Download citation
Download citation
link to html
The title compound, [Cu(C4H8N2)4]SO4·0.5CH3CN·1.5H2O, consists of a double chain wherein the Cu centres are octahedrally coordinated by four 1-methyl­imidazole ligands in the equatorial plane and by two axial sulfate ions which act as bridges between the Cu centres. The Cu—N bond lengths lie between 1.9929 (14) and 2.0226 (14) Å, but the Cu—O bond distances are longer, with values between 2.3496 (13) and 2.8276 (14) Å. The water mol­ecules participate in the formation of a network of hydrogen bonds of significance in maintaining the connectivity of the structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101019825/bm1479sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101019825/bm1479Isup2.hkl
Contains datablock I

CCDC reference: 181976

Comment top

Our research group is interested in the synthesis and characterization of thione complexes (García-Vázquez et al., 1999). However, the pronounced tendency of S to bridge metal centres often produces insoluble polymers. In these cases, one strategy for the synthesis of low molecular weight compounds involves the incorporation of co-ligands to block some coordination sites. This technique has previously been successfully employed in the preparation of mixed thionate complexes (García-Vázquez et al., 1999). As a continuation of this work, we attempted to synthesize a copper(I) complex incorporating a heterocyclic thionate and 1-methylimidazole as co-ligand. However, in the reaction of (1-propylimidazolidine-2-thionate)copper(I) with 1-methylimidazole, instead of the expected mixed-ligand copper(I) complex, the title compound, (I), was obtained. This compound is probably formed by oxidation of copper(I) and further replacement of the heterocyclic thionate ligand by 1-methylimidazole and sulfate ions, the latter formed by oxidation of the thionate sulfur in accord with the process previously described by Raper (1994). \sch

The coordination chemistry of tetrakis(imidazole)copper(II) and its alkyl ligand derivatives has been widely studied and crystal structures have been obtained, mainly in the case of the halides, and also for oxoanions (Pan et al., 1998 and references therein; Kohout et al., 1999; Su et al., 1995). Moreover, tetrakis(imidazole) copper(II) sulfate has been studied by X-ray diffraction (Fransson & Lundberg, 1972) and its structure shows a chain structure, but there are some differences from the compound described in the present paper (apart from the methyl group in the ligand). These differences are, in part, related to the supramolecular structure arising from the presence of water molecules and to the absence of an inversion centre at Cu and the resulting lack of local symmetry (see below).

The structure of (I) is shown in Fig. 1 and selected bond distances and angles are given in Table 1. Compound (I) crystallizes as a linear polymer (Fig. 2). The asymmetric unit contains two formula units belonging to two different chains. The sulfate dianion acts as a bridge (O:O') between the Cu centres. In addition, the other O atoms of the sulfate anions are involved in hydrogen-bond formation. Indeed, the framework is maintained by hydrogen bonds between the water molecules labelled O1 and O2 and sulfate anions of different chains, and the water molecule O3 linking a sulfate ion and the water molecule O2. Therefore, all H atoms in the water molecules are involved in hydrogen bonds. In the same way, all O atoms of the sulfate anions are involved in short interactions, either with Cu centres or water molecules, or through non-classical hydrogen bonds (Table 2).

The environment of both Cu atoms is octahedral, with the four 1-methylimidazole ligands in the equatorial plane and the O atoms of two symmetry-related sulfate ions in the axial positions. The bond lengths in the equatorial positions are similar to those found in the literature [see, for example, Su et al. (1995) or Potenza et al. (1988)] and do not merit further discussion. Each imidazole ring is planar to within ±0.003 (1) Å, while the methyl C atoms deviate by between 0.007 (3) and 0.069 (3) Å from these planes.

For the molecule labelled 1, the dihedral angles between each imidazole plane and the planar [±0.046 (1) Å] donor N4 unit are 81.87 (6), 77.10 (6), 69.66 (5) and 78.80 (6)°, respectively, and for the other four with their planar [±0.071 (1) Å] donor N4 unit the dihedral angles are 77.75 (6), 67.12 (6), 66.27 (7) and 80.18 (6)°, respectively. The two N4Cu units are slightly different: that centred on Cu1 has the metal 0.102 (1) Å out of the best plane defined by the four N donor atoms, while this distance is only 0.013 (1) Å for Cu2. This deviation is due to the different coordination of the sulfate groups. Indeed, the Cu2—O distances have similar values, 2.5216 (13) and 2.6764 (13) Å, but the Cu1—O distances are 2.3496 (13) and 2.8276 (14) Å. This behaviour is not observed in the compound studied by Fransson & Lundberg (1972), where the value found is 2.574 (4) Å for both Cu—O distances, since the metal lies on a centre of inversion. These longer distances for the axial positions are well documented in the literature, mainly when the ligands in these positions are as poorly coordinating as sulfate.

Experimental top

The title compound was prepared by reaction of an excess of 1-methylimidazole with (1-propylimidazolidine-2-thionate)copper(I), freshly prepared by an electrolytic method (Cabaleiro et al., 2000), in refluxing acetonitrile for 3 h. After this time, a dark-blue precipitate was isolated and recrystallized from acetonitrile to give crystals of (I) suitable for structure analysis. Table 2. Classical and non-classical hydrogen bonds and short contacts (Å, °).

Refinement top

Aryl H atoms were placed in calculated positions and refined using a riding model, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). Methyl H atoms were located from ΔF syntheses and refined as part of a rigid rotating group with C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C). Water H atoms were located in ΔF syntheses and refined freely.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1998); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I) showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as circles of arbitrary radii.
[Figure 2] Fig. 2. One of the chains of (I). For clarity, water and solvent molecules and H atoms have been omitted.
catena-Poly[[[tetrakis(1-methylimidazole-κN3)copper(II)]-µ2-sulfato-O:O'] acetonitrile hemisolvate sesquihydrate] top
Crystal data top
[Cu(C4H8N2)4]SO4·0.5C2H3N·1.5H2OF(000) = 2232
Mr = 535.58Dx = 1.528 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 18.6227 (1) ÅCell parameters from 8192 reflections
b = 14.2708 (1) Åθ = 1.1–28.3°
c = 17.5255 (1) ŵ = 1.08 mm1
β = 91.650 (1)°T = 293 K
V = 4655.66 (5) Å3Block, blue
Z = 80.20 × 0.16 × 0.12 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
11509 independent reflections
Radiation source: fine-focus sealed tube9721 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ϕ and ω scansθmax = 28.3°, θmin = 1.1°
Absorption correction: multi-scan
(SADABS; Siemens, 1996)
h = 2415
Tmin = 0.809, Tmax = 0.881k = 1818
31303 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: difference Fourier map
wR(F2) = 0.077H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0318P)2 + 2.923P]
where P = (Fo2 + 2Fc2)/3
11509 reflections(Δ/σ)max = 0.001
668 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.70 e Å3
Crystal data top
[Cu(C4H8N2)4]SO4·0.5C2H3N·1.5H2OV = 4655.66 (5) Å3
Mr = 535.58Z = 8
Monoclinic, P21/cMo Kα radiation
a = 18.6227 (1) ŵ = 1.08 mm1
b = 14.2708 (1) ÅT = 293 K
c = 17.5255 (1) Å0.20 × 0.16 × 0.12 mm
β = 91.650 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
11509 independent reflections
Absorption correction: multi-scan
(SADABS; Siemens, 1996)
9721 reflections with I > 2σ(I)
Tmin = 0.809, Tmax = 0.881Rint = 0.023
31303 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.077H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.31 e Å3
11509 reflectionsΔρmin = 0.70 e Å3
668 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.499829 (11)0.364789 (16)0.261012 (11)0.01963 (6)
S10.43812 (2)0.09098 (3)0.30505 (2)0.01715 (8)
O110.48938 (7)0.02287 (9)0.27435 (7)0.0245 (3)
O120.41140 (8)0.05606 (10)0.37872 (7)0.0293 (3)
O130.47360 (7)0.18225 (9)0.31642 (9)0.0310 (3)
O140.37588 (7)0.10075 (9)0.25124 (7)0.0248 (3)
N110.53634 (7)0.39228 (10)0.36746 (8)0.0189 (3)
N120.55952 (8)0.37558 (10)0.49020 (8)0.0195 (3)
N130.39944 (7)0.39084 (10)0.29611 (8)0.0178 (3)
N140.29024 (8)0.37450 (11)0.33868 (8)0.0201 (3)
N150.46004 (7)0.33103 (10)0.15786 (8)0.0179 (3)
N160.39526 (8)0.26715 (10)0.06540 (8)0.0205 (3)
N170.59807 (8)0.31941 (11)0.23184 (8)0.0203 (3)
N180.70692 (8)0.31038 (12)0.18733 (9)0.0250 (3)
C110.53201 (9)0.33536 (13)0.42659 (10)0.0207 (3)
H110.51250.27540.42440.024 (5)*
C120.58244 (10)0.46325 (13)0.47032 (10)0.0233 (4)
H120.60360.50760.50270.044 (7)*
C130.56829 (9)0.47298 (13)0.39436 (10)0.0218 (3)
H130.57850.52560.36530.028 (6)*
C140.56646 (11)0.33389 (14)0.56580 (10)0.0274 (4)
H14A0.54940.27040.56390.043 (7)*
H14B0.53860.36920.60090.039 (7)*
H14C0.61600.33440.58250.040 (7)*
C150.34909 (9)0.33014 (12)0.31491 (10)0.0197 (3)
H150.35390.26540.31200.026 (5)*
C160.30355 (10)0.46856 (13)0.33476 (11)0.0261 (4)
H160.27250.51670.34780.046 (7)*
C170.37101 (10)0.47787 (13)0.30812 (11)0.0249 (4)
H170.39420.53440.29940.036 (6)*
C180.22391 (10)0.33023 (16)0.36372 (12)0.0320 (4)
H18A0.22760.26350.35800.061 (9)*
H18B0.18400.35290.33320.059 (8)*
H18C0.21670.34520.41630.069 (9)*
C190.41537 (9)0.26232 (12)0.13968 (9)0.0189 (3)
H190.39990.21690.17350.027 (6)*
C1100.42908 (10)0.34320 (13)0.03436 (10)0.0231 (4)
H1100.42530.36380.01590.033 (6)*
C1110.46922 (10)0.38217 (13)0.09217 (10)0.0214 (3)
H1110.49820.43490.08800.025 (5)*
C1120.34355 (11)0.20616 (15)0.02593 (12)0.0330 (4)
H11A0.32410.16260.06170.046 (7)*
H11B0.36710.17230.01360.048 (7)*
H11C0.30540.24330.00370.057 (8)*
C1130.64755 (10)0.36325 (13)0.19260 (10)0.0239 (4)
H1130.64200.42270.17150.024 (5)*
C1140.69444 (11)0.22825 (14)0.22447 (11)0.0297 (4)
H1140.72590.17790.22990.036 (6)*
C1150.62721 (10)0.23415 (13)0.25195 (11)0.0263 (4)
H1150.60450.18790.27990.036 (6)*
C1160.77291 (11)0.33598 (19)0.14854 (14)0.0409 (5)
H11D0.77760.29770.10390.051 (8)*
H11E0.81360.32620.18250.044 (7)*
H11F0.77070.40070.13380.063 (9)*
Cu20.013919 (11)0.416559 (16)0.264011 (11)0.02063 (6)
S20.07097 (2)0.15721 (3)0.29701 (2)0.01561 (8)
O210.06826 (7)0.25479 (9)0.27022 (7)0.0236 (3)
O230.02589 (7)0.09634 (9)0.24730 (7)0.0236 (3)
O220.14642 (6)0.12274 (9)0.29653 (8)0.0249 (3)
O240.04528 (7)0.15361 (9)0.37623 (7)0.0229 (3)
N210.02357 (8)0.37777 (10)0.16061 (8)0.0188 (3)
N220.06946 (8)0.38306 (10)0.04398 (8)0.0216 (3)
N230.10588 (8)0.45830 (10)0.21926 (8)0.0192 (3)
N240.20856 (7)0.44650 (10)0.16179 (8)0.0194 (3)
N250.05209 (7)0.44348 (10)0.37098 (8)0.0189 (3)
N260.08916 (8)0.41929 (11)0.48961 (8)0.0214 (3)
N270.08021 (8)0.38241 (10)0.30791 (8)0.0190 (3)
N280.19043 (8)0.39301 (11)0.34700 (9)0.0215 (3)
C210.04812 (10)0.43304 (12)0.10547 (10)0.0211 (3)
H210.05040.49800.10870.020 (5)*
C220.05756 (11)0.29040 (13)0.06113 (11)0.0269 (4)
H220.06700.23930.02940.037 (6)*
C230.02939 (10)0.28785 (13)0.13308 (10)0.0244 (4)
H230.01610.23390.15970.031 (6)*
C240.10045 (12)0.41974 (15)0.02705 (11)0.0315 (4)
H24A0.10310.48680.02420.036 (6)*
H24B0.14790.39460.03520.047 (7)*
H24C0.07090.40200.06870.041 (7)*
C250.15110 (9)0.40038 (13)0.18670 (10)0.0205 (3)
H250.14400.33610.18170.021 (5)*
C260.19960 (9)0.53949 (13)0.17914 (10)0.0223 (4)
H260.23090.58830.16870.041 (7)*
C270.13586 (9)0.54608 (12)0.21454 (10)0.0210 (3)
H270.11570.60110.23270.044 (7)*
C280.26920 (10)0.40369 (15)0.12410 (12)0.0293 (4)
H28A0.26410.33680.12460.034 (6)*
H28B0.31310.42090.15060.027 (6)*
H28C0.27040.42530.07230.037 (6)*
C290.06346 (9)0.37973 (12)0.42501 (9)0.0194 (3)
H290.05480.31600.41890.021 (5)*
C2100.09426 (11)0.51411 (13)0.47659 (11)0.0281 (4)
H2100.11010.55960.51110.044 (7)*
C2110.07140 (10)0.52773 (13)0.40300 (10)0.0252 (4)
H2110.06920.58530.37820.032 (6)*
C2120.10936 (11)0.37097 (14)0.56068 (11)0.0295 (4)
H21A0.10430.30460.55360.043 (7)*
H21B0.07860.39120.60050.041 (7)*
H21C0.15840.38540.57460.053 (8)*
C2130.13776 (9)0.43609 (12)0.30975 (10)0.0203 (3)
H2130.14140.49550.28820.019 (5)*
C2140.16489 (10)0.30720 (13)0.37052 (11)0.0246 (4)
H2140.18950.26220.39790.036 (6)*
C2150.09651 (10)0.30119 (13)0.34576 (10)0.0229 (4)
H2150.06580.25040.35320.031 (6)*
C2160.26156 (10)0.43117 (15)0.36292 (13)0.0330 (5)
H21D0.26320.44830.41580.058 (8)*
H21E0.29760.38470.35160.061 (9)*
H21F0.27040.48550.33180.065 (9)*
O10.24702 (9)0.17514 (13)0.19041 (10)0.0390 (4)
H1A0.2141 (16)0.162 (2)0.2180 (17)0.053 (8)*
H1B0.2791 (16)0.156 (2)0.2094 (16)0.045 (8)*
O20.26049 (12)0.07596 (18)0.40307 (12)0.0617 (6)
H2A0.300 (2)0.074 (2)0.3877 (19)0.073 (11)*
H2B0.2352 (19)0.083 (2)0.365 (2)0.069 (11)*
O30.14936 (13)0.15637 (14)0.49416 (10)0.0463 (4)
H3A0.1183 (17)0.154 (2)0.4596 (18)0.059 (9)*
H3B0.1812 (16)0.137 (2)0.4760 (16)0.044 (9)*
N10.29741 (12)0.21602 (19)0.47097 (14)0.0586 (6)
C10.33913 (12)0.15952 (17)0.46150 (14)0.0393 (5)
C20.39318 (14)0.08688 (17)0.44966 (17)0.0502 (6)
H2C0.44000.11500.44640.075*
H2D0.38420.05400.40310.075*
H2E0.39100.04370.49170.075*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01330 (10)0.03227 (12)0.01324 (10)0.00135 (8)0.00083 (7)0.00205 (8)
S10.01751 (19)0.01566 (19)0.01822 (18)0.00269 (15)0.00046 (15)0.00357 (15)
O110.0242 (6)0.0235 (6)0.0259 (6)0.0081 (5)0.0020 (5)0.0054 (5)
O120.0382 (8)0.0324 (7)0.0175 (6)0.0051 (6)0.0046 (5)0.0019 (5)
O130.0265 (7)0.0208 (7)0.0455 (8)0.0018 (5)0.0029 (6)0.0099 (6)
O140.0191 (6)0.0264 (7)0.0285 (7)0.0020 (5)0.0049 (5)0.0026 (5)
N110.0159 (7)0.0239 (7)0.0167 (7)0.0002 (6)0.0008 (5)0.0002 (6)
N120.0219 (7)0.0211 (7)0.0156 (6)0.0019 (6)0.0003 (5)0.0016 (5)
N130.0154 (7)0.0217 (7)0.0163 (6)0.0005 (5)0.0009 (5)0.0011 (5)
N140.0149 (7)0.0254 (8)0.0200 (7)0.0006 (6)0.0003 (5)0.0006 (6)
N150.0171 (7)0.0219 (7)0.0147 (6)0.0018 (5)0.0008 (5)0.0002 (5)
N160.0215 (7)0.0224 (7)0.0173 (7)0.0010 (6)0.0026 (5)0.0019 (6)
N170.0166 (7)0.0263 (8)0.0179 (7)0.0010 (6)0.0014 (5)0.0005 (6)
N180.0167 (7)0.0340 (9)0.0244 (7)0.0022 (6)0.0015 (6)0.0027 (7)
C110.0220 (8)0.0213 (9)0.0188 (8)0.0028 (7)0.0019 (6)0.0006 (6)
C120.0266 (9)0.0219 (9)0.0213 (8)0.0065 (7)0.0006 (7)0.0013 (7)
C130.0222 (8)0.0226 (9)0.0208 (8)0.0026 (7)0.0008 (7)0.0029 (7)
C140.0355 (11)0.0294 (10)0.0171 (8)0.0048 (8)0.0031 (7)0.0042 (7)
C150.0181 (8)0.0200 (8)0.0209 (8)0.0014 (6)0.0009 (6)0.0011 (6)
C160.0247 (9)0.0227 (9)0.0309 (10)0.0069 (7)0.0033 (7)0.0022 (8)
C170.0261 (9)0.0201 (9)0.0287 (9)0.0012 (7)0.0026 (7)0.0023 (7)
C180.0179 (9)0.0448 (13)0.0335 (10)0.0054 (8)0.0035 (8)0.0046 (9)
C190.0186 (8)0.0210 (8)0.0171 (8)0.0018 (6)0.0004 (6)0.0014 (6)
C1100.0298 (9)0.0249 (9)0.0146 (7)0.0022 (7)0.0001 (7)0.0019 (7)
C1110.0255 (9)0.0206 (8)0.0183 (8)0.0002 (7)0.0022 (7)0.0019 (6)
C1120.0340 (11)0.0336 (11)0.0307 (10)0.0041 (9)0.0089 (8)0.0097 (9)
C1130.0199 (8)0.0261 (9)0.0260 (9)0.0033 (7)0.0031 (7)0.0020 (7)
C1140.0296 (10)0.0308 (10)0.0285 (10)0.0106 (8)0.0023 (8)0.0014 (8)
C1150.0300 (10)0.0248 (9)0.0239 (9)0.0011 (8)0.0005 (7)0.0024 (7)
C1160.0198 (10)0.0600 (16)0.0434 (12)0.0024 (10)0.0097 (9)0.0061 (11)
Cu20.01570 (10)0.03257 (13)0.01369 (10)0.00705 (8)0.00166 (7)0.00454 (8)
S20.01471 (18)0.01463 (18)0.01745 (18)0.00082 (14)0.00026 (14)0.00087 (14)
O210.0262 (7)0.0182 (6)0.0263 (6)0.0016 (5)0.0012 (5)0.0058 (5)
O230.0216 (6)0.0237 (6)0.0252 (6)0.0048 (5)0.0034 (5)0.0031 (5)
O220.0154 (6)0.0262 (7)0.0330 (7)0.0031 (5)0.0009 (5)0.0021 (5)
O240.0286 (7)0.0218 (6)0.0185 (6)0.0015 (5)0.0042 (5)0.0024 (5)
N210.0186 (7)0.0203 (7)0.0175 (7)0.0014 (6)0.0008 (5)0.0032 (5)
N220.0272 (8)0.0206 (7)0.0169 (7)0.0025 (6)0.0033 (6)0.0018 (6)
N230.0180 (7)0.0232 (7)0.0164 (6)0.0023 (6)0.0011 (5)0.0005 (6)
N240.0155 (7)0.0239 (7)0.0189 (7)0.0015 (6)0.0009 (5)0.0013 (6)
N250.0171 (7)0.0224 (7)0.0171 (7)0.0014 (6)0.0004 (5)0.0039 (6)
N260.0224 (7)0.0236 (8)0.0179 (7)0.0017 (6)0.0026 (6)0.0018 (6)
N270.0170 (7)0.0219 (7)0.0179 (7)0.0031 (6)0.0008 (5)0.0012 (6)
N280.0159 (7)0.0223 (7)0.0265 (8)0.0005 (6)0.0020 (6)0.0002 (6)
C210.0261 (9)0.0185 (8)0.0185 (8)0.0004 (7)0.0004 (7)0.0031 (6)
C220.0356 (10)0.0194 (9)0.0251 (9)0.0032 (8)0.0078 (8)0.0062 (7)
C230.0302 (10)0.0194 (9)0.0234 (9)0.0016 (7)0.0050 (7)0.0016 (7)
C240.0410 (12)0.0322 (11)0.0210 (9)0.0053 (9)0.0059 (8)0.0039 (8)
C250.0187 (8)0.0220 (9)0.0209 (8)0.0021 (7)0.0023 (6)0.0001 (7)
C260.0213 (8)0.0224 (9)0.0232 (8)0.0052 (7)0.0001 (7)0.0026 (7)
C270.0227 (8)0.0191 (8)0.0214 (8)0.0007 (7)0.0001 (7)0.0003 (7)
C280.0186 (9)0.0376 (11)0.0321 (10)0.0018 (8)0.0066 (7)0.0032 (8)
C290.0186 (8)0.0208 (8)0.0188 (8)0.0014 (6)0.0009 (6)0.0039 (6)
C2100.0381 (11)0.0217 (9)0.0241 (9)0.0006 (8)0.0058 (8)0.0058 (7)
C2110.0323 (10)0.0202 (9)0.0229 (9)0.0002 (7)0.0036 (7)0.0017 (7)
C2120.0363 (11)0.0311 (10)0.0207 (9)0.0027 (8)0.0062 (8)0.0018 (8)
C2130.0197 (8)0.0194 (8)0.0217 (8)0.0027 (6)0.0001 (6)0.0006 (7)
C2140.0211 (9)0.0222 (9)0.0307 (9)0.0032 (7)0.0033 (7)0.0046 (7)
C2150.0204 (8)0.0210 (9)0.0273 (9)0.0010 (7)0.0007 (7)0.0020 (7)
C2160.0186 (9)0.0354 (11)0.0452 (12)0.0053 (8)0.0063 (8)0.0014 (9)
O10.0235 (8)0.0548 (10)0.0386 (9)0.0005 (7)0.0011 (7)0.0171 (8)
O20.0362 (10)0.1040 (18)0.0451 (11)0.0228 (11)0.0044 (9)0.0135 (11)
O30.0564 (12)0.0508 (11)0.0310 (9)0.0105 (9)0.0108 (9)0.0058 (8)
N10.0422 (12)0.0749 (17)0.0588 (14)0.0162 (12)0.0061 (11)0.0174 (12)
C10.0327 (11)0.0441 (13)0.0418 (12)0.0041 (10)0.0123 (9)0.0087 (10)
C20.0436 (14)0.0362 (13)0.0715 (18)0.0005 (11)0.0156 (13)0.0053 (12)
Geometric parameters (Å, º) top
Cu1—N112.0059 (14)Cu2—O23iii2.6764 (13)
Cu1—N132.0193 (14)S2—O211.4700 (12)
Cu1—N151.9930 (14)S2—O221.4889 (13)
Cu1—N172.0203 (14)S2—O231.4753 (13)
Cu1—O11i2.3496 (13)S2—O241.4824 (12)
Cu1—O132.8276 (14)N21—C211.319 (2)
S1—O111.4748 (12)N21—C231.374 (2)
S1—O121.4833 (13)N22—C211.343 (2)
S1—O131.4714 (14)N22—C221.373 (2)
S1—O141.4796 (13)N22—C241.454 (2)
O11—Cu1ii2.3497 (13)N23—C251.321 (2)
N11—C111.321 (2)N23—C271.375 (2)
N11—C131.373 (2)N24—C251.340 (2)
N12—C111.342 (2)N24—C261.373 (2)
N12—C121.370 (2)N24—C281.459 (2)
N12—C141.455 (2)N25—C291.326 (2)
N13—C151.325 (2)N25—C2111.370 (2)
N13—C171.369 (2)N26—C291.341 (2)
N14—C151.342 (2)N26—C2101.376 (2)
N14—C161.367 (2)N26—C2121.463 (2)
N14—C181.466 (2)N27—C2131.318 (2)
N15—C191.319 (2)N27—C2151.374 (2)
N15—C1111.378 (2)N28—C2131.343 (2)
N16—C191.346 (2)N28—C2141.373 (2)
N16—C1101.375 (2)N28—C2161.466 (2)
N16—C1121.458 (2)C21—H210.9300
N17—C1131.323 (2)C22—C231.352 (2)
N17—C1151.374 (2)C22—H220.9299
N18—C1131.344 (2)C23—H230.9300
N18—C1141.364 (3)C24—H24A0.9601
N18—C1161.468 (2)C24—H24B0.9600
C11—H110.9300C24—H24C0.9600
C12—C131.357 (2)C25—H250.9301
C12—H120.9301C26—C271.358 (2)
C13—H130.9301C26—H260.9301
C14—H14A0.9600C27—H270.9300
C14—H14B0.9599C28—H28A0.9600
C14—H14C0.9599C28—H28B0.9601
C15—H150.9300C28—H28C0.9600
C16—C171.359 (3)C29—H290.9300
C16—H160.9300C210—C2111.360 (3)
C17—H170.9298C210—H2100.9301
C18—H18A0.9600C211—H2110.9300
C18—H18B0.9599C212—H21A0.9599
C18—H18C0.9600C212—H21B0.9600
C19—H190.9300C212—H21C0.9600
C110—C1111.361 (2)C213—H2130.9300
C110—H1100.9299C214—C2151.360 (2)
C111—H1110.9300C214—H2140.9301
C112—H11A0.9600C215—H2150.9301
C112—H11B0.9600C216—H21D0.9600
C112—H11C0.9599C216—H21E0.9599
C113—H1130.9300C216—H21F0.9601
C114—C1151.357 (3)O1—H1A0.81 (3)
C114—H1140.9299O1—H1B0.73 (3)
C115—H1150.9299O2—H2A0.79 (4)
C116—H11D0.9599O2—H2B0.81 (4)
C116—H11E0.9601O3—H3A0.83 (3)
C116—H11F0.9600O3—H3B0.73 (3)
Cu2—N212.0012 (14)N1—C11.129 (3)
Cu2—N231.9951 (14)C1—C21.456 (3)
Cu2—N252.0225 (14)C2—H2C0.9600
Cu2—N271.9950 (14)C2—H2D0.9600
Cu2—O212.5216 (13)C2—H2E0.9600
N11—Cu1—N1388.44 (6)N23—Cu2—N2591.43 (6)
N11—Cu1—N15176.48 (6)N23—Cu2—N27176.65 (6)
N11—Cu1—N1790.74 (6)N23—Cu2—O2186.70 (5)
N11—Cu1—O11i91.62 (5)N23—Cu2—O23iii85.62 (5)
N11—Cu1—O1385.30 (5)N25—Cu2—N2788.75 (6)
N13—Cu1—N1589.86 (6)N25—Cu2—O2190.23 (5)
N13—Cu1—O11i89.46 (5)N25—Cu2—O23iii88.61 (5)
N13—Cu1—O1383.94 (5)N27—Cu2—O2196.64 (5)
N13—Cu1—N17171.55 (6)N27—Cu2—O23iii91.04 (5)
N15—Cu1—N1790.49 (6)O21—Cu2—O23iii172.20 (4)
N15—Cu1—O11i91.45 (5)O21—S2—O23110.81 (8)
N15—Cu1—O1391.46 (5)O21—S2—O24108.84 (7)
N17—Cu1—O11i98.98 (5)O23—S2—O24109.82 (8)
N17—Cu1—O1387.61 (5)O21—S2—O22109.57 (8)
O11i—Cu1—O13172.78 (4)O23—S2—O22108.86 (8)
O13—S1—O11109.88 (8)O24—S2—O22108.91 (8)
O13—S1—O14110.08 (8)S2—O21—Cu2153.01 (8)
O11—S1—O14109.45 (8)C21—N21—C23106.20 (14)
O13—S1—O12109.88 (8)C21—N21—Cu2127.05 (12)
O11—S1—O12109.45 (8)C23—N21—Cu2126.74 (12)
O14—S1—O12108.07 (8)C21—N22—C22107.09 (15)
S1—O11—Cu1ii142.21 (8)C21—N22—C24126.63 (16)
C11—N11—C13106.38 (14)C22—N22—C24126.28 (15)
C11—N11—Cu1125.64 (12)C25—N23—C27106.21 (14)
C13—N11—Cu1127.96 (12)C25—N23—Cu2123.22 (12)
C11—N12—C12107.07 (14)C27—N23—Cu2130.57 (12)
C11—N12—C14127.10 (15)C25—N24—C26107.42 (14)
C12—N12—C14125.80 (15)C25—N24—C28125.28 (16)
C15—N13—C17105.98 (14)C26—N24—C28127.29 (15)
C15—N13—Cu1128.56 (12)C29—N25—C211105.96 (14)
C17—N13—Cu1125.42 (12)C29—N25—Cu2125.19 (12)
C15—N14—C16107.26 (14)C211—N25—Cu2128.85 (12)
C15—N14—C18126.32 (16)C29—N26—C210107.38 (15)
C16—N14—C18126.42 (16)C29—N26—C212126.65 (16)
C19—N15—C111106.52 (14)C210—N26—C212125.97 (16)
C19—N15—Cu1127.90 (12)C213—N27—C215106.70 (14)
C111—N15—Cu1125.31 (12)C213—N27—Cu2126.25 (12)
C19—N16—C110107.77 (14)C215—N27—Cu2126.95 (12)
C19—N16—C112126.16 (16)C213—N28—C214107.62 (14)
C110—N16—C112125.98 (16)C213—N28—C216126.80 (16)
C113—N17—C115106.03 (15)C214—N28—C216125.54 (16)
C113—N17—Cu1129.01 (13)N21—C21—N22111.02 (15)
C115—N17—Cu1124.95 (12)N21—C21—H21124.5
C113—N18—C114107.33 (15)N22—C21—H21124.5
C113—N18—C116126.41 (18)C23—C22—N22106.61 (16)
C114—N18—C116126.26 (17)C23—C22—H22126.7
N11—C11—N12110.98 (15)N22—C22—H22126.7
N11—C11—H11124.5C22—C23—N21109.08 (16)
N12—C11—H11124.5C22—C23—H23125.5
C13—C12—N12106.84 (15)N21—C23—H23125.5
C13—C12—H12126.6N22—C24—H24A109.5
N12—C12—H12126.6N22—C24—H24B109.5
C12—C13—N11108.72 (15)H24A—C24—H24B109.5
C12—C13—H13125.6N22—C24—H24C109.5
N11—C13—H13125.6H24A—C24—H24C109.5
N12—C14—H14A109.5H24B—C24—H24C109.5
N12—C14—H14B109.5N23—C25—N24110.99 (16)
H14A—C14—H14B109.5N23—C25—H25124.5
N12—C14—H14C109.5N24—C25—H25124.5
H14A—C14—H14C109.5C27—C26—N24106.35 (15)
H14B—C14—H14C109.5C27—C26—H26126.8
N13—C15—N14111.03 (15)N24—C26—H26126.8
N13—C15—H15124.5C26—C27—N23109.03 (16)
N14—C15—H15124.5C26—C27—H27125.5
C17—C16—N14106.50 (16)N23—C27—H27125.5
C17—C16—H16126.8N24—C28—H28A109.5
N14—C16—H16126.7N24—C28—H28B109.5
C16—C17—N13109.24 (16)H28A—C28—H28B109.5
C16—C17—H17125.4N24—C28—H28C109.5
N13—C17—H17125.4H28A—C28—H28C109.5
N14—C18—H18A109.5H28B—C28—H28C109.5
N14—C18—H18B109.5N25—C29—N26111.09 (15)
H18A—C18—H18B109.5N25—C29—H29124.5
N14—C18—H18C109.5N26—C29—H29124.5
H18A—C18—H18C109.5C211—C210—N26106.05 (16)
H18B—C18—H18C109.5C211—C210—H210127.0
N15—C19—N16110.59 (15)N26—C210—H210127.0
N15—C19—H19124.7C210—C211—N25109.52 (16)
N16—C19—H19124.7C210—C211—H211125.2
C111—C110—N16106.03 (15)N25—C211—H211125.2
C111—C110—H110127.0N26—C212—H21A109.5
N16—C110—H110127.0N26—C212—H21B109.5
C110—C111—N15109.08 (16)H21A—C212—H21B109.5
C110—C111—H111125.5N26—C212—H21C109.5
N15—C111—H111125.5H21A—C212—H21C109.5
N16—C112—H11A109.5H21B—C212—H21C109.5
N16—C112—H11B109.5N27—C213—N28110.59 (16)
H11A—C112—H11B109.5N27—C213—H213124.7
N16—C112—H11C109.5N28—C213—H213124.7
H11A—C112—H11C109.5C215—C214—N28106.26 (15)
H11B—C112—H11C109.5C215—C214—H214126.9
N17—C113—N18110.92 (17)N28—C214—H214126.9
N17—C113—H113124.5C214—C215—N27108.83 (16)
N18—C113—H113124.5C214—C215—H215125.6
C115—C114—N18106.72 (17)N27—C215—H215125.6
C115—C114—H114126.6N28—C216—H21D109.5
N18—C114—H114126.6N28—C216—H21E109.5
C114—C115—N17109.00 (17)H21D—C216—H21E109.5
C114—C115—H115125.5N28—C216—H21F109.5
N17—C115—H115125.5H21D—C216—H21F109.5
N18—C116—H11D109.5H21E—C216—H21F109.5
N18—C116—H11E109.5N1—C1—C2179.7 (3)
H11D—C116—H11E109.5C1—C2—H2C109.5
N18—C116—H11F109.5C1—C2—H2D109.5
H11D—C116—H11F109.5H2C—C2—H2D109.5
H11E—C116—H11F109.5C1—C2—H2E109.5
N21—Cu2—N2390.44 (6)H2C—C2—H2E109.5
N21—Cu2—N25174.89 (6)H2D—C2—H2E109.5
N21—Cu2—N2789.67 (6)H1A—O1—H1B105 (3)
N21—Cu2—O2185.12 (5)H3A—O3—H3B103 (3)
N21—Cu2—O23iii96.28 (5)H2A—O2—H2B104 (3)
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O220.81 (3)1.97 (3)2.780 (2)171 (3)
O1—H1B···O140.73 (3)2.08 (3)2.806 (2)173 (3)
O2—H2A···O140.79 (4)2.84 (3)3.486 (2)141 (3)
O2—H2A···O120.79 (4)2.10 (4)2.869 (3)164 (3)
O2—H2B···O220.81 (4)2.09 (4)2.866 (3)159 (3)
O3—H3B···O20.73 (3)2.17 (3)2.888 (3)168 (3)
O3—H3A···O240.83 (3)1.97 (3)2.793 (2)177 (3)
O3—H3A···O220.83 (3)2.95 (3)3.496 (2)125 (2)
C13—H13···O14i0.932.483.327 (2)152
C13—H13···O11i0.932.723.197 (2)112
C17—H17···O11i0.932.563.078 (2)115
C110—H110···O12iv0.932.183.092 (2)166
C111—H111···O12i0.932.473.361 (2)160
C113—H113···O12i0.932.313.203 (2)161
C212—H21A···O30.962.513.368 (3)148
C23—H23···O210.932.483.009 (2)116
C23—H23···O230.932.603.524 (2)173
C25—H25···O210.932.422.995 (2)120
C29—H29···O240.932.443.353 (2)167
C215—H215···O240.932.513.408 (2)162
C11—H11···O130.932.413.093 (2)130
C15—H15···O130.932.523.135 (2)123
C15—H15···O140.932.623.499 (2)159
C19—H19···O130.932.863.447 (2)122
C19—H19···O140.932.203.125 (2)173
C21—H21···O24iii0.932.243.164 (2)174
C21—H21···O23iii0.932.913.493 (2)122
C24—H24A···O3iii0.962.633.549 (3)161
C24—H24C···O24iv0.962.523.406 (2)153
C212—H21B···O23v0.962.793.691 (2)158
C212—H21C···O1v0.962.723.441 (3)132
C213—H213···O23iii0.932.683.270 (2)122
C213—H213···O22iii0.932.353.252 (2)164
C214—H214···N10.932.503.337 (3)149
C215—H215···O210.932.933.441 (2)116
Symmetry codes: (i) x+1, y1/2, z+1/2; (iii) x, y1/2, z+1/2; (iv) x, y1/2, z1/2; (v) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu(C4H8N2)4]SO4·0.5C2H3N·1.5H2O
Mr535.58
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)18.6227 (1), 14.2708 (1), 17.5255 (1)
β (°) 91.650 (1)
V3)4655.66 (5)
Z8
Radiation typeMo Kα
µ (mm1)1.08
Crystal size (mm)0.20 × 0.16 × 0.12
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Siemens, 1996)
Tmin, Tmax0.809, 0.881
No. of measured, independent and
observed [I > 2σ(I)] reflections
31303, 11509, 9721
Rint0.023
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.077, 1.05
No. of reflections11509
No. of parameters668
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.70

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1998), SHELXL97.

Selected geometric parameters (Å, º) top
Cu1—N112.0059 (14)Cu2—N212.0012 (14)
Cu1—N132.0193 (14)Cu2—N231.9951 (14)
Cu1—N151.9930 (14)Cu2—N252.0225 (14)
Cu1—N172.0203 (14)Cu2—N271.9950 (14)
Cu1—O11i2.3496 (13)Cu2—O212.5216 (13)
Cu1—O132.8276 (14)Cu2—O23ii2.6764 (13)
S1—O111.4748 (12)S2—O211.4700 (12)
S1—O121.4833 (13)S2—O221.4889 (13)
S1—O131.4714 (14)S2—O231.4753 (13)
S1—O141.4796 (13)S2—O241.4824 (12)
N11—Cu1—N1388.44 (6)N21—Cu2—N2390.44 (6)
N11—Cu1—N15176.48 (6)N21—Cu2—N25174.89 (6)
N11—Cu1—N1790.74 (6)N21—Cu2—N2789.67 (6)
N11—Cu1—O11i91.62 (5)N21—Cu2—O2185.12 (5)
N11—Cu1—O1385.30 (5)N21—Cu2—O23ii96.28 (5)
N13—Cu1—N1589.86 (6)N23—Cu2—N2591.43 (6)
N13—Cu1—O11i89.46 (5)N23—Cu2—N27176.65 (6)
N13—Cu1—O1383.94 (5)N23—Cu2—O2186.70 (5)
N13—Cu1—N17171.55 (6)N23—Cu2—O23ii85.62 (5)
N15—Cu1—N1790.49 (6)N25—Cu2—N2788.75 (6)
N15—Cu1—O11i91.45 (5)N25—Cu2—O2190.23 (5)
N15—Cu1—O1391.46 (5)N25—Cu2—O23ii88.61 (5)
N17—Cu1—O11i98.98 (5)N27—Cu2—O2196.64 (5)
N17—Cu1—O1387.61 (5)N27—Cu2—O23ii91.04 (5)
O11i—Cu1—O13172.78 (4)O21—Cu2—O23ii172.20 (4)
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O220.81 (3)1.97 (3)2.780 (2)171 (3)
O1—H1B···O140.73 (3)2.08 (3)2.806 (2)173 (3)
O2—H2A···O140.79 (4)2.84 (3)3.486 (2)141 (3)
O2—H2A···O120.79 (4)2.10 (4)2.869 (3)164 (3)
O2—H2B···O220.81 (4)2.09 (4)2.866 (3)159 (3)
O3—H3B···O20.73 (3)2.17 (3)2.888 (3)168 (3)
O3—H3A···O240.83 (3)1.97 (3)2.793 (2)177 (3)
O3—H3A···O220.83 (3)2.95 (3)3.496 (2)125 (2)
C13—H13···O14i0.932.483.327 (2)152
C110—H110···O12iii0.932.183.092 (2)166
C111—H111···O12i0.932.473.361 (2)160
C113—H113···O12i0.932.313.203 (2)161
C212—H21A···O30.962.513.368 (3)148
C29—H29···O240.932.443.353 (2)167
C11—H11···O130.932.413.093 (2)130
C19—H19···O140.932.203.125 (2)173
C21—H21···O24ii0.932.243.164 (2)174
C213—H213···O22ii0.932.353.252 (2)164
C214—H214···N10.932.503.337 (3)149
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y1/2, z+1/2; (iii) x, y1/2, z1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds