Download citation
Download citation
link to html
The title diastereoisomers, methyl 5-(S)-[2-(S)-methoxy­carbonyl)-2,3,4,5-tetra­hydro­pyrrol-1-yl­carbonyl]-1-(4-methyl­phenyl)-4,5-di­hydro­pyrazole-3-carboxyl­ate and methyl 5-(S)-[2-(R)-methoxycarbonyl)-2,3,4,5-tetrahydropyrrol-1-ylcarbonyl]-1-(4-methyl­phenyl)-4,5-di­hydro­pyrazole-3-carboxylate, both C19H23N3O5, have been studied in two crystalline forms. The first form, methyl 5-(S)-[2-(S)-methoxy­carbonyl)-2,3,4,5-tetrahydropyrrol-1-ylcarbonyl]-1-(4-methylphenyl)-4,5-di­hydro­pyrazole-3-carboxyl­ate-methyl 5-(S)-[2-(R)-methoxy­carbonyl)-2,3,4,5-tetra­hydro­pyrrol-1-yl­carbonyl]-1-(4-methylphenyl)-4,5-dihydropyrazole-3-carboxylate (1/1), 2(S),5(S)-C19H23N3O5·2(R),5(S)-C19H23N3O5, contains both S,S and S,R isomers, while the second, methyl 5-(S)-[2-(S)-methoxycarbonyl)-2,3,4,5-tetrahydro­pyrrol-1-ylcarbonyl]-1-(4-methyl­phenyl)-4,5-di­hydro­pyrazole-3-carboxyl­ate, 2(S),5(S)-C19H23N3O5, is the pure S,S isomer. The S,S isomers in the two structures show very similar geometries, the maximum difference being about 15° on one torsion angle. The differences between the S,S and S,R isomers, apart from those due to the inversion of one chiral centre, are more remarkable, and are partially due to a possible rotational disorder of the 2-­(methoxycarbonyl)tetrahydropyrrole group.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101021552/bm1481sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101021552/bm1481Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101021552/bm1481IIsup3.hkl
Contains datablock II

CCDC references: 183029; 183030

Comment top

The title diastereoisomers were synthesized (Garanti & Molteni, 2001) by 1,3-dipolar cycloaddition of N-4-methylphenyl-C-methoxycarbonylnitrilimine to 1-(1-oxoprop-2-enyl)-2-(S)-methoxycarbonyl-2,3,4,5-tetrahydropyrazole. A 67:33 ratio between the diastereoisomers was observed by NMR spectroscopy, and a crystal structure determination was suggested in order to establish the configuration of the major component.

Since separation of the isomers by standard chromatographic methods failed, an attempt was made by directly crystallizing the mixture by diffusion of hexane into a CH2Cl2 solution at 297–298 K. Initially, small amorphous or microcrystalline spheres (about 1 mm in diameter) were obtained, while at the end, good crystals were obtained in the form of long, thin blades suitable for X-ray analysis. Quite surprisingly, the structure [hereinafter (I)] showed both isomers, i.e. the S,S compound (molecule A) and the S,R one (molecule B). Molecule A was ordered, while the 2-methoxycarbonyltetrahydropyrrole group of B showed quite high displacement parameters, indicating a partial rotational disorder. For this reason, we may deduce that, in solution, a pre-organized AB adduct exists which is more soluble than the single diastereoisomer A. This is quite unusual since, to our knowledge, very few co-crystallized diastereoisomers are found in the crystallographic literature, especially ones which are ordered and in a 1:1 ratio. Two rare examples are given by Soriano-García et al. (1990) and Bligh et al. (1993).

The microspheres obtained from the first crystallization were separated by hand from the crystals containing both diastereoisomers. This material was shown by NMR spectroscopy to be the pure major component of the mixture. It was recrystallized using the same solvents but at a lower temperature (292 K) in an air-conditioned room. The crystals obtained were in general multiply twinned, but sufficiently large to allow a wedge large enough for X-ray analysis to be cut. This material, (II) (molecule C, Fig. 1), was the S,S molecule. \sch

The chemically equivalent bond distances in molecules A and C do not differ by more than 3 s.u.s from their mean values, while equivalent angles in some cases reach this limit, the largest difference occurring for N19—C23—C24 [110.5 (2) and 108.3 (3)° for molecules C and A, respectively]. The differences in torsion angles are sometimes greater than 10°, in particular around the bonds N1—C6, N1—C5 and C23—C24, the maximum difference being for the torsion angle C5—N1—C6—C7 [168.5 (3) versus -176.7 (2)° in molecules A and C, respectively]. In consequence, the conformation of the pyrazole ring N1/N2/C3/C4/C5 is more planar in molecule C than in molecule A, with the total puckering coordinate q2 being 0.036 (3) and 0.133 (3) Å, respectively [Cremer & Pople, 1975; calculated after Nardelli (1983)].

Apart from the different conformation at C5, with obvious changes in the torsion angles around all bonds to C5, molecules A and B show greater deviations of other chemically equivalent parameters. For example, the configuration of the pyrazole ring is more deformed in B, with q2 = 0.219 (7) Å, but with opposite phase [ϕ2 is 136 (2) and -40 (2)° in A and B, respectively].

The possible partial disorder affecting molecule B is reflected not only in the high displacement parameters of the 2-methoxycarbonyltetrahydropyrrole group of molecule B (Fig. 2), but also in the apparent shortening of some distances, such as C20—C21 [1.458 (7) and 1.509 (6) Å in B and A, respectively], C21—C22 [1.467 (9) versus 1.510 (7) Å], C22—C23 [1.488 (7) versus 1.523 (5) Å], C24—O25 [1.148 (6) versus 1.177 (4) Å] and the short contact C13B···O25B(-x, y - 1/2, -z) [2.946 (6) Å Second value for comparison?].

The packing of (I) is characterized by the antiparallel coupling of the 1-(4-methylphenyl)-dihydropyrazole moieties of molecules A and B: the angle between the lines joining N1A to C12A and N1B to C12B is 164.1 (1)°, while the angle between the mean planes through the ring atoms N1/C6/C7/C8/C9/C10/C11/C12 in molecules A and B is 157.5 (1)°. Please check altered phrasing.

Three weak and approximately linear hydrogen bonds help to stabilize the crystal of (I), together with other, less linear, hydrogen bonds. The packing of (II) is also characterized by weak hydrogen bonds.

Experimental top

The title diastereoisomers were synthesized by the method of Garanti & Molteni (2001) by 1,3-dipolar cycloaddition of N-4-methylphenyl-C-methoxycarbonylnitrilimine to 1-(1-oxoprop-2-enyl)-2-(S)-methoxycarbonyl-2,3,4,5-tetrahydropyrazole. A 67:33 ratio between the diastereoisomers was observed by NMR spectroscopy.

Refinement top

Due to the insignificant degree of anomalous scattering, Friedel pairs were merged for both structures and the handedness of the structure was assigned from the known configuration at C23. Please provide hkl ranges for the unmerged data. H atoms of methyl groups attached to sp2 and sp3 centres were located from difference Fourier syntheses and refined as part of a rigid rotating group, with C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for both structures. For (II), all other H atoms were refined isotropically. Due to the low number of data collected for (I), all H atoms in this structure were introduced at calculated positions as riding atoms, with C—H = 0.93 (CH) or 0.97 Å (CH2) and Uiso(H) = 1.2Ueq(C). Because it converged to a meaningless value for both structures, no extinction parameter was refined in the final least-squares cycles.

Computing details top

For both compounds, data collection: SMART (Bruker, 1999); cell refinement: SMART; data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. A view of molecule C of the pure S,S isomer from (II) with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. A view of molecule B (the S,R isomer) from (I) with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. The large anisotropy of the ellipsoids of the methoxycarbonylpyrrole group indicates a possible rotational disorder.
(I) methyl-5-(S)-[2-(S)-methoxycarbonyl)-2,3,4,5-tetrahydropyrrol-1-ylcarbonyl]- 1-(4-methylphenyl)-4,5-dihydropyrazole-3-carboxylate. methyl-5-(S)-[2-(R)-methoxycarbonyl)-2,3,4,5-tetrahydropyrrol-1-ylcarbonyl]- 1-(4-methylphenyl)-4,5-dihydropyrazole-3-carboxylate co-crystal (1/1) top
Crystal data top
C19H23N3O5·C19H23N3O5F(000) = 792
Mr = 746.81Dx = 1.300 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71069 Å
a = 12.5056 (14) ÅCell parameters from 4420 reflections
b = 13.3082 (16) Åθ = 2.3–20.7°
c = 12.9491 (14) ŵ = 0.10 mm1
β = 117.695 (2)°T = 293 K
V = 1908.2 (4) Å3Rhombic prism, yellow
Z = 20.42 × 0.34 × 0.12 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2789 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.034
Graphite monochromatorθmax = 25.0°, θmin = 1.8°
ω and ϕ scansh = 014
21406 measured reflectionsk = 015
3524 independent reflectionsl = 1513
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 0.94 w = 1/σ2(Fo2)
3524 reflections(Δ/σ)max = 0.001
503 parametersΔρmax = 0.20 e Å3
2 restraintsΔρmin = 0.12 e Å3
Crystal data top
C19H23N3O5·C19H23N3O5V = 1908.2 (4) Å3
Mr = 746.81Z = 2
Monoclinic, P21Mo Kα radiation
a = 12.5056 (14) ŵ = 0.10 mm1
b = 13.3082 (16) ÅT = 293 K
c = 12.9491 (14) Å0.42 × 0.34 × 0.12 mm
β = 117.695 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2789 reflections with I > 2σ(I)
21406 measured reflectionsRint = 0.034
3524 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0392 restraints
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 0.94Δρmax = 0.20 e Å3
3524 reflectionsΔρmin = 0.12 e Å3
503 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. Weighted least-squares planes through the starred atoms (Nardelli, Musatti, Domiano & Andreetti Ric·Sci.(1965),15(II—A),807). Equation of the plane: m1*X+m2*Y+m3*Z=d

Plane 1 m1 = -0.08145(0.00115) m2 = -0.94749(0.00034) m3 = -0.30925(0.00120) D = -5.61103(0.00828) Atom d s d/s (d/s)**2 N1A * 0.0553 0.0030 18.468 341.084 C6A * -0.0250 0.0032 - 7.871 61.954 C7A * -0.0390 0.0037 - 10.642 113.260 C8A * -0.0179 0.0040 - 4.426 19.587 C9A * 0.0137 0.0039 3.478 12.093 C10A * -0.0102 0.0034 - 2.963 8.777 C11A * -0.0335 0.0033 - 10.099 101.980 C12A * 0.0948 0.0053 17.773 315.875 ============ Sum((d/s)**2) for starred atoms 974.610 Chi-squared at 95% for 5 degrees of freedom: 11.10 The group of atoms deviates significantly from planarity

Plane 2 m1 = 0.14307(0.00120) m2 = 0.98688(0.00024) m3 = -0.07487(0.00123) D = 2.76388(0.00316) Atom d s d/s (d/s)**2 N1B * 0.0134 0.0032 4.226 17.863 C6B * 0.0007 0.0033 0.213 0.046 C7B * -0.0070 0.0036 - 1.940 3.764 C8B * -0.0115 0.0036 - 3.199 10.234 C9B * 0.0023 0.0035 0.662 0.438 C10B * -0.0098 0.0039 - 2.533 6.415 C11B * -0.0107 0.0037 - 2.870 8.240 C12B * 0.0306 0.0049 6.242 38.960 ============ Sum((d/s)**2) for starred atoms 85.959 Chi-squared at 95% for 5 degrees of freedom: 11.10 The group of atoms deviates significantly from planarity

Weighted least-squares lines through the starred atoms (Schoemaker,Waser,Marsh & Bergman,Acta Cryst.(1959).12,600) m1,m2,m3 are the direction cosines referred to the X,Y,Z orthogonal axes. X0,Y0,Z0 are the coordinates of the centroid of the set of atoms. Equation of the line: (X—X0)/m1=(Y—Y0)/m2=(Z—Z0)/m3

Line 1 m1 = -0.80794(0.00054) X0 = 2.12746(0.00270) m2 = 0.23805(0.00111) Y0 = 6.81684(0.00313) m3 = -0.53903(0.00077) Z0 = -3.54469(0.00236) Atom d s d/s (d/s)**2 N1A * 0.0000 0.0039 0.001 0.000 C12A * 0.0000 0.0069 0.000 0.000 ============ Sum((d/s)**2) for starred atoms 0.000

Line 2 m1 = 0.70552(0.00058) X0 = 3.36770(0.00256) m2 = -0.04558(0.00095) Y0 = 2.48700(0.00293) m3 = 0.70722(0.00057) Z0 = 2.00728(0.00229) Atom d s d/s (d/s)**2 N1B * 0.0000 0.0041 0.001 0.000 C12B * 0.0000 0.0064 0.000 0.000 ============ Sum((d/s)**2) for starred atoms 0.000 Dihedral angles formed by LSQ-planes Plane - plane angle (s.u.) angle (s.u.) 1 2 22.55 (0.10) 157.45 (0.10)

Angles formed by LSQ-lines Line - line angle (s.u.) angle (s.u.) 1 2 15.83 (0.07) 164.17 (0.07)

Angles formed by lines and normals to planes Line - plane angle (s.u.) angle (s.u.) 1 1 89.60 (0.09) 90.40 (0.09) 1 2 80.81 (0.08) 99.19 (0.08) 2 1 76.53 (0.09) 103.47 (0.09) 2 2 89.83 (0.08) 90.17 (0.08)

Ring puckering coordinates following Cremer D. & Pople J·A., JACS (1975).97,1354

Ring 1 Atom Internal Cartesian coordinates X Y Z N1A 0.0000(0.0000) 1.1509(0.0027) -0.0611(0.0020) N2A 1.1164(0.0026) 0.4005(0.0030) 0.0152(0.0020) C3A 0.7889(0.0031) -0.8347(0.0038) 0.0366(0.0021) C4A -0.6808(0.0032) -1.0804(0.0034) -0.0744(0.0023) C5A -1.2245(0.0033) 0.3637(0.0036) 0.0837(0.0022) q2 = 0.1336(0.0035) phi2 = 136.33 (1.33)

Asymmetry parameters Following Nardelli M., Acta Cryst.(1983). C39, 1141

N1A N2A C3A C4A C5A

DS(N1A) =0.0737(0.0018) D2(N1A) =0.0566(0.0013) DS(N2A) =0.1060(0.0018) D2(N2A) =0.0149(0.0013) DS(C3A) =0.0976(0.0017) D2(C3A) =0.0328(0.0013) DS(C4A) =0.0522(0.0017) D2(C4A) =0.0694(0.0014) DS(C5A) =0.0140(0.0017) D2(C5A) =0.0788(0.0014)

Ring 2 Atom Internal Cartesian coordinates X Y Z N19A 0.0000(0.0000) 1.2060(0.0022) -0.0594(0.0024) C20A 1.2196(0.0041) 0.3854(0.0044) -0.0760(0.0030) C21A 0.7136(0.0050) -1.0122(0.0037) 0.1824(0.0033) C22A -0.7414(0.0049) -0.9901(0.0038) -0.2190(0.0030) C23A -1.1918(0.0037) 0.4109(0.0043) 0.1721(0.0024) q2 = 0.3466(0.0048) phi2 = 105.71 (0.69)

Asymmetry parameters Following Nardelli M., Acta Cryst.(1983). C39, 1141

N19A C20A C21A C22A C23A

DS(N19A) =0.2648(0.0025) D2(N19A) =0.0548(0.0017) DS(C20A) =0.2587(0.0023) D2(C20A) =0.0692(0.0018) DS(C21A) =0.1537(0.0021) D2(C21A) =0.1666(0.0019) DS(C22A) =0.0103(0.0023) D2(C22A) =0.2009(0.0018) DS(C23A) =0.1699(0.0025) D2(C23A) =0.1589(0.0017)

Ring 3 Atom Internal Cartesian coordinates X Y Z N1B 0.0000(0.0000) 1.1498(0.0026) 0.0993(0.0022) N2B 1.1250(0.0027) 0.3904(0.0036) -0.0320(0.0021) C3B 0.7715(0.0033) -0.8490(0.0034) -0.0475(0.0021) C4B -0.6875(0.0033) -1.0627(0.0037) 0.1089(0.0023) C5B -1.2090(0.0036) 0.3715(0.0040) -0.1287(0.0023) q2 = 0.2039(0.0037) phi2 = -39.62 (0.92)

Asymmetry parameters Following Nardelli M., Acta Cryst.(1983). C39, 1141

N1B N2B C3B C4B C5B

DS(N1B) =0.1041(0.0018) D2(N1B) =0.0927(0.0014) DS(N2B) =0.1600(0.0019) D2(N2B) =0.0314(0.0014) DS(C3B) =0.1545(0.0019) D2(C3B) =0.0425(0.0014) DS(C4B) =0.0904(0.0018) D2(C4B) =0.1020(0.0014) DS(C5B) =0.0103(0.0018) D2(C5B) =0.1217(0.0014)

Ring 4 Atom Internal Cartesian coordinates X Y Z N19B 0.0000(0.0000) 1.1997(0.0037) -0.0498(0.0028) C20B 1.2081(0.0049) 0.3748(0.0057) -0.0355(0.0029) C21B 0.7194(0.0058) -0.9906(0.0060) 0.1072(0.0038) C22B -0.7260(0.0058) -0.9853(0.0080) -0.1380(0.0042) C23B -1.2014(0.0048) 0.4014(0.0056) 0.1160(0.0036) q2 = 0.2185(0.0066) phi2 = 111.11 (1.10)

Asymmetry parameters Following Nardelli M., Acta Cryst.(1983). C39, 1141

N19B C20B C21B C22B C23B

DS(N19B) =0.1642(0.0032) D2(N19B) =0.0459(0.0020) DS(C20B) =0.1701(0.0031) D2(C20B) =0.0332(0.0021) DS(C21B) =0.1110(0.0027) D2(C21B) =0.0995(0.0023) DS(C22B) =0.0099(0.0024) D2(C22B) =0.1281(0.0023) DS(C23B) =0.0956(0.0028) D2(C23B) =0.1086(0.0023)

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N1A0.2695 (2)0.4616 (2)0.1755 (2)0.0560 (7)
N2A0.3414 (2)0.4560 (2)0.2271 (2)0.0523 (6)
C3A0.4453 (3)0.4237 (2)0.1530 (3)0.0508 (7)
C4A0.4551 (3)0.3988 (3)0.0363 (3)0.0607 (9)
H4A0.52430.43130.02630.073*
H4B0.46000.32690.02280.073*
C5A0.3344 (3)0.4428 (3)0.0499 (3)0.0532 (8)
H5A0.294 (2)0.403 (2)0.023 (2)0.045 (8)*
C6A0.1503 (3)0.4927 (2)0.2377 (3)0.0473 (7)
C7A0.1052 (3)0.5251 (3)0.3519 (3)0.0565 (8)
H7A0.15650.53100.38550.068*
C8A0.0149 (3)0.5486 (3)0.4156 (3)0.0631 (9)
H8A0.04380.57010.49230.076*
C9A0.0935 (3)0.5413 (3)0.3696 (3)0.0601 (8)
C10A0.0475 (3)0.5116 (3)0.2548 (3)0.0561 (8)
H10A0.09900.50770.22130.067*
C11A0.0730 (3)0.4876 (3)0.1881 (3)0.0534 (8)
H11A0.10210.46820.11070.064*
C12A0.2268 (3)0.5634 (4)0.4431 (4)0.0902 (15)
H12A0.23930.63480.44910.135*
H12B0.27140.53400.40710.135*
H12C0.25420.53550.51960.135*
C13A0.5419 (3)0.4043 (3)0.1851 (3)0.0571 (8)
O14A0.6399 (2)0.3741 (2)0.1169 (2)0.0776 (8)
O15A0.5087 (2)0.4218 (2)0.2968 (2)0.0702 (7)
C16A0.5980 (4)0.4031 (5)0.3341 (4)0.1054 (18)
H16A0.56510.41800.41580.158*
H16B0.62190.33380.32090.158*
H16C0.66710.44510.29080.158*
C17A0.3608 (2)0.5414 (3)0.0175 (3)0.0499 (7)
O18A0.3671 (2)0.6201 (2)0.0273 (2)0.0696 (6)
N19A0.3857 (2)0.5353 (2)0.1298 (2)0.0500 (6)
C20A0.3855 (3)0.4437 (3)0.1932 (3)0.0675 (9)
H20A0.42600.38900.17610.081*
H20B0.30370.42320.17310.081*
C21A0.4535 (5)0.4742 (4)0.3197 (4)0.0966 (15)
H21A0.53730.45350.35300.116*
H21B0.41760.44400.36450.116*
C22A0.4438 (3)0.5873 (3)0.3199 (3)0.0741 (11)
H22A0.51110.61620.38770.089*
H22B0.36890.60800.31870.089*
C23A0.4469 (3)0.6182 (3)0.2080 (3)0.0550 (8)
H23A0.408 (3)0.675 (3)0.178 (3)0.054 (9)*
C24A0.5761 (3)0.6247 (3)0.2232 (3)0.0565 (8)
O25A0.6245 (2)0.5582 (3)0.2016 (3)0.1006 (11)
O26A0.62764 (19)0.7100 (2)0.2701 (2)0.0674 (6)
C27A0.7509 (3)0.7208 (3)0.2905 (3)0.0755 (11)
H27A0.78150.78510.32520.113*
H27B0.75350.71590.21770.113*
H27C0.79960.66860.34200.113*
N1B0.1079 (2)0.1968 (2)0.0010 (2)0.0599 (7)
N2B0.0819 (2)0.2152 (2)0.1138 (2)0.0567 (7)
C3B0.0329 (3)0.2292 (3)0.1734 (3)0.0566 (8)
C4B0.0994 (3)0.2190 (3)0.1043 (3)0.0704 (10)
H4C0.14350.15610.12060.084*
H4D0.15460.27460.11810.084*
C5B0.0067 (3)0.2213 (3)0.0209 (3)0.0567 (8)
H5B0.002 (3)0.176 (2)0.070 (3)0.062 (10)*
C6B0.2295 (2)0.1905 (2)0.0855 (3)0.0511 (7)
C7B0.3207 (3)0.1737 (3)0.0562 (3)0.0564 (8)
H7B0.30260.16580.02160.068*
C8B0.4388 (3)0.1685 (3)0.1425 (3)0.0599 (9)
H8B0.49930.15660.12130.072*
C9B0.4705 (3)0.1805 (3)0.2588 (3)0.0587 (8)
C10B0.3771 (3)0.1959 (3)0.2864 (3)0.0599 (9)
H10B0.39540.20300.36430.072*
C11B0.2587 (3)0.2010 (3)0.2025 (3)0.0585 (8)
H11B0.19810.21150.22390.070*
C12B0.5994 (3)0.1772 (4)0.3513 (3)0.0844 (12)
H12D0.64010.12250.33580.127*
H12E0.60250.16760.42610.127*
H12F0.63850.23930.35120.127*
C13B0.0933 (3)0.2503 (3)0.2982 (3)0.0634 (10)
O14B0.1996 (2)0.2641 (3)0.3522 (2)0.0901 (9)
O15B0.01951 (19)0.2539 (2)0.34591 (18)0.0659 (6)
C16B0.0752 (3)0.2750 (4)0.4687 (3)0.0800 (12)
H16D0.01460.27580.49460.120*
H16E0.11430.33930.48330.120*
H16F0.13390.22400.51030.120*
C17B0.0207 (3)0.3256 (3)0.0751 (3)0.0515 (8)
O18B0.0855 (2)0.3890 (2)0.0647 (2)0.0682 (7)
N19B0.0430 (2)0.3428 (2)0.1325 (2)0.0572 (7)
C20B0.1302 (3)0.2758 (3)0.1433 (4)0.0755 (11)
H20C0.19250.25540.06710.091*
H20D0.09050.21640.18800.091*
C21B0.1813 (5)0.3356 (6)0.2040 (5)0.1119 (18)
H21C0.15090.31210.28360.134*
H21D0.26860.32950.16500.134*
C22B0.1463 (6)0.4407 (6)0.2034 (8)0.145 (3)
H22C0.12930.47300.27660.174*
H22D0.21090.47720.14050.174*
C23B0.0363 (4)0.4397 (3)0.1868 (4)0.0743 (11)
H23B0.040 (3)0.487 (3)0.139 (3)0.066 (12)*
C24B0.0801 (5)0.4544 (4)0.2994 (4)0.0966 (14)
O25B0.1153 (6)0.5318 (4)0.3401 (5)0.250 (4)
O26B0.1347 (3)0.3736 (2)0.3491 (2)0.0893 (9)
C27B0.2439 (5)0.3855 (5)0.4602 (4)0.1186 (19)
H27D0.27840.32070.48940.178*
H27E0.22390.41770.51540.178*
H27F0.30120.42600.44900.178*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N1A0.0444 (13)0.0758 (19)0.0434 (13)0.0110 (14)0.0168 (11)0.0030 (13)
N2A0.0456 (14)0.0574 (16)0.0526 (14)0.0016 (13)0.0216 (12)0.0004 (13)
C3A0.0433 (16)0.0520 (19)0.0528 (17)0.0027 (14)0.0185 (14)0.0002 (15)
C4A0.0528 (17)0.068 (2)0.0534 (18)0.0126 (16)0.0178 (14)0.0030 (17)
C5A0.0488 (17)0.060 (2)0.0485 (17)0.0069 (16)0.0204 (14)0.0070 (16)
C6A0.0437 (16)0.0489 (17)0.0469 (16)0.0014 (13)0.0191 (13)0.0038 (14)
C7A0.0447 (16)0.072 (2)0.0529 (17)0.0029 (16)0.0232 (14)0.0071 (17)
C8A0.0506 (18)0.084 (3)0.0492 (17)0.0078 (18)0.0183 (15)0.0148 (18)
C9A0.0465 (17)0.072 (2)0.0585 (19)0.0001 (17)0.0215 (15)0.0026 (18)
C10A0.0453 (17)0.066 (2)0.0609 (19)0.0034 (15)0.0279 (16)0.0045 (16)
C11A0.0526 (18)0.0576 (19)0.0496 (17)0.0007 (15)0.0235 (15)0.0002 (15)
C12A0.0464 (19)0.141 (4)0.076 (2)0.013 (2)0.0228 (18)0.015 (3)
C13A0.0493 (18)0.055 (2)0.063 (2)0.0028 (16)0.0225 (16)0.0019 (17)
O14A0.0481 (13)0.102 (2)0.0743 (16)0.0219 (14)0.0213 (13)0.0157 (15)
O15A0.0556 (13)0.093 (2)0.0683 (16)0.0125 (13)0.0341 (12)0.0157 (14)
C16A0.077 (3)0.162 (5)0.102 (3)0.021 (3)0.062 (3)0.031 (4)
C17A0.0369 (15)0.061 (2)0.0519 (17)0.0042 (15)0.0210 (13)0.0080 (17)
O18A0.0885 (17)0.0599 (16)0.0675 (14)0.0071 (13)0.0422 (13)0.0145 (13)
N19A0.0443 (13)0.0586 (16)0.0443 (14)0.0052 (12)0.0183 (11)0.0020 (13)
C20A0.069 (2)0.075 (2)0.0528 (18)0.0126 (19)0.0225 (16)0.0066 (18)
C21A0.106 (3)0.119 (4)0.058 (2)0.025 (3)0.032 (2)0.011 (3)
C22A0.059 (2)0.106 (4)0.058 (2)0.007 (2)0.0278 (17)0.015 (2)
C23A0.0427 (17)0.062 (2)0.0553 (19)0.0006 (17)0.0184 (14)0.0032 (18)
C24A0.0510 (18)0.057 (2)0.0570 (18)0.0012 (17)0.0215 (15)0.0027 (16)
O25A0.0555 (15)0.092 (2)0.159 (3)0.0105 (15)0.0530 (17)0.047 (2)
O26A0.0513 (12)0.0677 (16)0.0790 (15)0.0056 (12)0.0267 (11)0.0069 (14)
C27A0.0491 (18)0.086 (3)0.082 (2)0.0111 (19)0.0234 (17)0.006 (2)
N1B0.0392 (13)0.086 (2)0.0517 (14)0.0055 (14)0.0184 (11)0.0031 (15)
N2B0.0450 (14)0.0673 (18)0.0519 (15)0.0060 (13)0.0175 (12)0.0079 (13)
C3B0.0391 (15)0.065 (2)0.0590 (18)0.0000 (15)0.0177 (14)0.0132 (17)
C4B0.0419 (16)0.096 (3)0.066 (2)0.0042 (18)0.0195 (15)0.015 (2)
C5B0.0382 (15)0.073 (2)0.058 (2)0.0011 (15)0.0223 (14)0.0046 (18)
C6B0.0413 (15)0.0551 (19)0.0542 (17)0.0026 (14)0.0200 (13)0.0027 (15)
C7B0.0458 (17)0.071 (2)0.0516 (17)0.0070 (16)0.0217 (14)0.0005 (16)
C8B0.0463 (17)0.061 (2)0.076 (2)0.0070 (15)0.0311 (16)0.0013 (18)
C9B0.0467 (17)0.055 (2)0.065 (2)0.0048 (15)0.0178 (15)0.0003 (17)
C10B0.0546 (18)0.070 (2)0.0490 (17)0.0014 (17)0.0192 (14)0.0084 (17)
C11B0.0480 (17)0.073 (2)0.0545 (18)0.0038 (17)0.0242 (14)0.0026 (18)
C12B0.050 (2)0.098 (3)0.083 (3)0.009 (2)0.0122 (18)0.003 (2)
C13B0.0413 (18)0.075 (2)0.059 (2)0.0061 (17)0.0103 (16)0.0208 (19)
O14B0.0479 (14)0.140 (3)0.0644 (15)0.0200 (16)0.0110 (12)0.0165 (17)
O15B0.0477 (12)0.0866 (18)0.0524 (13)0.0049 (12)0.0140 (10)0.0026 (13)
C16B0.065 (2)0.108 (3)0.052 (2)0.015 (2)0.0150 (17)0.002 (2)
C17B0.0367 (15)0.063 (2)0.0508 (17)0.0021 (15)0.0171 (13)0.0090 (15)
O18B0.0608 (14)0.0755 (17)0.0727 (15)0.0120 (13)0.0348 (12)0.0044 (13)
N19B0.0511 (15)0.0619 (18)0.0642 (16)0.0055 (13)0.0315 (13)0.0035 (14)
C20B0.0541 (19)0.092 (3)0.093 (3)0.002 (2)0.045 (2)0.012 (2)
C21B0.096 (3)0.168 (6)0.104 (3)0.002 (4)0.073 (3)0.010 (4)
C22B0.121 (5)0.139 (6)0.214 (8)0.021 (4)0.110 (5)0.039 (5)
C23B0.074 (3)0.072 (3)0.077 (3)0.015 (2)0.036 (2)0.002 (2)
C24B0.131 (4)0.064 (3)0.075 (3)0.018 (3)0.031 (3)0.000 (3)
O25B0.295 (7)0.081 (3)0.168 (5)0.013 (4)0.066 (4)0.025 (3)
O26B0.092 (2)0.090 (2)0.0731 (17)0.0104 (17)0.0267 (16)0.0056 (16)
C27B0.100 (3)0.172 (6)0.066 (3)0.018 (4)0.023 (3)0.007 (3)
Geometric parameters (Å, º) top
N1A—N2A1.348 (3)N1B—N2B1.364 (4)
N1A—C6A1.388 (4)N1B—C6B1.411 (4)
N1A—C5A1.464 (4)N1B—C5B1.456 (4)
N2A—C3A1.279 (4)N2B—C3B1.289 (4)
C3A—C13A1.471 (5)C3B—C13B1.459 (5)
C3A—C4A1.495 (5)C3B—C4B1.483 (5)
C4A—C5A1.552 (4)C4B—C5B1.545 (5)
C4A—H4A0.9700C4B—H4C0.9700
C4A—H4B0.9700C4B—H4D0.9700
C5A—C17A1.525 (5)C5B—C17B1.528 (5)
C5A—H5A0.90 (3)C5B—H5B0.90 (3)
C6A—C7A1.385 (4)C6B—C7B1.378 (4)
C6A—C11A1.388 (4)C6B—C11B1.391 (4)
C7A—C8A1.372 (4)C7B—C8B1.379 (5)
C7A—H7A0.9300C7B—H7B0.9300
C8A—C9A1.369 (4)C8B—C9B1.377 (5)
C8A—H8A0.9300C8B—H8B0.9300
C9A—C10A1.379 (5)C9B—C10B1.385 (5)
C9A—C12A1.516 (5)C9B—C12B1.497 (4)
C10A—C11A1.382 (4)C10B—C11B1.372 (4)
C10A—H10A0.9300C10B—H10B0.9300
C11A—H11A0.9300C11B—H11B0.9300
C12A—H12A0.9600C12B—H12D0.9600
C12A—H12B0.9600C12B—H12E0.9600
C12A—H12C0.9600C12B—H12F0.9600
C13A—O14A1.198 (4)C13B—O14B1.194 (4)
C13A—O15A1.326 (4)C13B—O15B1.329 (4)
O15A—C16A1.431 (5)O15B—C16B1.436 (4)
C16A—H16A0.9600C16B—H16D0.9600
C16A—H16B0.9600C16B—H16E0.9600
C16A—H16C0.9600C16B—H16F0.9600
C17A—O18A1.218 (4)C17B—O18B1.220 (4)
C17A—N19A1.340 (4)C17B—N19B1.339 (4)
N19A—C23A1.452 (4)N19B—C23B1.453 (5)
N19A—C20A1.471 (5)N19B—C20B1.464 (5)
C20A—C21A1.509 (6)C20B—C21B1.458 (7)
C20A—H20A0.9700C20B—H20C0.9700
C20A—H20B0.9700C20B—H20D0.9700
C21A—C22A1.510 (7)C21B—C22B1.467 (9)
C21A—H21A0.9700C21B—H21C0.9700
C21A—H21B0.9700C21B—H21D0.9700
C22A—C23A1.523 (5)C22B—C23B1.488 (7)
C22A—H22A0.9700C22B—H22C0.9700
C22A—H22B0.9700C22B—H22D0.9700
C23A—C24A1.536 (5)C23B—C24B1.520 (7)
C23A—H23A0.88 (3)C23B—H23B0.88 (4)
C24A—O25A1.177 (4)C24B—O25B1.148 (6)
C24A—O26A1.308 (4)C24B—O26B1.276 (5)
O26A—C27A1.445 (4)O26B—C27B1.461 (5)
C27A—H27A0.9600C27B—H27D0.9600
C27A—H27B0.9600C27B—H27E0.9600
C27A—H27C0.9600C27B—H27F0.9600
N2A—N1A—C6A120.9 (2)N2B—N1B—C6B119.5 (2)
N2A—N1A—C5A112.9 (2)N2B—N1B—C5B111.9 (2)
C6A—N1A—C5A125.9 (2)C6B—N1B—C5B124.9 (3)
C3A—N2A—N1A109.1 (2)C3B—N2B—N1B108.1 (3)
N2A—C3A—C13A121.9 (3)N2B—C3B—C13B123.3 (3)
N2A—C3A—C4A114.2 (3)N2B—C3B—C4B114.0 (3)
C13A—C3A—C4A123.6 (3)C13B—C3B—C4B122.6 (3)
C3A—C4A—C5A100.6 (2)C3B—C4B—C5B100.5 (3)
C3A—C4A—H4A111.7C3B—C4B—H4C111.7
C5A—C4A—H4A111.7C5B—C4B—H4C111.7
C3A—C4A—H4B111.7C3B—C4B—H4D111.7
C5A—C4A—H4B111.7C5B—C4B—H4D111.7
H4A—C4A—H4B109.4H4C—C4B—H4D109.4
N1A—C5A—C17A110.4 (3)N1B—C5B—C17B111.6 (3)
N1A—C5A—C4A101.4 (2)N1B—C5B—C4B101.1 (3)
C17A—C5A—C4A108.6 (3)C17B—C5B—C4B111.0 (3)
N1A—C5A—H5A113.9 (18)N1B—C5B—H5B110 (2)
C17A—C5A—H5A107.0 (19)C17B—C5B—H5B108 (2)
C4A—C5A—H5A115.4 (19)C4B—C5B—H5B115 (2)
C7A—C6A—N1A120.4 (3)C7B—C6B—C11B119.0 (3)
C7A—C6A—C11A119.0 (3)C7B—C6B—N1B121.1 (3)
N1A—C6A—C11A120.6 (3)C11B—C6B—N1B119.9 (3)
C8A—C7A—C6A120.1 (3)C6B—C7B—C8B119.8 (3)
C8A—C7A—H7A120.0C6B—C7B—H7B120.1
C6A—C7A—H7A120.0C8B—C7B—H7B120.1
C9A—C8A—C7A121.9 (3)C9B—C8B—C7B122.4 (3)
C9A—C8A—H8A119.0C9B—C8B—H8B118.8
C7A—C8A—H8A119.0C7B—C8B—H8B118.8
C8A—C9A—C10A117.8 (3)C8B—C9B—C10B116.8 (3)
C8A—C9A—C12A121.0 (3)C8B—C9B—C12B121.8 (3)
C10A—C9A—C12A121.2 (3)C10B—C9B—C12B121.4 (3)
C9A—C10A—C11A121.8 (3)C11B—C10B—C9B122.2 (3)
C9A—C10A—H10A119.1C11B—C10B—H10B118.9
C11A—C10A—H10A119.1C9B—C10B—H10B118.9
C10A—C11A—C6A119.4 (3)C10B—C11B—C6B119.8 (3)
C10A—C11A—H11A120.3C10B—C11B—H11B120.1
C6A—C11A—H11A120.3C6B—C11B—H11B120.1
C9A—C12A—H12A109.5C9B—C12B—H12D109.5
C9A—C12A—H12B109.5C9B—C12B—H12E109.5
H12A—C12A—H12B109.5H12D—C12B—H12E109.5
C9A—C12A—H12C109.5C9B—C12B—H12F109.5
H12A—C12A—H12C109.5H12D—C12B—H12F109.5
H12B—C12A—H12C109.5H12E—C12B—H12F109.5
O14A—C13A—O15A123.8 (3)O14B—C13B—O15B123.2 (3)
O14A—C13A—C3A122.9 (3)O14B—C13B—C3B122.7 (3)
O15A—C13A—C3A113.3 (3)O15B—C13B—C3B114.1 (3)
C13A—O15A—C16A116.1 (3)C13B—O15B—C16B116.0 (2)
O15A—C16A—H16A109.5O15B—C16B—H16D109.5
O15A—C16A—H16B109.5O15B—C16B—H16E109.5
H16A—C16A—H16B109.5H16D—C16B—H16E109.5
O15A—C16A—H16C109.5O15B—C16B—H16F109.5
H16A—C16A—H16C109.5H16D—C16B—H16F109.5
H16B—C16A—H16C109.5H16E—C16B—H16F109.5
O18A—C17A—N19A122.4 (3)O18B—C17B—N19B122.7 (3)
O18A—C17A—C5A120.8 (3)O18B—C17B—C5B121.3 (3)
N19A—C17A—C5A116.6 (3)N19B—C17B—C5B116.1 (3)
C17A—N19A—C23A119.5 (3)C17B—N19B—C23B120.3 (3)
C17A—N19A—C20A126.6 (3)C17B—N19B—C20B127.7 (3)
C23A—N19A—C20A112.2 (2)C23B—N19B—C20B111.9 (3)
N19A—C20A—C21A103.7 (3)C21B—C20B—N19B104.6 (4)
N19A—C20A—H20A111.0C21B—C20B—H20C110.8
C21A—C20A—H20A111.0N19B—C20B—H20C110.8
N19A—C20A—H20B111.0C21B—C20B—H20D110.8
C21A—C20A—H20B111.0N19B—C20B—H20D110.8
H20A—C20A—H20B109.0H20C—C20B—H20D108.9
C20A—C21A—C22A105.3 (4)C20B—C21B—C22B108.1 (4)
C20A—C21A—H21A110.7C20B—C21B—H21C110.1
C22A—C21A—H21A110.7C22B—C21B—H21C110.1
C20A—C21A—H21B110.7C20B—C21B—H21D110.1
C22A—C21A—H21B110.7C22B—C21B—H21D110.1
H21A—C21A—H21B108.8H21C—C21B—H21D108.4
C21A—C22A—C23A103.3 (3)C21B—C22B—C23B106.8 (5)
C21A—C22A—H22A111.1C21B—C22B—H22C110.4
C23A—C22A—H22A111.1C23B—C22B—H22C110.4
C21A—C22A—H22B111.1C21B—C22B—H22D110.4
C23A—C22A—H22B111.1C23B—C22B—H22D110.4
H22A—C22A—H22B109.1H22C—C22B—H22D108.6
N19A—C23A—C22A102.7 (3)N19B—C23B—C22B103.2 (4)
N19A—C23A—C24A108.3 (3)N19B—C23B—C24B113.2 (4)
C22A—C23A—C24A112.5 (3)C22B—C23B—C24B113.4 (5)
N19A—C23A—H23A110 (2)N19B—C23B—H23B109 (2)
C22A—C23A—H23A113 (2)C22B—C23B—H23B110 (2)
C24A—C23A—H23A110 (2)C24B—C23B—H23B107 (2)
O25A—C24A—O26A124.5 (3)O25B—C24B—O26B121.6 (5)
O25A—C24A—C23A123.6 (3)O25B—C24B—C23B123.2 (5)
O26A—C24A—C23A111.8 (3)O26B—C24B—C23B115.1 (4)
C24A—O26A—C27A115.2 (3)C24B—O26B—C27B116.2 (4)
O26A—C27A—H27A109.5O26B—C27B—H27D109.5
O26A—C27A—H27B109.5O26B—C27B—H27E109.5
H27A—C27A—H27B109.5H27D—C27B—H27E109.5
O26A—C27A—H27C109.5O26B—C27B—H27F109.5
H27A—C27A—H27C109.5H27D—C27B—H27F109.5
H27B—C27A—H27C109.5H27E—C27B—H27F109.5
C6A—N1A—N2A—C3A178.6 (3)C6B—N1B—N2B—C3B172.5 (3)
C5A—N1A—N2A—C3A7.7 (4)C5B—N1B—N2B—C3B13.1 (4)
N1A—N2A—C3A—C13A176.7 (3)N1B—N2B—C3B—C13B179.6 (3)
N1A—N2A—C3A—C4A2.0 (4)N1B—N2B—C3B—C4B1.4 (4)
N2A—C3A—C4A—C5A9.7 (4)N2B—C3B—C4B—C5B13.7 (4)
C13A—C3A—C4A—C5A175.7 (3)C13B—C3B—C4B—C5B168.0 (3)
N2A—N1A—C5A—C17A101.9 (3)N2B—N1B—C5B—C17B97.4 (3)
C6A—N1A—C5A—C17A71.5 (4)C6B—N1B—C5B—C17B60.7 (4)
N2A—N1A—C5A—C4A13.1 (4)N2B—N1B—C5B—C4B20.6 (4)
C6A—N1A—C5A—C4A173.5 (3)C6B—N1B—C5B—C4B178.8 (3)
C3A—C4A—C5A—N1A12.5 (3)C3B—C4B—C5B—N1B19.0 (4)
C3A—C4A—C5A—C17A103.9 (3)C3B—C4B—C5B—C17B99.5 (3)
N2A—N1A—C6A—C7A4.4 (5)N2B—N1B—C6B—C7B18.9 (5)
C5A—N1A—C6A—C7A168.5 (3)C5B—N1B—C6B—C7B175.5 (3)
N2A—N1A—C6A—C11A172.8 (3)N2B—N1B—C6B—C11B161.4 (3)
C5A—N1A—C6A—C11A14.4 (5)C5B—N1B—C6B—C11B4.8 (5)
N1A—C6A—C7A—C8A175.1 (3)C11B—C6B—C7B—C8B0.7 (5)
C11A—C6A—C7A—C8A2.1 (5)N1B—C6B—C7B—C8B179.6 (3)
C6A—C7A—C8A—C9A0.2 (6)C6B—C7B—C8B—C9B0.5 (6)
C7A—C8A—C9A—C10A1.6 (6)C7B—C8B—C9B—C10B1.4 (5)
C7A—C8A—C9A—C12A177.4 (4)C7B—C8B—C9B—C12B178.5 (4)
C8A—C9A—C10A—C11A1.5 (6)C8B—C9B—C10B—C11B1.2 (5)
C12A—C9A—C10A—C11A177.5 (4)C12B—C9B—C10B—C11B178.8 (4)
C9A—C10A—C11A—C6A0.4 (5)C9B—C10B—C11B—C6B0.0 (6)
C7A—C6A—C11A—C10A2.2 (5)C7B—C6B—C11B—C10B0.9 (5)
N1A—C6A—C11A—C10A175.0 (3)N1B—C6B—C11B—C10B179.4 (3)
N2A—C3A—C13A—O14A179.9 (4)N2B—C3B—C13B—O14B179.3 (4)
C4A—C3A—C13A—O14A6.0 (5)C4B—C3B—C13B—O14B2.6 (6)
N2A—C3A—C13A—O15A1.3 (5)N2B—C3B—C13B—O15B0.0 (5)
C4A—C3A—C13A—O15A172.9 (3)C4B—C3B—C13B—O15B178.1 (3)
O14A—C13A—O15A—C16A0.3 (6)O14B—C13B—O15B—C16B0.4 (6)
C3A—C13A—O15A—C16A179.2 (4)C3B—C13B—O15B—C16B179.7 (3)
N1A—C5A—C17A—O18A24.7 (4)N1B—C5B—C17B—O18B21.7 (4)
C4A—C5A—C17A—O18A85.7 (3)C4B—C5B—C17B—O18B90.2 (3)
N1A—C5A—C17A—N19A160.4 (2)N1B—C5B—C17B—N19B159.0 (3)
C4A—C5A—C17A—N19A89.2 (3)C4B—C5B—C17B—N19B89.0 (3)
O18A—C17A—N19A—C23A13.8 (4)O18B—C17B—N19B—C23B0.6 (5)
C5A—C17A—N19A—C23A161.1 (3)C5B—C17B—N19B—C23B179.8 (3)
O18A—C17A—N19A—C20A177.4 (3)O18B—C17B—N19B—C20B175.0 (3)
C5A—C17A—N19A—C20A2.6 (4)C5B—C17B—N19B—C20B4.2 (5)
C17A—N19A—C20A—C21A164.0 (3)C17B—N19B—C20B—C21B174.3 (4)
C23A—N19A—C20A—C21A0.7 (4)C23B—N19B—C20B—C21B1.6 (5)
N19A—C20A—C21A—C22A22.2 (5)N19B—C20B—C21B—C22B13.0 (6)
C20A—C21A—C22A—C23A34.9 (4)C20B—C21B—C22B—C23B22.6 (8)
C17A—N19A—C23A—C22A173.4 (3)C17B—N19B—C23B—C22B161.3 (4)
C20A—N19A—C23A—C22A20.7 (4)C20B—N19B—C23B—C22B15.0 (5)
C17A—N19A—C23A—C24A67.3 (4)C17B—N19B—C23B—C24B75.7 (5)
C20A—N19A—C23A—C24A98.6 (3)C20B—N19B—C23B—C24B108.0 (4)
C21A—C22A—C23A—N19A33.5 (4)C21B—C22B—C23B—N19B22.5 (7)
C21A—C22A—C23A—C24A82.8 (4)C21B—C22B—C23B—C24B100.4 (6)
N19A—C23A—C24A—O25A18.8 (5)N19B—C23B—C24B—O25B161.1 (7)
C22A—C23A—C24A—O25A94.1 (5)C22B—C23B—C24B—O25B81.8 (9)
N19A—C23A—C24A—O26A165.4 (3)N19B—C23B—C24B—O26B21.6 (6)
C22A—C23A—C24A—O26A81.7 (4)C22B—C23B—C24B—O26B95.5 (6)
O25A—C24A—O26A—C27A2.6 (5)O25B—C24B—O26B—C27B0.0 (9)
C23A—C24A—O26A—C27A178.3 (3)C23B—C24B—O26B—C27B177.3 (4)
(II) methyl-5-(S)-[2-(S)-methoxycarbonyl)-2,3,4,5-tetrahydropyrrol-1-ylcarbonyl]- 1-(4-methylphenyl)-4,5-dihydropyrazole-3-carboxylate top
Crystal data top
C19H23N3O5F(000) = 396
Mr = 373.40Dx = 1.344 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71069 Å
a = 6.9782 (9) ÅCell parameters from 5921 reflections
b = 17.56 (2) Åθ = 2.3–26.5°
c = 7.7576 (10) ŵ = 0.10 mm1
β = 103.884 (5)°T = 293 K
V = 922.7 (11) Å3Wedge, yellow
Z = 20.40 × 0.30 × 0.22 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1649 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.028
Graphite monochromatorθmax = 27.5°, θmin = 2.3°
ω and ϕ scansh = 09
21391 measured reflectionsk = 022
2188 independent reflectionsl = 109
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.061H atoms treated by a mixture of independent and constrained refinement
S = 0.84 w = 1/[σ2(Fo2) + (0.0161P)2]
where P = (Fo2 + 2Fc2)/3
2188 reflections(Δ/σ)max = 0.002
300 parametersΔρmax = 0.12 e Å3
1 restraintΔρmin = 0.11 e Å3
Crystal data top
C19H23N3O5V = 922.7 (11) Å3
Mr = 373.40Z = 2
Monoclinic, P21Mo Kα radiation
a = 6.9782 (9) ŵ = 0.10 mm1
b = 17.56 (2) ÅT = 293 K
c = 7.7576 (10) Å0.40 × 0.30 × 0.22 mm
β = 103.884 (5)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1649 reflections with I > 2σ(I)
21391 measured reflectionsRint = 0.028
2188 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0291 restraint
wR(F2) = 0.061H atoms treated by a mixture of independent and constrained refinement
S = 0.84Δρmax = 0.12 e Å3
2188 reflectionsΔρmin = 0.11 e Å3
300 parameters
Special details top

Geometry. All e.s.d.'s are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Ring puckering coordinates following Cremer D. & Pople J·A., JACS (1975).97,1354

Ring 1 Atom Internal Cartesian coordinates X Y Z N1 0.0000(0.0000) 1.1567(0.0018) -0.0101(0.0014) N2 1.1202(0.0019) 0.4067(0.0023) -0.0038(0.0012) C3 0.7926(0.0021) -0.8431(0.0024) 0.0163(0.0013) C4 - 0.6816(0.0024) -1.0809(0.0027) -0.0226(0.0014) C5 - 1.2312(0.0021) 0.3606(0.0026) 0.0202(0.0014) q2 = 0.0360(0.0022) phi2 = 116.29 (3.09)

Asymmetry parameters Following Nardelli M., Acta Cryst.(1983). C39, 1141

N1 N2 C3 C4 C5

DS(N1) =0.0261(0.0011) D2(N1) =0.0090(0.0008) DS(N2) =0.0286(0.0011) D2(N2) =0.0038(0.0009) DS(C3) =0.0201(0.0011) D2(C3) =0.0151(0.0008) DS(C4) =0.0041(0.0011) D2(C4) =0.0212(0.0008) DS(C5) =0.0138(0.0011) D2(C5) =0.0188(0.0009)

Ring 2 Atom Internal Cartesian coordinates X Y Z N19 0.0000(0.0001) 1.2135(0.0017) -0.0128(0.0015) C20 1.2184(0.0025) 0.3851(0.0031) -0.1117(0.0018) C21 0.7204(0.0027) -1.0077(0.0025) 0.1936(0.0020) C22 - 0.7324(0.0028) -0.9997(0.0028) -0.2016(0.0018) C23 - 1.2063(0.0022) 0.4089(0.0027) 0.1325(0.0015) q2 = 0.3291(0.0031) phi2 = 93.53 (0.41)

Asymmetry parameters Following Nardelli M., Acta Cryst.(1983). C39, 1141

N19 C20 C21 C22 C23

DS(N19) =0.2603(0.0015) D2(N19) =0.0118(0.0010) DS(C20) =0.2201(0.0014) D2(C20) =0.1025(0.0011) DS(C21) =0.0959(0.0013) D2(C21) =0.1768(0.0011) DS(C22) =0.0650(0.0014) D2(C22) =0.1842(0.0011) DS(C23) =0.2010(0.0015) D2(C23) =0.1218(0.0010)

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.0101 (3)0.21779 (10)0.3404 (2)0.0492 (4)
N20.1499 (2)0.27242 (10)0.3743 (2)0.0438 (4)
C30.2465 (3)0.27137 (12)0.2515 (3)0.0432 (5)
C40.1724 (4)0.21374 (14)0.1095 (3)0.0532 (6)
H4A0.284 (3)0.1778 (16)0.107 (3)0.065 (7)*
H4B0.130 (3)0.2366 (14)0.004 (3)0.060 (7)*
C50.0093 (3)0.17373 (13)0.1797 (3)0.0458 (5)
H50.127 (3)0.1756 (14)0.102 (3)0.052 (6)*
C60.1247 (3)0.20985 (11)0.4470 (3)0.0424 (5)
C70.1173 (3)0.25666 (13)0.5907 (3)0.0496 (5)
H70.024 (3)0.2951 (13)0.616 (3)0.043 (6)*
C80.2551 (3)0.24839 (14)0.6915 (3)0.0529 (6)
H80.264 (3)0.2812 (14)0.781 (3)0.058 (7)*
C90.4012 (3)0.19413 (13)0.6526 (3)0.0513 (6)
C100.4056 (3)0.14777 (14)0.5094 (3)0.0540 (6)
H100.500 (4)0.1105 (13)0.483 (3)0.057 (7)*
C110.2709 (3)0.15483 (13)0.4058 (3)0.0507 (5)
H110.283 (3)0.1246 (12)0.295 (3)0.047 (6)*
C120.5516 (3)0.1855 (2)0.7628 (3)0.0726 (8)
H12A0.52240.14070.83510.109*
H12B0.68110.18100.68570.109*
H12C0.54680.22940.83760.109*
C130.4074 (3)0.32369 (13)0.2475 (3)0.0492 (5)
O140.4997 (3)0.32000 (11)0.1349 (2)0.0759 (5)
O150.4355 (2)0.37596 (10)0.3734 (2)0.0643 (5)
C160.5898 (4)0.43018 (17)0.3706 (4)0.0802 (8)
H16A0.59950.46590.46610.120*
H16B0.55960.45700.25950.120*
H16C0.71310.40380.38440.120*
C170.0703 (3)0.09098 (12)0.2227 (3)0.0415 (4)
O180.1541 (2)0.07058 (9)0.37251 (19)0.0531 (4)
N190.0404 (3)0.04377 (10)0.0835 (2)0.0466 (4)
C200.0644 (5)0.05973 (18)0.1021 (3)0.0637 (7)
H20A0.038 (4)0.1103 (18)0.130 (3)0.074 (9)*
H20B0.213 (4)0.0577 (16)0.109 (4)0.088 (9)*
C210.0010 (5)0.00480 (18)0.2046 (4)0.0710 (8)
H21A0.092 (4)0.0140 (18)0.314 (4)0.095 (10)*
H21B0.122 (4)0.0172 (17)0.235 (3)0.086 (9)*
C220.0497 (4)0.06931 (16)0.0736 (4)0.0613 (6)
H22A0.146 (4)0.1084 (14)0.098 (3)0.062 (7)*
H22B0.075 (4)0.0925 (16)0.074 (3)0.075 (8)*
C230.1374 (3)0.03031 (12)0.1031 (3)0.0469 (5)
H230.114 (3)0.0578 (13)0.204 (3)0.049 (6)*
C240.3590 (3)0.02092 (13)0.1335 (3)0.0462 (5)
O250.4396 (2)0.03180 (10)0.0836 (2)0.0686 (5)
O260.4514 (2)0.08036 (9)0.2189 (2)0.0597 (4)
C270.6635 (3)0.08127 (18)0.2504 (4)0.0745 (8)
H27A0.71420.12700.31300.112*
H27B0.71730.03770.32020.112*
H27C0.70040.07980.13890.112*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0506 (10)0.0431 (10)0.0583 (11)0.0104 (9)0.0215 (9)0.0129 (9)
N20.0421 (9)0.0387 (10)0.0508 (10)0.0003 (8)0.0113 (8)0.0012 (8)
C30.0436 (11)0.0400 (11)0.0454 (11)0.0034 (9)0.0093 (9)0.0060 (9)
C40.0635 (15)0.0488 (14)0.0506 (14)0.0022 (12)0.0200 (12)0.0010 (11)
C50.0447 (11)0.0438 (12)0.0481 (12)0.0003 (10)0.0097 (10)0.0061 (10)
C60.0365 (10)0.0387 (11)0.0525 (12)0.0045 (9)0.0117 (9)0.0007 (10)
C70.0484 (13)0.0423 (13)0.0599 (14)0.0041 (11)0.0165 (11)0.0067 (11)
C80.0559 (14)0.0532 (14)0.0524 (13)0.0076 (11)0.0182 (11)0.0050 (12)
C90.0440 (12)0.0554 (15)0.0566 (13)0.0113 (11)0.0160 (10)0.0110 (12)
C100.0379 (11)0.0557 (15)0.0667 (16)0.0038 (11)0.0094 (11)0.0025 (12)
C110.0435 (12)0.0506 (13)0.0583 (14)0.0052 (10)0.0127 (10)0.0091 (11)
C120.0566 (15)0.095 (2)0.0719 (16)0.0078 (15)0.0276 (12)0.0107 (16)
C130.0507 (13)0.0527 (14)0.0434 (12)0.0022 (11)0.0098 (10)0.0078 (11)
O140.0875 (13)0.0827 (13)0.0692 (11)0.0240 (11)0.0418 (10)0.0071 (10)
O150.0696 (11)0.0688 (11)0.0588 (10)0.0271 (9)0.0239 (8)0.0087 (9)
C160.0898 (19)0.083 (2)0.0706 (17)0.0451 (17)0.0251 (14)0.0070 (15)
C170.0328 (10)0.0436 (11)0.0487 (12)0.0023 (9)0.0106 (9)0.0037 (10)
O180.0551 (9)0.0525 (10)0.0476 (9)0.0017 (7)0.0041 (7)0.0005 (7)
N190.0461 (10)0.0442 (10)0.0471 (10)0.0057 (8)0.0067 (8)0.0060 (8)
C200.0700 (17)0.0638 (18)0.0495 (15)0.0134 (14)0.0007 (12)0.0091 (13)
C210.0718 (19)0.077 (2)0.0569 (16)0.0087 (15)0.0009 (15)0.0203 (15)
C220.0522 (14)0.0555 (15)0.0752 (17)0.0043 (13)0.0128 (13)0.0205 (13)
C230.0479 (13)0.0390 (12)0.0550 (13)0.0001 (10)0.0145 (10)0.0032 (10)
C240.0499 (12)0.0442 (13)0.0445 (11)0.0016 (11)0.0114 (10)0.0032 (10)
O250.0556 (10)0.0603 (11)0.0887 (12)0.0073 (9)0.0148 (9)0.0180 (10)
O260.0519 (9)0.0543 (9)0.0743 (10)0.0111 (8)0.0181 (8)0.0131 (8)
C270.0493 (14)0.090 (2)0.0844 (18)0.0172 (15)0.0159 (12)0.0087 (16)
Geometric parameters (Å, º) top
N1—N21.348 (2)C13—O151.320 (3)
N1—C61.400 (3)O15—C161.442 (3)
N1—C51.466 (3)C16—H16A0.9600
N2—C31.292 (2)C16—H16B0.9600
C3—C131.457 (3)C16—H16C0.9600
C3—C41.494 (3)C17—O181.223 (2)
C4—C51.543 (3)C17—N191.337 (3)
C4—H4A1.01 (3)N19—C231.457 (3)
C4—H4B0.89 (3)N19—C201.477 (3)
C5—C171.528 (4)C20—C211.510 (4)
C5—H51.00 (2)C20—H20A0.94 (3)
C6—C71.376 (3)C20—H20B1.02 (3)
C6—C111.386 (3)C21—C221.506 (4)
C7—C81.385 (3)C21—H21A0.95 (3)
C7—H70.93 (2)C21—H21B1.02 (3)
C8—C91.375 (3)C22—C231.523 (3)
C8—H80.91 (2)C22—H22A1.01 (3)
C9—C101.372 (3)C22—H22B0.96 (3)
C9—C121.512 (3)C23—C241.516 (3)
C10—C111.381 (3)C23—H230.96 (2)
C10—H100.92 (2)C24—O251.195 (3)
C11—H110.99 (2)C24—O261.318 (3)
C12—H12A0.9600O26—C271.441 (3)
C12—H12B0.9600C27—H27A0.9600
C12—H12C0.9600C27—H27B0.9600
C13—O141.205 (3)C27—H27C0.9600
N2—N1—C6120.87 (16)O15—C16—H16A109.5
N2—N1—C5113.30 (16)O15—C16—H16B109.5
C6—N1—C5125.71 (17)H16A—C16—H16B109.5
C3—N2—N1109.11 (16)O15—C16—H16C109.5
N2—C3—C13123.20 (19)H16A—C16—H16C109.5
N2—C3—C4113.81 (18)H16B—C16—H16C109.5
C13—C3—C4122.93 (19)O18—C17—N19122.2 (2)
C3—C4—C5101.66 (18)O18—C17—C5122.06 (18)
C3—C4—H4A108.0 (14)N19—C17—C5115.57 (18)
C5—C4—H4A111.2 (14)C17—N19—C23119.37 (18)
C3—C4—H4B110.4 (15)C17—N19—C20127.90 (19)
C5—C4—H4B114.6 (15)C23—N19—C20112.33 (18)
H4A—C4—H4B110 (2)N19—C20—C21103.4 (2)
N1—C5—C17111.83 (18)N19—C20—H20A108.9 (17)
N1—C5—C4101.97 (18)C21—C20—H20A119.4 (17)
C17—C5—C4108.63 (18)N19—C20—H20B107.7 (16)
N1—C5—H5107.7 (13)C21—C20—H20B111.4 (16)
C17—C5—H5109.8 (15)H20A—C20—H20B106 (2)
C4—C5—H5116.7 (13)C22—C21—C20105.1 (2)
C7—C6—C11119.0 (2)C22—C21—H21A119 (2)
C7—C6—N1121.28 (18)C20—C21—H21A112.6 (19)
C11—C6—N1119.69 (18)C22—C21—H21B111.6 (16)
C6—C7—C8119.9 (2)C20—C21—H21B102.0 (17)
C6—C7—H7119.7 (12)H21A—C21—H21B106 (2)
C8—C7—H7120.3 (12)C21—C22—C23104.3 (2)
C9—C8—C7121.8 (2)C21—C22—H22A116.3 (13)
C9—C8—H8115.0 (15)C23—C22—H22A109.5 (13)
C7—C8—H8122.8 (15)C21—C22—H22B104.4 (16)
C10—C9—C8117.4 (2)C23—C22—H22B111.4 (15)
C10—C9—C12121.0 (2)H22A—C22—H22B111 (2)
C8—C9—C12121.6 (2)N19—C23—C24110.50 (19)
C9—C10—C11122.1 (2)N19—C23—C22103.36 (19)
C9—C10—H10118.8 (15)C24—C23—C22111.33 (19)
C11—C10—H10119.1 (15)N19—C23—H23111.5 (13)
C10—C11—C6119.7 (2)C24—C23—H23107.0 (13)
C10—C11—H11121.6 (12)C22—C23—H23113.2 (13)
C6—C11—H11118.5 (12)O25—C24—O26124.4 (2)
C9—C12—H12A109.5O25—C24—C23125.1 (2)
C9—C12—H12B109.5O26—C24—C23110.47 (19)
H12A—C12—H12B109.5C24—O26—C27116.90 (19)
C9—C12—H12C109.5O26—C27—H27A109.5
H12A—C12—H12C109.5O26—C27—H27B109.5
H12B—C12—H12C109.5H27A—C27—H27B109.5
O14—C13—O15124.3 (2)O26—C27—H27C109.5
O14—C13—C3122.0 (2)H27A—C27—H27C109.5
O15—C13—C3113.63 (19)H27B—C27—H27C109.5
C13—O15—C16115.24 (19)
C6—N1—N2—C3175.75 (19)N2—C3—C13—O154.9 (3)
C5—N1—N2—C30.5 (2)C4—C3—C13—O15172.4 (2)
N1—N2—C3—C13179.57 (18)O14—C13—O15—C160.7 (3)
N1—N2—C3—C42.1 (2)C3—C13—O15—C16178.3 (2)
N2—C3—C4—C53.6 (3)N1—C5—C17—O1816.5 (3)
C13—C3—C4—C5178.91 (19)C4—C5—C17—O1895.3 (2)
N2—N1—C5—C17113.22 (19)N1—C5—C17—N19168.68 (17)
C6—N1—C5—C1770.7 (2)C4—C5—C17—N1979.5 (2)
N2—N1—C5—C42.7 (2)O18—C17—N19—C2310.3 (3)
C6—N1—C5—C4173.4 (2)C5—C17—N19—C23164.54 (18)
C3—C4—C5—N13.4 (2)O18—C17—N19—C20177.5 (2)
C3—C4—C5—C17114.8 (2)C5—C17—N19—C207.7 (3)
N2—N1—C6—C70.9 (3)C17—N19—C20—C21164.3 (2)
C5—N1—C6—C7176.7 (2)C23—N19—C20—C218.3 (3)
N2—N1—C6—C11177.89 (19)N19—C20—C21—C2226.3 (3)
C5—N1—C6—C112.1 (3)C20—C21—C22—C2334.6 (3)
C11—C6—C7—C80.1 (3)C17—N19—C23—C2466.8 (2)
N1—C6—C7—C8178.7 (2)C20—N19—C23—C24106.5 (2)
C6—C7—C8—C90.1 (3)C17—N19—C23—C22173.94 (19)
C7—C8—C9—C100.2 (3)C20—N19—C23—C2212.7 (3)
C7—C8—C9—C12179.8 (2)C21—C22—C23—N1928.7 (3)
C8—C9—C10—C110.5 (3)C21—C22—C23—C2489.9 (3)
C12—C9—C10—C11179.5 (2)N19—C23—C24—O2526.8 (3)
C9—C10—C11—C60.5 (3)C22—C23—C24—O2587.4 (3)
C7—C6—C11—C100.2 (3)N19—C23—C24—O26155.00 (18)
N1—C6—C11—C10179.0 (2)C22—C23—C24—O2690.7 (2)
N2—C3—C13—O14177.5 (2)O25—C24—O26—C271.0 (3)
C4—C3—C13—O145.2 (3)C23—C24—O26—C27177.2 (2)

Experimental details

(I)(II)
Crystal data
Chemical formulaC19H23N3O5·C19H23N3O5C19H23N3O5
Mr746.81373.40
Crystal system, space groupMonoclinic, P21Monoclinic, P21
Temperature (K)293293
a, b, c (Å)12.5056 (14), 13.3082 (16), 12.9491 (14)6.9782 (9), 17.56 (2), 7.7576 (10)
α, β, γ (°)90, 117.695 (2), 9090, 103.884 (5), 90
V3)1908.2 (4)922.7 (11)
Z22
Radiation typeMo KαMo Kα
µ (mm1)0.100.10
Crystal size (mm)0.42 × 0.34 × 0.120.40 × 0.30 × 0.22
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Bruker SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
21406, 3524, 2789 21391, 2188, 1649
Rint0.0340.028
(sin θ/λ)max1)0.5950.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.101, 0.94 0.029, 0.061, 0.84
No. of reflections35242188
No. of parameters503300
No. of restraints21
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.120.12, 0.11

Computer programs: SMART (Bruker, 1999), SMART, SAINT (Bruker, 1999), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 1997), ORTEPIII (Burnett & Johnson, 1996), SHELXL97.

 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds