Download citation
Download citation
link to html
The title compound, 5-methoxy­spiro­[tetra­cyclo­[8.8.1.03,8.012,17]­nonadeca-3,5,7,12,14,16-hexene-19,2'-[1,3]­dioxolane], C22H24O3, exhibits a twin-chair conformation with the aromatic rings overlying each other. Comparison of the dihedral angle between these two rings with those from previously reported [3.3]­ortho­cyclo­phanes of this type suggests the presence of a weak attractive charge-transfer interaction between the two, different, stacked arenes.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102001816/bm1488sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102001816/bm1488Isup2.hkl
Contains datablock I

CCDC reference: 184491

Computing details top

Data collection: COLLECT (Nonius, 1999); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEX (McArdle, 1995); software used to prepare material for publication: local program.

5-methoxyspiro[tetracyclo[8.8.1.03,8.012,17]nonadeca-3,5,7,12,14,16-hexene- 19,2'-[1,3]dioxolane] top
Crystal data top
C22H24O3Dx = 1.311 Mg m3
Mr = 336.41Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pca21Cell parameters from 24364 reflections
a = 13.3194 (3) Åθ = 3.1–27.4°
b = 7.7311 (1) ŵ = 0.09 mm1
c = 16.5545 (3) ÅT = 150 K
V = 1704.68 (5) Å3Rectangular prism, colourless
Z = 40.34 × 0.23 × 0.13 mm
F(000) = 720
Data collection top
Nonius KappaCCD area-detector
diffractometer
1989 independent reflections
Radiation source: sealed tube1841 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.069
Detector resolution: 9.091 pixels mm-1θmax = 27.4°, θmin = 3.1°
Please provide scansh = 1717
Absorption correction: multi-scan
(Blessing, 1995)
k = 99
Tmin = 0.971, Tmax = 0.989l = 2121
24364 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.034 w = 1/[σ2(Fo2) + (0.049P)2 + 0.241P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.084(Δ/σ)max = 0.001
S = 1.05Δρmax = 0.20 e Å3
1989 reflectionsΔρmin = 0.19 e Å3
227 parametersExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.014 (3)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983)
Secondary atom site location: difference Fourier mapAbsolute structure parameter: not reliably determined
Special details top

Experimental. Detector set at 30 mm from sample with different 2theta offsets 1 degree phi exposures for chi=0 degree settings 1 degree omega exposures for chi=90 degree settings

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Structure solution was achieved by direct methods using SHELXS97 (Sheldrick, 1990), while least squares refinement used SHELXL97 (Sheldrick, 1997).

No disorder was detected during refinement. All non-H atoms were refined anisotropically, while H atoms were placed in calculated positions and refined using a riding model. Fixed C—H distances were: C{aryl}-H = 0.95 Å, C{methyl}-H = 0.98 Å, C{secondary}-H = 0.99 Å, C(tertiary}-H = 1.00 Å.

A Flack parameter of 0.8 (9) was refined from 1840 Friedel pairs, making it impossible to unambiguously determine the absolute structure of the compound. The Friedel opposites in the data were merged for the final cycles of least squares refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.41397 (15)0.4043 (2)0.04869 (13)0.0250 (4)
C20.45879 (15)0.4401 (3)0.12234 (13)0.0266 (4)
H20.42800.52080.15780.032*
C30.54842 (14)0.3598 (3)0.14559 (13)0.0272 (4)
C40.59501 (14)0.2458 (3)0.09346 (15)0.0291 (4)
H40.65590.19050.10840.035*
C50.55121 (14)0.2131 (3)0.01858 (14)0.0280 (4)
H50.58380.13600.01760.034*
C60.46138 (14)0.2896 (2)0.00512 (12)0.0251 (4)
C70.31339 (14)0.4864 (3)0.02863 (14)0.0263 (4)
H7A0.32160.55450.02160.032*
H7B0.29660.56880.07230.032*
C80.22287 (14)0.3639 (2)0.01712 (13)0.0245 (4)
H80.16320.44220.01400.029*
C90.20033 (15)0.2417 (3)0.08864 (13)0.0265 (4)
H9A0.17960.31460.13490.032*
H9B0.14150.17050.07350.032*
C100.41463 (14)0.2398 (3)0.08456 (14)0.0273 (4)
H10A0.46230.16450.11400.033*
H10B0.40540.34600.11710.033*
C110.31233 (14)0.1451 (3)0.07911 (12)0.0239 (4)
H110.30070.09640.13430.029*
C120.31238 (14)0.0123 (3)0.02228 (13)0.0248 (4)
H12A0.24560.06760.02710.030*
H12B0.36180.09570.04420.030*
C130.28116 (14)0.1197 (3)0.11861 (13)0.0251 (4)
C140.30152 (17)0.1160 (3)0.20134 (14)0.0310 (5)
H140.26610.19230.23610.037*
C150.37200 (18)0.0040 (3)0.23438 (14)0.0344 (5)
H150.38320.00200.29100.041*
C160.42576 (17)0.1044 (3)0.18395 (15)0.0329 (5)
H160.47540.17970.20550.039*
C170.40660 (15)0.1022 (3)0.10173 (13)0.0279 (4)
H170.44400.17680.06750.033*
C180.33419 (14)0.0060 (2)0.06749 (12)0.0236 (4)
C190.22499 (13)0.2699 (3)0.06473 (13)0.0245 (4)
O200.22574 (10)0.3934 (2)0.12874 (9)0.0301 (3)
C210.12361 (16)0.4390 (3)0.14584 (15)0.0380 (5)
H21A0.11140.44100.20480.046*
H21B0.10720.55400.12320.046*
C220.06099 (15)0.2976 (3)0.10523 (15)0.0349 (5)
H22A0.02080.34590.06030.042*
H22B0.01510.24230.14460.042*
O230.13333 (9)0.17619 (19)0.07582 (9)0.0284 (3)
O240.58278 (11)0.4026 (2)0.22178 (10)0.0357 (4)
C250.66780 (18)0.3078 (4)0.25037 (17)0.0436 (6)
H25A0.65400.18350.24670.065*
H25B0.68120.33880.30670.065*
H25C0.72660.33590.21730.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0250 (9)0.0193 (9)0.0306 (10)0.0026 (7)0.0019 (8)0.0031 (8)
C20.0272 (9)0.0200 (9)0.0326 (11)0.0022 (8)0.0043 (8)0.0006 (8)
C30.0238 (9)0.0258 (10)0.0320 (10)0.0063 (7)0.0015 (8)0.0045 (9)
C40.0206 (9)0.0260 (10)0.0408 (12)0.0018 (7)0.0011 (9)0.0031 (9)
C50.0202 (8)0.0251 (9)0.0386 (11)0.0019 (7)0.0046 (8)0.0034 (9)
C60.0213 (8)0.0231 (10)0.0310 (11)0.0049 (7)0.0039 (7)0.0015 (8)
C70.0260 (9)0.0214 (9)0.0315 (10)0.0014 (7)0.0015 (8)0.0020 (8)
C80.0225 (9)0.0229 (9)0.0281 (10)0.0027 (7)0.0026 (8)0.0014 (8)
C90.0277 (9)0.0263 (10)0.0256 (9)0.0024 (8)0.0064 (8)0.0034 (8)
C100.0233 (9)0.0295 (10)0.0292 (10)0.0004 (7)0.0054 (8)0.0021 (9)
C110.0230 (8)0.0257 (9)0.0231 (9)0.0018 (7)0.0029 (7)0.0055 (8)
C120.0223 (8)0.0224 (9)0.0297 (10)0.0009 (7)0.0025 (8)0.0053 (8)
C130.0263 (9)0.0205 (9)0.0286 (10)0.0045 (7)0.0031 (8)0.0004 (8)
C140.0390 (11)0.0266 (10)0.0274 (10)0.0049 (8)0.0044 (9)0.0037 (9)
C150.0445 (12)0.0309 (11)0.0278 (11)0.0079 (9)0.0039 (10)0.0014 (9)
C160.0332 (11)0.0277 (11)0.0377 (12)0.0028 (9)0.0065 (9)0.0050 (9)
C170.0275 (9)0.0235 (10)0.0327 (12)0.0023 (8)0.0016 (8)0.0013 (8)
C180.0232 (8)0.0193 (9)0.0282 (10)0.0052 (7)0.0012 (7)0.0008 (8)
C190.0208 (9)0.0254 (9)0.0272 (10)0.0002 (7)0.0013 (7)0.0001 (8)
O200.0296 (8)0.0329 (8)0.0279 (8)0.0028 (6)0.0001 (6)0.0058 (6)
C210.0339 (11)0.0455 (13)0.0347 (12)0.0124 (10)0.0002 (9)0.0056 (11)
C220.0239 (9)0.0415 (12)0.0392 (12)0.0055 (9)0.0028 (9)0.0024 (10)
O230.0211 (6)0.0301 (7)0.0341 (8)0.0003 (6)0.0020 (6)0.0036 (7)
O240.0304 (7)0.0398 (9)0.0370 (9)0.0026 (6)0.0049 (7)0.0035 (7)
C250.0341 (12)0.0550 (15)0.0418 (13)0.0032 (11)0.0108 (10)0.0018 (12)
Geometric parameters (Å, º) top
C1—C21.385 (3)C12—C181.521 (3)
C1—C61.407 (3)C12—H12A0.9900
C1—C71.519 (3)C12—H12B0.9900
C2—C31.399 (3)C13—C141.397 (3)
C2—H20.9500C13—C181.410 (3)
C3—C41.381 (3)C14—C151.389 (3)
C3—O241.382 (3)C14—H140.9500
C4—C51.393 (3)C15—C161.383 (3)
C4—H40.9500C15—H150.9500
C5—C61.391 (3)C16—C171.385 (3)
C5—H50.9500C16—H160.9500
C6—C101.505 (3)C17—C181.397 (3)
C7—C81.545 (3)C17—H170.9500
C7—H7A0.9900C19—O201.427 (2)
C7—H7B0.9900C19—O231.431 (2)
C8—C191.538 (3)O20—C211.433 (3)
C8—C91.544 (3)C21—C221.530 (3)
C8—H81.0000C21—H21A0.9900
C9—C131.515 (3)C21—H21B0.9900
C9—H9A0.9900C22—O231.431 (3)
C9—H9B0.9900C22—H22A0.9900
C10—C111.550 (3)C22—H22B0.9900
C10—H10A0.9900O24—C251.430 (3)
C10—H10B0.9900C25—H25A0.9800
C11—C191.530 (3)C25—H25B0.9800
C11—C121.538 (3)C25—H25C0.9800
C11—H111.0000
C2—C1—C6119.31 (19)C11—C12—H12A106.9
C2—C1—C7119.29 (18)C18—C12—H12B106.9
C6—C1—C7121.38 (19)C11—C12—H12B106.9
C1—C2—C3121.42 (19)H12A—C12—H12B106.7
C1—C2—H2119.3C14—C13—C18118.58 (19)
C3—C2—H2119.3C14—C13—C9118.17 (19)
C4—C3—O24125.06 (19)C18—C13—C9123.21 (19)
C4—C3—C2119.6 (2)C15—C14—C13122.0 (2)
O24—C3—C2115.29 (19)C15—C14—H14119.0
C3—C4—C5118.92 (18)C13—C14—H14119.0
C3—C4—H4120.5C16—C15—C14119.3 (2)
C5—C4—H4120.5C16—C15—H15120.3
C6—C5—C4122.29 (19)C14—C15—H15120.3
C6—C5—H5118.9C15—C16—C17119.4 (2)
C4—C5—H5118.9C15—C16—H16120.3
C5—C6—C1118.39 (19)C17—C16—H16120.3
C5—C6—C10119.57 (19)C16—C17—C18122.2 (2)
C1—C6—C10121.93 (18)C16—C17—H17118.9
C1—C7—C8117.35 (16)C18—C17—H17118.9
C1—C7—H7A108.0C17—C18—C13118.41 (19)
C8—C7—H7A108.0C17—C18—C12118.19 (18)
C1—C7—H7B108.0C13—C18—C12123.30 (18)
C8—C7—H7B108.0O20—C19—O23104.45 (15)
H7A—C7—H7B107.2O20—C19—C11107.55 (15)
C19—C8—C9112.96 (15)O23—C19—C11108.02 (15)
C19—C8—C7112.58 (16)O20—C19—C8109.76 (15)
C9—C8—C7115.60 (17)O23—C19—C8109.66 (15)
C19—C8—H8104.8C11—C19—C8116.69 (16)
C9—C8—H8104.8C19—O20—C21107.73 (16)
C7—C8—H8104.8O20—C21—C22104.78 (17)
C13—C9—C8119.59 (16)O20—C21—H21A110.8
C13—C9—H9A107.4C22—C21—H21A110.8
C8—C9—H9A107.4O20—C21—H21B110.8
C13—C9—H9B107.4C22—C21—H21B110.8
C8—C9—H9B107.4H21A—C21—H21B108.9
H9A—C9—H9B107.0O23—C22—C21104.53 (16)
C6—C10—C11115.71 (17)O23—C22—H22A110.8
C6—C10—H10A108.4C21—C22—H22A110.8
C11—C10—H10A108.4O23—C22—H22B110.8
C6—C10—H10B108.4C21—C22—H22B110.8
C11—C10—H10B108.4H22A—C22—H22B108.9
H10A—C10—H10B107.4C22—O23—C19106.62 (15)
C19—C11—C12113.84 (16)C3—O24—C25116.20 (18)
C19—C11—C10112.30 (16)O24—C25—H25A109.5
C12—C11—C10114.15 (16)O24—C25—H25B109.5
C19—C11—H11105.1H25A—C25—H25B109.5
C12—C11—H11105.1O24—C25—H25C109.5
C10—C11—H11105.1H25A—C25—H25C109.5
C18—C12—C11121.59 (17)H25B—C25—H25C109.5
C18—C12—H12A106.9
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds