methyl)-H···O(carbonyl) that connect the molecules into ribbons parallel to the z axis. The ribbons, in turn, form layers parallel to the ac plane, with adjacent planes being connected by a fourth weak C7—H7···O1 hydrogen bond.

The packing of (IVb) involves no weak C—H···O hydrogen bonds, but the ring centroids Cg1 (C11–16) and Cg2 (C3–8) are involved in C8—H8···Cg1 [H···Cg1 2.78 Å, angle 167°, symmetry code 1 - x, y - 1/2, 1 - z) and C10—H10···Cg2 [H···Cg2 2.95 Å, angle 166°, symmetry code -x, 1/2 + y, 1 - z) contacts that might be classified as C—H···π interactions. The overall effect is to connect the molecules in layers parallel to ab (Fig. 5).

The packing of (IVd), like that of (IVa), is determined by CH···O(carbonyl) interactions, which link the molecules to form layers parallel to bc (Fig. 6).

Experimental top

To a solution of 1,2,4,5-hexatetraene (Hopf et al., 1978), (I) (18.8 g, 0.24 mol), in diethyl ether was added methyl propiolate, (II) (16.8 g, 0.2 mol), in toluene (200 ml). The mixture was heated to 330 K for several hours while most of the ether distilled off. To complete the cycloaddition, the reaction mixture was kept at 353 K for 1 d. For work-up, the solvent was removed in vacuo and the oily residue taken up in dichloromethane/ethyl acetate (8:2) and passed through a silica gel column. The prepurified product mixture (16.2 g, 25% yield) was fractionated by middle-pressure Is this medium-pressure? chromatography using dichloromethane/ethyl acetate (98:2, v/v) as eluent. The first fraction consisted of (IVd) (4.02 g, 6.2%), the second of (IVc) (5.19 g, 8.0%), the third of (IVa) (4.15 g, 6.4%) and the fourth of (IVb) (2.6 g, 4%). Analytically pure samples were obtained by recrystallization from chloroform. Spectroscopic and analytical data, including the separation of chiral derivatives by high-pressure liquid chromatography on optically active columns, are described by Hillmer (1991). Single crystals were obtained by evaporation from chloroform/cyclohexane for (IVa), or diffusion of cyclohexane into a chloroform solution for (IVb) and (IVd).

Refinement top

Methyl H atoms were identified in difference syntheses, idealized and then refined using rigid methyl groups allowed to rotate but not tip. Other H atoms were included using a riding model. C—H bond lengths were fixed as follows: CH 0.95 Å, CH2 0.98 Å and CH3 0.99 Å. Uiso(H) values were fixed at 1.2Ueq for the parent atom. For compound (IVb), Friedel-opposite reflections were merged because the anomalous differences were not significant and the absolute structure could therefore not be determined.

Computing details top

For all compounds, data collection: P3 Software (Nicolet, 1987); cell refinement: P3 Software; data reduction: XDISK (Nicolet, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. A view of the molecule of compound (IVa) in the crystal. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. A view of the molecule of compound (IVb) in the crystal. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 3] Fig. 3. A view of the molecule of compound (IVd) in the crystal. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 4] Fig. 4. A packing diagram for compound (IVa) viewed along the a axis. Non-methyl H atoms have been omitted. Weak hydrogen bonds are indicated by dashed lines.
[Figure 5] Fig. 5. A packing diagram for compound (IVb) viewed along the a axis. Weak C—H···π hydrogen bonds are indicated by dashed lines.
[Figure 6] Fig. 6. A packing diagram for compound (IVd) viewed along the a axis. Weak hydrogen bonds are indicated by dashed lines.
(IVa) 4,16-bis(methoxycarbonyl)[2.2]paracyclophane top
Crystal data top
C20H20O4F(000) = 688
Mr = 324.36Dx = 1.353 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.096 (4) ÅCell parameters from 46 reflections
b = 21.282 (11) Åθ = 10–12°
c = 9.281 (5) ŵ = 0.09 mm1
β = 95.28 (4)°T = 178 K
V = 1592.3 (14) Å3Irregular, colourless
Z = 40.7 × 0.6 × 0.5 mm
Data collection top
Nicolet R3
diffractometer
Rint = 0.010
Radiation source: fine-focus sealed tubeθmax = 25.0°, θmin = 3.5°
Graphite monochromatorh = 99
ω scansk = 250
2954 measured reflectionsl = 111
2767 independent reflections3 standard reflections every 147 reflections
2296 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.064P)2 + 0.628P]
where P = (Fo2 + 2Fc2)/3
2767 reflections(Δ/σ)max = 0.001
219 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C20H20O4V = 1592.3 (14) Å3
Mr = 324.36Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.096 (4) ŵ = 0.09 mm1
b = 21.282 (11) ÅT = 178 K
c = 9.281 (5) Å0.7 × 0.6 × 0.5 mm
β = 95.28 (4)°
Data collection top
Nicolet R3
diffractometer
Rint = 0.010
2954 measured reflections3 standard reflections every 147 reflections
2767 independent reflections intensity decay: none
2296 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 1.05Δρmax = 0.23 e Å3
2767 reflectionsΔρmin = 0.20 e Å3
219 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Non-bonded distance:

4.1091 (0.0027) C17 - C19

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

6.1606 (0.0055) x + 13.6573 (0.0141) y + 0.2337 (0.0105) z = 11.5304 (0.0125)

* 0.0017 (0.0008) C4 * -0.0017 (0.0008) C5 * 0.0017 (0.0008) C7 * -0.0017 (0.0008) C8 - 0.1574 (0.0023) C3 - 0.1561 (0.0023) C6

Rms deviation of fitted atoms = 0.0017

6.1131 (0.0055) x + 13.8004 (0.0139) y + 0.2496 (0.0101) z = 8.5486 (0.0112)

Angle to previous plane (with approximate e.s.d.) = 0.52 (0.10)

* -0.0032 (0.0007) C12 * 0.0032 (0.0008) C13 * -0.0031 (0.0007) C15 * 0.0031 (0.0007) C16 0.1649 (0.0023) C11 0.1610 (0.0023) C14

Rms deviation of fitted atoms = 0.0032

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0866 (2)0.62940 (8)0.40719 (18)0.0358 (4)
H1A0.00630.63680.33210.043*
H1B0.15210.59340.37570.043*
C20.2011 (2)0.69008 (8)0.42176 (18)0.0349 (4)
H2A0.29830.68350.36630.042*
H2B0.13810.72640.37870.042*
C30.2608 (2)0.70523 (7)0.57705 (17)0.0289 (4)
C40.36897 (19)0.66654 (7)0.66698 (17)0.0261 (3)
C50.36049 (19)0.66757 (7)0.81608 (18)0.0286 (4)
H50.43350.64140.87550.034*
C60.2487 (2)0.70560 (8)0.88108 (18)0.0321 (4)
C70.1717 (2)0.75331 (8)0.7957 (2)0.0343 (4)
H70.11490.78620.83950.041*
C80.1786 (2)0.75250 (7)0.64735 (19)0.0333 (4)
H80.12550.78530.59100.040*
C90.1892 (2)0.68582 (9)1.02364 (19)0.0395 (4)
H9A0.16270.72371.07890.047*
H9B0.27930.66301.08080.047*
C100.0297 (2)0.64211 (9)1.00303 (18)0.0354 (4)
H10A0.04510.60591.06990.042*
H10B0.06790.66611.02920.042*
C110.00429 (19)0.61792 (7)0.84983 (17)0.0274 (4)
C120.10858 (19)0.65368 (8)0.75372 (18)0.0304 (4)
H120.18950.68000.79100.036*
C130.09777 (19)0.65202 (8)0.60648 (18)0.0304 (4)
H130.16960.67740.54430.036*
C140.01797 (19)0.61324 (7)0.54809 (17)0.0284 (4)
C150.09165 (18)0.56707 (7)0.63868 (17)0.0257 (3)
H150.14940.53360.59790.031*
C160.08267 (19)0.56879 (7)0.78843 (17)0.0256 (3)
C170.47406 (19)0.61790 (7)0.60409 (18)0.0277 (4)
C180.6381 (2)0.52648 (8)0.6598 (2)0.0368 (4)
H18A0.57000.49050.62500.044*
H18B0.71480.51340.74220.044*
H18C0.70150.54180.58190.044*
C190.1892 (2)0.52461 (7)0.87962 (18)0.0306 (4)
C200.3453 (2)0.43088 (9)0.8791 (2)0.0493 (5)
H20A0.45030.45300.90340.059*
H20B0.36380.39520.81600.059*
H20C0.30230.41570.96810.059*
O10.50458 (16)0.61564 (6)0.47945 (13)0.0393 (3)
O20.53199 (14)0.57609 (5)0.70449 (12)0.0350 (3)
O30.24102 (18)0.53320 (7)1.00414 (14)0.0504 (4)
O40.22660 (16)0.47329 (5)0.80545 (14)0.0406 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0401 (10)0.0392 (10)0.0270 (9)0.0010 (8)0.0022 (7)0.0005 (7)
C20.0357 (9)0.0376 (9)0.0315 (9)0.0017 (7)0.0039 (7)0.0090 (7)
C30.0284 (8)0.0248 (8)0.0339 (9)0.0050 (6)0.0050 (7)0.0049 (7)
C40.0231 (8)0.0238 (8)0.0313 (8)0.0065 (6)0.0018 (6)0.0003 (6)
C50.0250 (8)0.0276 (8)0.0324 (9)0.0062 (6)0.0026 (6)0.0025 (7)
C60.0301 (9)0.0334 (9)0.0322 (9)0.0079 (7)0.0005 (7)0.0103 (7)
C70.0310 (9)0.0256 (8)0.0467 (10)0.0046 (7)0.0053 (7)0.0102 (7)
C80.0313 (9)0.0218 (8)0.0465 (10)0.0019 (7)0.0029 (7)0.0024 (7)
C90.0402 (10)0.0466 (11)0.0317 (9)0.0045 (8)0.0025 (7)0.0113 (8)
C100.0376 (9)0.0386 (10)0.0314 (9)0.0003 (8)0.0107 (7)0.0033 (7)
C110.0239 (8)0.0273 (8)0.0316 (8)0.0041 (6)0.0052 (6)0.0000 (6)
C120.0226 (8)0.0260 (8)0.0429 (10)0.0006 (6)0.0046 (7)0.0023 (7)
C130.0246 (8)0.0275 (8)0.0375 (9)0.0008 (6)0.0054 (7)0.0031 (7)
C140.0264 (8)0.0287 (8)0.0289 (8)0.0061 (6)0.0035 (6)0.0021 (6)
C150.0217 (7)0.0230 (8)0.0317 (8)0.0035 (6)0.0007 (6)0.0029 (6)
C160.0217 (7)0.0237 (8)0.0312 (8)0.0036 (6)0.0015 (6)0.0011 (6)
C170.0232 (8)0.0268 (8)0.0328 (9)0.0062 (6)0.0010 (6)0.0006 (7)
C180.0330 (9)0.0285 (9)0.0477 (11)0.0052 (7)0.0019 (8)0.0035 (7)
C190.0272 (8)0.0284 (9)0.0360 (9)0.0039 (7)0.0023 (7)0.0055 (7)
C200.0418 (11)0.0307 (10)0.0735 (14)0.0082 (8)0.0043 (10)0.0127 (9)
O10.0445 (7)0.0407 (7)0.0336 (7)0.0055 (6)0.0082 (5)0.0013 (5)
O20.0326 (6)0.0331 (6)0.0392 (7)0.0059 (5)0.0035 (5)0.0030 (5)
O30.0589 (9)0.0533 (9)0.0366 (8)0.0130 (7)0.0084 (6)0.0059 (6)
O40.0413 (7)0.0259 (6)0.0526 (8)0.0068 (5)0.0071 (6)0.0020 (5)
Geometric parameters (Å, º) top
C1—C21.588 (3)C10—H10B0.9900
C9—C101.588 (3)C11—C121.396 (2)
C1—C141.507 (2)C11—C161.410 (2)
C1—H1A0.9900C12—C131.378 (2)
C1—H1B0.9900C12—H120.9500
C2—C31.512 (2)C13—C141.395 (2)
C2—H2A0.9900C13—H130.9500
C2—H2B0.9900C14—C151.391 (2)
C3—C81.400 (2)C15—C161.399 (2)
C3—C41.417 (2)C15—H150.9500
C4—C51.392 (2)C16—C191.487 (2)
C4—C171.492 (2)C17—O11.206 (2)
C5—C61.393 (2)C17—O21.341 (2)
C5—H50.9500C18—O21.446 (2)
C6—C71.399 (3)C18—H18A0.9800
C6—C91.509 (3)C18—H18B0.9800
C7—C81.383 (3)C18—H18C0.9800
C7—H70.9500C19—O31.206 (2)
C8—H80.9500C19—O41.341 (2)
C9—H9A0.9900C20—O41.444 (2)
C9—H9B0.9900C20—H20A0.9800
C10—C111.513 (2)C20—H20B0.9800
C10—H10A0.9900C20—H20C0.9800
C14—C1—C2111.75 (14)C11—C10—H10A109.0
C1—C2—C3112.80 (13)C9—C10—H10A109.0
C6—C9—C10112.29 (14)C11—C10—H10B109.0
C9—C10—C11112.82 (14)C9—C10—H10B109.0
C4—C3—C8115.95 (15)H10A—C10—H10B107.8
C5—C6—C7116.73 (16)C12—C11—C10117.51 (15)
C12—C11—C16116.18 (15)C13—C12—C11121.99 (15)
C13—C14—C15116.68 (15)C13—C12—H12119.0
C2—C3—C4124.32 (15)C11—C12—H12119.0
C10—C11—C16125.28 (15)C12—C13—C14120.45 (15)
C14—C1—H1A109.3C12—C13—H13119.8
C2—C1—H1A109.3C14—C13—H13119.8
C14—C1—H1B109.3C15—C14—C1120.91 (15)
C2—C1—H1B109.3C13—C14—C1121.11 (15)
H1A—C1—H1B107.9C14—C15—C16121.55 (15)
C3—C2—H2A109.0C14—C15—H15119.2
C1—C2—H2A109.0C16—C15—H15119.2
C3—C2—H2B109.0C15—C16—C11119.64 (14)
C1—C2—H2B109.0C15—C16—C19117.94 (14)
H2A—C2—H2B107.8C11—C16—C19121.61 (15)
C8—C3—C2118.24 (15)O1—C17—O2123.40 (15)
C5—C4—C3119.49 (15)O1—C17—C4125.26 (15)
C5—C4—C17118.80 (14)O2—C17—C4111.34 (14)
C3—C4—C17121.09 (15)O2—C18—H18A109.5
C4—C5—C6122.23 (15)O2—C18—H18B109.5
C4—C5—H5118.9H18A—C18—H18B109.5
C6—C5—H5118.9O2—C18—H18C109.5
C5—C6—C9119.36 (16)H18A—C18—H18C109.5
C7—C6—C9122.55 (16)H18B—C18—H18C109.5
C8—C7—C6119.90 (16)O3—C19—O4122.70 (15)
C8—C7—H7120.1O3—C19—C16125.58 (16)
C6—C7—H7120.1O4—C19—C16111.69 (14)
C7—C8—C3122.48 (16)O4—C20—H20A109.5
C7—C8—H8118.8O4—C20—H20B109.5
C3—C8—H8118.8H20A—C20—H20B109.5
C6—C9—H9A109.1O4—C20—H20C109.5
C10—C9—H9A109.1H20A—C20—H20C109.5
C6—C9—H9B109.1H20B—C20—H20C109.5
C10—C9—H9B109.1C17—O2—C18117.65 (13)
H9A—C9—H9B107.9C19—O4—C20115.98 (15)
C14—C1—C2—C318.7 (2)C16—C11—C12—C1315.5 (2)
C1—C2—C3—C8100.08 (18)C10—C11—C12—C13153.50 (16)
C1—C2—C3—C465.4 (2)C11—C12—C13—C140.9 (2)
C8—C3—C4—C514.2 (2)C12—C13—C14—C1514.5 (2)
C2—C3—C4—C5151.63 (15)C12—C13—C14—C1152.57 (16)
C8—C3—C4—C17175.00 (13)C2—C1—C14—C1598.53 (18)
C2—C3—C4—C1719.2 (2)C2—C1—C14—C1368.0 (2)
C3—C4—C5—C60.1 (2)C13—C14—C15—C1615.3 (2)
C17—C4—C5—C6171.10 (14)C1—C14—C15—C16151.80 (15)
C4—C5—C6—C714.4 (2)C14—C15—C16—C110.7 (2)
C4—C5—C6—C9152.62 (15)C14—C15—C16—C19169.21 (14)
C5—C6—C7—C814.4 (2)C12—C11—C16—C1514.5 (2)
C9—C6—C7—C8152.20 (16)C10—C11—C16—C15153.53 (15)
C6—C7—C8—C30.1 (2)C12—C11—C16—C19175.96 (14)
C4—C3—C8—C714.3 (2)C10—C11—C16—C1916.0 (2)
C2—C3—C8—C7152.41 (16)C5—C4—C17—O1172.49 (15)
C5—C6—C9—C1088.23 (19)C3—C4—C17—O116.6 (2)
C7—C6—C9—C1078.0 (2)C5—C4—C17—O27.47 (19)
C6—C9—C10—C1113.0 (2)C3—C4—C17—O2163.43 (13)
C9—C10—C11—C1291.10 (19)C15—C16—C19—O3152.58 (17)
C9—C10—C11—C1676.8 (2)C11—C16—C19—O317.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18A···O1i0.982.513.447 (3)160
C18—H18B···O3ii0.982.553.426 (3)149
C20—H20A···O3ii0.982.583.508 (3)157
C7—H7···O1iii0.952.663.598 (2)171
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z+2; (iii) x1/2, y+3/2, z+1/2.
(IVb) 4,15-bis(methoxycarbonyl)[2.2]paracyclophane top
Crystal data top
C20H20O4F(000) = 344
Mr = 324.36Dx = 1.346 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 7.470 (3) ÅCell parameters from 49 reflections
b = 11.287 (4) Åθ = 10–11.5°
c = 9.494 (3) ŵ = 0.09 mm1
β = 90.83 (3)°T = 178 K
V = 800.4 (5) Å3Tablet, colourless
Z = 20.45 × 0.40 × 0.20 mm
Data collection top
Nicolet R3
diffractometer
Rint = 0.029
Radiation source: fine-focus sealed tubeθmax = 27.5°, θmin = 3.3°
Graphite monochromatorh = 69
ω scansk = 1014
3864 measured reflectionsl = 1212
1939 independent reflections3 standard reflections every 147 reflections
1692 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.054P)2 + 0.084P]
where P = (Fo2 + 2Fc2)/3
1939 reflections(Δ/σ)max = 0.001
219 parametersΔρmax = 0.19 e Å3
1 restraintΔρmin = 0.19 e Å3
Crystal data top
C20H20O4V = 800.4 (5) Å3
Mr = 324.36Z = 2
Monoclinic, P21Mo Kα radiation
a = 7.470 (3) ŵ = 0.09 mm1
b = 11.287 (4) ÅT = 178 K
c = 9.494 (3) Å0.45 × 0.40 × 0.20 mm
β = 90.83 (3)°
Data collection top
Nicolet R3
diffractometer
Rint = 0.029
3864 measured reflections3 standard reflections every 147 reflections
1939 independent reflections intensity decay: none
1692 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0361 restraint
wR(F2) = 0.096H-atom parameters constrained
S = 1.04Δρmax = 0.19 e Å3
1939 reflectionsΔρmin = 0.19 e Å3
219 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Non-bonded Distance

3.3377 (0.0034) C17 - C19

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

5.5425 (0.0072) x + 7.3739 (0.0103) y + 1.3271 (0.0136) z = 1.6064 (0.0058)

* -0.0074 (0.0011) C4 * 0.0075 (0.0011) C5 * -0.0075 (0.0011) C7 * 0.0075 (0.0011) C8 0.1575 (0.0033) C3 0.1482 (0.0033) C6

Rms deviation of fitted atoms = 0.0075

5.4728 (0.0074) x + 7.4617 (0.0104) y + 1.4357 (0.0124) z = 4.7371 (0.0058)

Angle to previous plane (with approximate e.s.d.) = 0.95 (0.18)

* 0.0079 (0.0011) C12 * -0.0079 (0.0011) C13 * 0.0078 (0.0011) C15 * -0.0079 (0.0011) C16 - 0.1585 (0.0033) C11 - 0.1751 (0.0033) C14

Rms deviation of fitted atoms = 0.0079

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5437 (3)0.0772 (2)0.2707 (2)0.0294 (5)
H1A0.63200.01960.30850.037*
H1B0.59820.11760.18930.037*
C20.3700 (3)0.0077 (2)0.2183 (3)0.0313 (5)
H2A0.32890.04080.12680.037*
H2B0.40080.07670.20340.037*
C30.2194 (3)0.0161 (2)0.3235 (2)0.0276 (5)
C40.0804 (3)0.1003 (2)0.3116 (2)0.0248 (5)
C50.0026 (3)0.1431 (2)0.4320 (2)0.0269 (5)
H50.09370.20140.42270.032*
C60.0455 (3)0.1018 (2)0.5664 (2)0.0281 (5)
C70.1514 (3)0.0001 (2)0.5719 (3)0.0320 (5)
H70.16490.04160.65830.037*
C80.2376 (3)0.0412 (2)0.4527 (3)0.0316 (5)
H80.31040.11000.45970.036*
C90.0175 (3)0.1779 (3)0.6944 (3)0.0354 (6)
H9A0.02970.12820.77990.042*
H9B0.10580.21010.69140.042*
C100.1551 (3)0.2845 (2)0.7049 (2)0.0329 (5)
H10A0.09170.35950.68350.040*
H10B0.20270.28960.80260.040*
C110.3093 (3)0.2703 (2)0.6050 (2)0.0256 (4)
C120.4446 (3)0.1881 (2)0.6329 (2)0.0278 (5)
H120.47200.16650.72750.033*
C130.5397 (3)0.1373 (2)0.5234 (2)0.0264 (5)
H130.63040.08070.54420.033*
C140.5039 (3)0.1681 (2)0.3833 (2)0.0252 (4)
C150.4021 (3)0.2717 (2)0.3603 (2)0.0237 (4)
C160.3042 (3)0.3201 (2)0.4709 (2)0.0240 (4)
H160.23270.38840.45410.028*
C170.0250 (3)0.1511 (2)0.1720 (2)0.0274 (5)
C180.1126 (4)0.3139 (3)0.0560 (3)0.0404 (6)
H18A0.02710.30210.02000.048*
H18B0.13080.39900.07090.048*
H18C0.22700.27670.03030.048*
C190.3844 (3)0.3235 (2)0.2166 (2)0.0274 (5)
C200.3262 (4)0.4977 (3)0.0876 (3)0.0409 (6)
H20A0.44360.49840.04290.049*
H20B0.28530.57930.10160.049*
H20C0.24010.45550.02690.049*
O10.0330 (3)0.10000 (18)0.06044 (18)0.0417 (5)
O20.0430 (2)0.26074 (16)0.18452 (17)0.0336 (4)
O30.4070 (3)0.2718 (2)0.10715 (18)0.0467 (5)
O40.3401 (2)0.43852 (16)0.22215 (18)0.0338 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0252 (11)0.0285 (12)0.0347 (12)0.0014 (9)0.0050 (9)0.0049 (10)
C20.0299 (12)0.0287 (12)0.0354 (13)0.0047 (10)0.0009 (9)0.0076 (10)
C30.0256 (11)0.0234 (11)0.0338 (12)0.0057 (9)0.0027 (9)0.0046 (9)
C40.0225 (10)0.0225 (10)0.0294 (11)0.0036 (9)0.0026 (8)0.0021 (9)
C50.0193 (10)0.0297 (12)0.0317 (11)0.0032 (9)0.0000 (8)0.0027 (10)
C60.0208 (10)0.0325 (12)0.0312 (11)0.0073 (9)0.0035 (8)0.0044 (10)
C70.0294 (11)0.0316 (12)0.0349 (12)0.0076 (10)0.0021 (9)0.0108 (11)
C80.0263 (11)0.0231 (11)0.0452 (14)0.0021 (10)0.0028 (10)0.0026 (11)
C90.0307 (11)0.0470 (15)0.0287 (11)0.0028 (12)0.0068 (9)0.0052 (11)
C100.0361 (12)0.0360 (13)0.0267 (11)0.0024 (11)0.0032 (9)0.0030 (10)
C110.0256 (10)0.0229 (10)0.0284 (11)0.0032 (9)0.0002 (8)0.0025 (9)
C120.0267 (11)0.0299 (12)0.0268 (11)0.0043 (10)0.0040 (9)0.0026 (9)
C130.0209 (10)0.0244 (11)0.0338 (11)0.0003 (9)0.0016 (8)0.0015 (9)
C140.0193 (9)0.0243 (10)0.0322 (11)0.0033 (9)0.0020 (8)0.0001 (10)
C150.0217 (9)0.0218 (10)0.0276 (10)0.0041 (9)0.0009 (8)0.0000 (9)
C160.0233 (10)0.0204 (10)0.0283 (11)0.0026 (9)0.0013 (8)0.0022 (9)
C170.0243 (10)0.0294 (12)0.0285 (11)0.0039 (10)0.0009 (8)0.0030 (10)
C180.0531 (16)0.0387 (14)0.0292 (12)0.0080 (13)0.0000 (11)0.0054 (11)
C190.0279 (11)0.0266 (11)0.0276 (11)0.0021 (10)0.0023 (8)0.0015 (10)
C200.0519 (15)0.0379 (14)0.0327 (13)0.0005 (13)0.0043 (11)0.0105 (12)
O10.0512 (11)0.0421 (11)0.0313 (9)0.0071 (9)0.0109 (8)0.0123 (8)
O20.0442 (10)0.0291 (9)0.0274 (8)0.0055 (8)0.0007 (7)0.0008 (7)
O30.0744 (13)0.0374 (10)0.0283 (9)0.0073 (11)0.0043 (8)0.0014 (9)
O40.0463 (10)0.0264 (9)0.0286 (9)0.0034 (8)0.0016 (7)0.0049 (7)
Geometric parameters (Å, º) top
C1—C21.590 (3)C10—H10B0.9900
C9—C101.584 (4)C11—C161.391 (3)
C1—C141.514 (3)C11—C121.395 (3)
C1—H1A0.9900C12—C131.391 (3)
C1—H1B0.9900C12—H120.9500
C2—C31.518 (3)C13—C141.397 (3)
C2—H2A0.9900C13—H130.9500
C2—H2B0.9900C14—C151.410 (3)
C3—C81.392 (3)C15—C161.400 (3)
C3—C41.411 (3)C15—C191.488 (3)
C4—C51.395 (3)C16—H160.9500
C4—C171.497 (3)C17—O11.208 (3)
C5—C61.400 (3)C17—O21.344 (3)
C5—H50.9500C18—O21.449 (3)
C6—C71.395 (4)C18—H18A0.9800
C6—C91.505 (4)C18—H18B0.9800
C7—C81.390 (4)C18—H18C0.9800
C7—H70.9500C19—O31.206 (3)
C8—H80.9500C19—O41.341 (3)
C9—H9A0.9900C20—O41.444 (3)
C9—H9B0.9900C20—H20A0.9800
C10—C111.511 (3)C20—H20B0.9800
C10—H10A0.9900C20—H20C0.9800
C14—C1—C2112.82 (18)C11—C10—H10A109.1
C1—C2—C3111.86 (19)C9—C10—H10A109.1
C6—C9—C10112.77 (18)C11—C10—H10B109.1
C9—C10—C11112.3 (2)C9—C10—H10B109.1
C4—C3—C8116.5 (2)H10A—C10—H10B107.9
C5—C6—C7116.5 (2)C16—C11—C10121.4 (2)
C12—C11—C16116.9 (2)C12—C11—C10120.5 (2)
C13—C14—C15116.7 (2)C13—C12—C11120.6 (2)
C2—C3—C4122.7 (2)C13—C12—H12119.7
C1—C14—C15124.3 (2)C11—C12—H12119.7
C14—C1—H1A109.0C12—C13—C14121.1 (2)
C2—C1—H1A109.0C12—C13—H13119.5
C14—C1—H1B109.0C14—C13—H13119.5
C2—C1—H1B109.0C13—C14—C1117.8 (2)
H1A—C1—H1B107.8C16—C15—C14119.6 (2)
C3—C2—H2A109.2C16—C15—C19119.6 (2)
C1—C2—H2A109.2C14—C15—C19120.6 (2)
C3—C2—H2B109.2C11—C16—C15121.4 (2)
C1—C2—H2B109.2C11—C16—H16119.3
H2A—C2—H2B107.9C15—C16—H16119.3
C8—C3—C2119.1 (2)O1—C17—O2122.7 (2)
C5—C4—C3120.2 (2)O1—C17—C4125.2 (2)
C5—C4—C17118.2 (2)O2—C17—C4111.98 (19)
C3—C4—C17121.5 (2)O2—C18—H18A109.5
C4—C5—C6121.4 (2)O2—C18—H18B109.5
C4—C5—H5119.3H18A—C18—H18B109.5
C6—C5—H5119.3O2—C18—H18C109.5
C7—C6—C9121.7 (2)H18A—C18—H18C109.5
C5—C6—C9120.6 (2)H18B—C18—H18C109.5
C8—C7—C6121.0 (2)O3—C19—O4122.7 (2)
C8—C7—H7119.5O3—C19—C15126.0 (2)
C6—C7—H7119.5O4—C19—C15111.3 (2)
C7—C8—C3121.4 (2)O4—C20—H20A109.5
C7—C8—H8119.3O4—C20—H20B109.5
C3—C8—H8119.3H20A—C20—H20B109.5
C6—C9—H9A109.0O4—C20—H20C109.5
C10—C9—H9A109.0H20A—C20—H20C109.5
C6—C9—H9B109.0H20B—C20—H20C109.5
C10—C9—H9B109.0C17—O2—C18116.01 (19)
H9A—C9—H9B107.8C19—O4—C20115.3 (2)
C14—C1—C2—C319.6 (3)C12—C13—C14—C1515.3 (3)
C1—C2—C3—C868.5 (3)C12—C13—C14—C1152.7 (2)
C1—C2—C3—C496.4 (3)C2—C1—C14—C1399.8 (2)
C8—C3—C4—C515.0 (3)C2—C1—C14—C1567.3 (3)
C2—C3—C4—C5150.3 (2)C13—C14—C15—C1616.6 (3)
C8—C3—C4—C17168.4 (2)C1—C14—C15—C16150.6 (2)
C2—C3—C4—C1726.3 (3)C13—C14—C15—C19169.1 (2)
C3—C4—C5—C61.7 (3)C1—C14—C15—C1923.7 (3)
C17—C4—C5—C6178.4 (2)C12—C11—C16—C1514.0 (3)
C4—C5—C6—C712.9 (3)C10—C11—C16—C15153.5 (2)
C4—C5—C6—C9154.4 (2)C14—C15—C16—C112.1 (3)
C5—C6—C7—C814.3 (3)C19—C15—C16—C11176.4 (2)
C9—C6—C7—C8152.9 (2)C5—C4—C17—O1152.6 (2)
C6—C7—C8—C31.0 (4)C3—C4—C17—O130.7 (3)
C4—C3—C8—C713.8 (3)C5—C4—C17—O224.9 (3)
C2—C3—C8—C7152.1 (2)C3—C4—C17—O2151.8 (2)
C7—C6—C9—C1093.8 (3)C16—C15—C19—O3153.0 (2)
C5—C6—C9—C1072.9 (3)C14—C15—C19—O321.3 (4)
C6—C9—C10—C1113.3 (3)C16—C15—C19—O427.5 (3)
C9—C10—C11—C1693.0 (3)C14—C15—C19—O4158.2 (2)
C9—C10—C11—C1274.1 (3)O1—C17—O2—C181.9 (3)
C16—C11—C12—C1315.4 (3)C4—C17—O2—C18175.6 (2)
C10—C11—C12—C13152.2 (2)O3—C19—O4—C201.7 (3)
C11—C12—C13—C140.7 (3)C15—C19—O4—C20177.9 (2)
(IVd) 4,12-bis(methoxycarbonyl)[2.2]paracyclophane top
Crystal data top
C20H20O4F(000) = 344
Mr = 324.36Dx = 1.378 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.699 (2) ÅCell parameters from 50 reflections
b = 11.790 (3) Åθ = 10–12°
c = 7.628 (2) ŵ = 0.10 mm1
β = 91.90 (2)°T = 178 K
V = 781.9 (3) Å3Tablet, colourless
Z = 20.7 × 0.4 × 0.2 mm
Data collection top
Nicolet R3
diffractometer
Rint = 0.016
Radiation source: fine-focus sealed tubeθmax = 27.5°, θmin = 3.2°
Graphite monochromatorh = 1111
ω scansk = 150
2989 measured reflectionsl = 99
1789 independent reflections3 standard reflections every 147 reflections
1390 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.064P)2 + 0.341P]
where P = (Fo2 + 2Fc2)/3
1789 reflections(Δ/σ)max = 0.002
110 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C20H20O4V = 781.9 (3) Å3
Mr = 324.36Z = 2
Monoclinic, P21/cMo Kα radiation
a = 8.699 (2) ŵ = 0.10 mm1
b = 11.790 (3) ÅT = 178 K
c = 7.628 (2) Å0.7 × 0.4 × 0.2 mm
β = 91.90 (2)°
Data collection top
Nicolet R3
diffractometer
Rint = 0.016
2989 measured reflections3 standard reflections every 147 reflections
1789 independent reflections intensity decay: none
1390 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.131H-atom parameters constrained
S = 1.06Δρmax = 0.27 e Å3
1789 reflectionsΔρmin = 0.24 e Å3
110 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

1.3508 (0.0077) x + 8.1080 (0.0077) y + 5.3674 (0.0057) z = 8.9632 (0.0049)

* 0.0004 (0.0007) C4 * -0.0004 (0.0007) C5 * 0.0004 (0.0007) C7 * -0.0004 (0.0007) C8 - 0.1745 (0.0023) C3 - 0.1651 (0.0023) C6

Rms deviation of fitted atoms = 0.0004

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.74393 (18)0.64368 (14)0.3711 (2)0.0283 (4)
H1A0.85180.62680.40770.034*
H1B0.73920.72360.33160.034*
C20.30567 (19)0.43655 (14)0.7880 (2)0.0297 (4)
H2A0.21290.47340.83370.036*
H2B0.35280.39000.88340.036*
C30.41881 (18)0.52714 (13)0.7357 (2)0.0255 (3)
C40.38195 (17)0.62310 (13)0.6326 (2)0.0242 (3)
C50.49389 (18)0.67294 (13)0.5290 (2)0.0247 (3)
H50.46790.73740.45940.030*
C60.64258 (17)0.62919 (12)0.5270 (2)0.0240 (3)
C70.68551 (18)0.55385 (13)0.6608 (2)0.0263 (3)
H70.79110.53640.68190.032*
C80.57554 (18)0.50420 (13)0.7634 (2)0.0271 (4)
H80.60720.45350.85440.032*
C90.22073 (18)0.66526 (14)0.6167 (2)0.0277 (4)
C100.0661 (2)0.82925 (16)0.5719 (3)0.0384 (4)
H10A0.00880.80510.46550.046*
H10B0.07780.91190.57100.046*
H10C0.00980.80640.67530.046*
O10.10599 (14)0.61052 (11)0.6380 (2)0.0470 (4)
O20.21601 (13)0.77660 (10)0.57744 (18)0.0362 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0257 (7)0.0258 (8)0.0334 (9)0.0040 (6)0.0033 (6)0.0025 (6)
C20.0335 (8)0.0266 (8)0.0295 (8)0.0010 (6)0.0076 (7)0.0019 (7)
C30.0302 (8)0.0255 (8)0.0210 (7)0.0025 (6)0.0041 (6)0.0042 (6)
C40.0255 (7)0.0223 (7)0.0248 (8)0.0001 (6)0.0008 (6)0.0053 (6)
C50.0275 (7)0.0198 (7)0.0267 (8)0.0010 (6)0.0016 (6)0.0019 (6)
C60.0237 (7)0.0207 (7)0.0274 (8)0.0042 (6)0.0009 (6)0.0043 (6)
C70.0250 (7)0.0260 (8)0.0276 (8)0.0007 (6)0.0036 (6)0.0051 (6)
C80.0326 (8)0.0262 (8)0.0223 (8)0.0015 (6)0.0025 (6)0.0018 (6)
C90.0272 (8)0.0256 (8)0.0302 (8)0.0004 (6)0.0031 (6)0.0046 (6)
C100.0310 (9)0.0329 (9)0.0516 (11)0.0085 (7)0.0052 (8)0.0002 (8)
O10.0272 (6)0.0337 (7)0.0804 (11)0.0022 (5)0.0050 (6)0.0044 (7)
O20.0268 (6)0.0263 (6)0.0560 (8)0.0043 (5)0.0053 (5)0.0018 (5)
Geometric parameters (Å, º) top
C1—C61.513 (2)C5—H50.9500
C1—C2i1.587 (2)C6—C71.395 (2)
C1—H1A0.9900C7—C81.385 (2)
C1—H1B0.9900C7—H70.9500
C2—C31.515 (2)C8—H80.9500
C2—H2A0.9900C9—O11.204 (2)
C2—H2B0.9900C9—O21.347 (2)
C3—C81.399 (2)C10—O21.444 (2)
C3—C41.409 (2)C10—H10A0.9800
C4—C51.403 (2)C10—H10B0.9800
C4—C91.489 (2)C10—H10C0.9800
C5—C61.393 (2)
C6—C1—C2i112.51 (12)C6—C5—H5119.6
C3—C2—C1i112.44 (13)C4—C5—H5119.6
C4—C3—C8116.23 (14)C5—C6—C1122.17 (14)
C5—C6—C7116.99 (14)C7—C6—C1119.88 (14)
C2—C3—C4125.12 (14)C8—C7—C6120.62 (14)
C6—C1—H1A109.1C8—C7—H7119.7
C2i—C1—H1A109.1C6—C7—H7119.7
C6—C1—H1B109.1C7—C8—C3121.39 (15)
C2i—C1—H1B109.1C7—C8—H8119.3
H1A—C1—H1B107.8C3—C8—H8119.3
C3—C2—H2A109.1O1—C9—O2122.22 (15)
C1i—C2—H2A109.1O1—C9—C4126.35 (16)
C3—C2—H2B109.1O2—C9—C4111.42 (13)
C1i—C2—H2B109.1O2—C10—H10A109.5
H2A—C2—H2B107.8O2—C10—H10B109.5
C8—C3—C2117.55 (15)H10A—C10—H10B109.5
C5—C4—C3120.08 (14)O2—C10—H10C109.5
C5—C4—C9118.93 (14)H10A—C10—H10C109.5
C3—C4—C9120.65 (14)H10B—C10—H10C109.5
C6—C5—C4120.88 (15)C9—O2—C10116.51 (13)
C1i—C2—C3—C894.36 (17)C5—C6—C7—C815.3 (2)
C1i—C2—C3—C473.2 (2)C1—C6—C7—C8153.69 (15)
C8—C3—C4—C515.8 (2)C6—C7—C8—C30.4 (2)
C2—C3—C4—C5151.87 (15)C4—C3—C8—C716.0 (2)
C8—C3—C4—C9170.88 (14)C2—C3—C8—C7152.69 (15)
C2—C3—C4—C921.4 (2)C5—C4—C9—O1149.52 (18)
C3—C4—C5—C60.4 (2)C3—C4—C9—O123.9 (3)
C9—C4—C5—C6173.78 (14)C5—C4—C9—O231.7 (2)
C4—C5—C6—C715.3 (2)C3—C4—C9—O2154.94 (15)
C4—C5—C6—C1153.44 (14)O1—C9—O2—C103.5 (3)
C2i—C1—C6—C574.91 (18)C4—C9—O2—C10175.40 (14)
C2i—C1—C6—C793.50 (18)C3—C2—C1i—C6i12.69 (19)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O2ii0.952.633.438 (2)143
Symmetry code: (ii) x+1, y1/2, z+3/2.

Experimental details

(IVa)(IVb)(IVd)
Crystal data
Chemical formulaC20H20O4C20H20O4C20H20O4
Mr324.36324.36324.36
Crystal system, space groupMonoclinic, P21/nMonoclinic, P21Monoclinic, P21/c
Temperature (K)178178178
a, b, c (Å)8.096 (4), 21.282 (11), 9.281 (5)7.470 (3), 11.287 (4), 9.494 (3)8.699 (2), 11.790 (3), 7.628 (2)
β (°) 95.28 (4) 90.83 (3) 91.90 (2)
V3)1592.3 (14)800.4 (5)781.9 (3)
Z422
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.090.090.10
Crystal size (mm)0.7 × 0.6 × 0.50.45 × 0.40 × 0.200.7 × 0.4 × 0.2
Data collection
DiffractometerNicolet R3
diffractometer
Nicolet R3
diffractometer
Nicolet R3
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
2954, 2767, 2296 3864, 1939, 1692 2989, 1789, 1390
Rint0.0100.0290.016
(sin θ/λ)max1)0.5950.6500.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.119, 1.05 0.036, 0.096, 1.04 0.045, 0.131, 1.06
No. of reflections276719391789
No. of parameters219219110
No. of restraints010
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.200.19, 0.190.27, 0.24

Computer programs: P3 Software (Nicolet, 1987), P3 Software, XDISK (Nicolet, 1987), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), XP (Siemens, 1994), SHELXL97.

Hydrogen-bond geometry (Å, º) for (IVa) top
D—H···AD—HH···AD···AD—H···A
C18—H18A···O1i0.982.513.447 (3)160
C18—H18B···O3ii0.982.553.426 (3)149
C20—H20A···O3ii0.982.583.508 (3)157
C7—H7···O1iii0.952.663.598 (2)171
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z+2; (iii) x1/2, y+3/2, z+1/2.
Hydrogen-bond geometry (Å, º) for (IVd) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O2i0.952.633.438 (2)143
Symmetry code: (i) x+1, y1/2, z+3/2.
Comparison of geometric parameters in (IVa)-(IVd) (Å, °) top
(IVa)(IVb)(IVd)
C1-C21.588 (3)1.590 (3)1.587 (2)a
C9-C101.588 (3)1.584 (4)
C14-C1-C2111.75 (14)112.82 (18)
C1-C2-C3112.80 (13)111.86 (19)112.44 (13)b
C6-C9-C10112.29 (14)112.77 (18)
C9-C10-C11112.82 (14)112.3 (2)
C4-C3-C8115.95 (15)116.5 (2)116.23 (14)
C5-C6-C7116.73 (16)116.5 (2)116.99 (14)
C12-C11-C16116.18 (15)116.9 (2)
C13-C14-C15116.68 (15)116.7 (2)
C2-C3-C4124.32 (15)122.7 (2)125.12 (14)
C10-C11-C16125.28 (15)
C1-C14-C15124.3 (2)
C6-C1-C2112.51 (12)a
C3-C4-C17-O116.6 (2)30.7 (3)
C11-C16-C19-O3-17.1 (3)
C14-C15-C19-O321.3 (4)
C4-C17-O2-C18-175.6 (2)
C15-C19-O4-C20177.9 (2)
C3-C4-C9-O1-23.9 (3)
C4-C9-O2-C10-175.40 (14)
Notes: (a) C2 at (1 - x, 1 - y, 1 - z) for (IVd); (b) C1 at (1 - x, 1 - y, 1 - z) for (IVd).
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds