Download citation
Download citation
link to html
The six-membered phosphorinane ring in (1,4,7,10,13,16-hexaoxa­cyclo­octa­decane)­potassium 2-O-benzoyl-1,3,5-O-methyl­idyne-myo-in­osi­tol 4,6-cyclo­phosphate trihydrate, [K(C12H24O6)](C14H12O9P)·3H2O, has a boat rather than a chair conformation. The K+ ion is eight-coordinate and is connected to one of the phosphate O atoms, one of the O atoms of the myo-inositol residue and the six O atoms of the crown ether.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101011222/bm1456sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101011222/bm1456Isup2.hkl
Contains datablock I

CCDC reference: 174798

Comment top

Inositol phosphates have attracted the attention of a large number of chemists as a result of the role of some of these compounds as secondary messengers in signal transduction (Potter & Lampe, 1995). Our interest lies mainly in cyclic phosphorus compounds (Kumara Swamy et al., 1998; Muthiah & Kumara Swamy, 1999) and in this connection we felt that various cyclic phosphates could be generated from suitably protected inositol derivatives. It should be noted that, despite so much interest in inositol phosphates, few cyclic derivatives have been structurally characterized, although the crystal structures of two cyclic phosphates derived from inositol have been reported recently (Dietrich et al., 1999; Neidle et al., 1998). In the present paper, we report the structure of a cyclic inositol phosphate as a trihydrate of its potassium-18-crown-6 salt, viz. [K(18-crown-6)]+[myo-C6H6-2-{OC(O)Ph}-1,3,5-(O3CH)-{O2P(O)O}]-. 3H2O, (I).

An ellipsoid plot of (I), excluding the O atoms of the water molecules, is shown in Fig. 1. Apart from the six O atoms of the crown ether, potassium is coordinated to O2 of the inositol residue and to O7 of the phosphate residue in the neighbouring cell along b, leading to a chain structure (Fig. 2).

The K—O7 distance [2.771 (4) Å] is the shortest of all the K—O distances in this compound. The P—O bond distances involving the inositol residue [P—O1 1.608 (3) Å and P—O5 1.627 (3) Å] are normal but longer than the mean value of 1.580 (2) Å found by Neidle et al. (1998) in C6H6(OH)3[O3P(O)], (II).

Interestingly, in (I), the six-membered 1,3,2-dioxaphosphorinane ring adopts a boat conformation (Fig. 3) with P and C6 (the prow and stern of the boat) on the same side at distances of 0.608 and 0.675 Å, respectively, from the mean plane through C1, C5, O1 and O5 (the maximum deviation from this mean plane is 0.004 Å). This is different from (II) where all three six-membered 1,3,2-dioxaphosphorinane rings have a chair conformation (Neidle et al., 1998). It should also be noted that a chair conformation is normally found for 1,3,2-dioxaphosphorinane rings containing tri- or tetracoordinate phosphorus (Maryanoff et al., 1979). A boat conformation is found mainly for pentacoordinate phosphorus in which the 1,3,2-dioxaphosphorinane ring bridges one apical and one equatorial site of a trigonal-bipyramidal arrangement (Said et al., 1997). However, in these compounds, an apical O atom and the C atom opposite it lie at the prow and stern of the boat. It is likely that in (I), steric interactions involving the phosphorus and the C3 H atom are greater in the alternative chair conformation.

Hydrogen-bonding interactions involving O7, O8, O9 and the water O atoms are present in (I). While O7 is within hydrogen-bonding distance of O16A and O16B of a second molecule, atom O8 has intermolecular hydrogen-bonded contacts to O17A, O17B and O18A. The carbonyl O9 atom is rather weakly hydrogen bonded to O16B, judging by the long O···O distance [3.033 (9) Å]. Since it was not possible to locate or fix the water H atoms, no discussion of this aspect is possible.

Experimental top

The crude phosphate (0.070 g, 0.20 mmol), prepared by adding PCl3 to 2-O-benzoyl-myo-inositol 1,3,5-orthoformate (Ozaki et al., 1994) followed by oxidation and hydrolysis (I2/ water), was added to a mixture of 18-crown-6 (0.061 g, 0.23 mmol) and KF (0.022 g, 0.38 mmol)in tetrahydrofuran (5 ml). The mixture was refluxed for 2 h, stirred overnight, then filtered to remove undissolved KF and left to crystallize. Needle-shaped crystals of (I) were obtained. M.p. 377–379 K. 1H NMR (CDCl3, p.p.m.): γ 2.40 (br s, ca 6H, H2O), 3.65 (s, 24H, CH2 of 18-crown-6), 4.55–4.58 (m, 2H, CH), 4.85–4.91 (m, 2H, CH), 5.50–5.55 (m, 2H, CH), 5.81–5.83 (m, 1H, CH), 7.35–7.65 (m, 3H, Ar—H), 8.11–8.60 (m, 2H, Ar—H). 31P NMR: -11.1.

Refinement top

H atoms were placed geometrically and refined using a riding model with C—H constrained to 0.93–0.98 Å and Uiso(H) = 1.2Ueq(C). The water O16A, O16B, O17A, O17B, O18A and O18B atoms were refined isotropically and H atoms on these O atoms are not included in the refinement. There are three positionally disordered lattice water molecules; the O atoms of each of these were assigned two positions and refined isotropically using free variable restraints with total occupancy for each pair of disordered O-atom positions set to unity. H atoms on these O atoms could not be located and so were not included in the refinement model.

Computing details top

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: SDP (Frenz, 1985); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEX (McArdle, 1995); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-numbering scheme. Atoms are represented by 25% probability displacement ellipsoids. Water O atoms and all H atoms have been omitted.
[Figure 2] Fig. 2. A diagram showing the eight-coordination at potassium and the chain structure. Water O atoms have been omitted. [Symmetry code: (i) x, y - 1, z.]
[Figure 3] Fig. 3. A diagram showing the boat conformation of the six-membered 1,3,2-dioxaphosphorinane ring.
2-benzoyl-1,3,5-O-methylidyneinositol 4,6-cyclophosphate, potassium- 18-crown-6 salt top
Crystal data top
[K(C12H24O6)](C14H12O9P)·3H2OF(000) = 1504
Mr = 712.67Dx = 1.416 Mg m3
Monoclinic, P21/cMelting point: 377–379K K
Hall symbol: -P_2ybcMo Kα radiation, λ = 0.71073 Å
a = 17.146 (2) ÅCell parameters from 25 reflections
b = 10.9380 (16) Åθ = 9.5–12.0°
c = 18.965 (9) ŵ = 0.28 mm1
β = 109.96 (2)°T = 293 K
V = 3343.1 (18) Å3Block cut from needle, colourless
Z = 40.30 × 0.30 × 0.20 mm
Data collection top
Enraf-Nonius MACH3
diffractometer
Rint = 0.0
Radiation source: fine-focus sealed tubeθmax = 25.0°, θmin = 2.2°
Graphite monochromatorh = 020
Profile data from ω scansk = 012
5867 measured reflectionsl = 2221
5867 independent reflections3 standard reflections every 90 min
2662 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.059See text
wR(F2) = 0.198 w 1/[σ2(Fo2) + (0.075P)2 + 3.92P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
5867 reflectionsΔρmax = 0.53 e Å3
416 parametersΔρmin = 0.31 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0019 (5)
Crystal data top
[K(C12H24O6)](C14H12O9P)·3H2OV = 3343.1 (18) Å3
Mr = 712.67Z = 4
Monoclinic, P21/cMo Kα radiation
a = 17.146 (2) ŵ = 0.28 mm1
b = 10.9380 (16) ÅT = 293 K
c = 18.965 (9) Å0.30 × 0.30 × 0.20 mm
β = 109.96 (2)°
Data collection top
Enraf-Nonius MACH3
diffractometer
Rint = 0.0
5867 measured reflections3 standard reflections every 90 min
5867 independent reflections intensity decay: none
2662 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.198See text
S = 1.04Δρmax = 0.53 e Å3
5867 reflectionsΔρmin = 0.31 e Å3
416 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
K0.70547 (7)0.02638 (10)0.25207 (6)0.0579 (3)
P0.67571 (10)0.68220 (12)0.19374 (8)0.0606 (4)
O10.6559 (2)0.5538 (3)0.22529 (17)0.0551 (8)
O20.7699 (2)0.2671 (3)0.23963 (16)0.0535 (8)
O30.8805 (2)0.4057 (3)0.36145 (15)0.0530 (8)
O40.8761 (2)0.3669 (3)0.21442 (17)0.0556 (8)
O50.7703 (2)0.6600 (3)0.19574 (17)0.0581 (9)
O60.7481 (2)0.3467 (3)0.12242 (16)0.0582 (9)
O70.6800 (3)0.7761 (3)0.2505 (2)0.0800 (12)
O80.6195 (3)0.6983 (4)0.1157 (2)0.0860 (12)
O90.8043 (2)0.4444 (3)0.43470 (17)0.0620 (9)
O100.8786 (2)0.0008 (3)0.31345 (19)0.0620 (9)
O110.8105 (2)0.0033 (3)0.15589 (19)0.0645 (10)
O120.6388 (3)0.0435 (4)0.0945 (2)0.0780 (11)
O130.5589 (2)0.1627 (4)0.1829 (2)0.0822 (12)
O140.6233 (3)0.1467 (4)0.3384 (2)0.0878 (13)
O150.7952 (2)0.1242 (3)0.40056 (17)0.0691 (10)
C10.6788 (3)0.4403 (4)0.1996 (2)0.0469 (11)
H10.62990.38780.17950.056*
C20.7429 (3)0.3780 (4)0.2656 (2)0.0485 (12)
H20.71810.35810.30380.058*
C30.8163 (3)0.4610 (4)0.2989 (2)0.0451 (11)
H30.79850.53890.31410.054*
C40.8549 (3)0.4819 (4)0.2394 (3)0.0518 (12)
H40.90470.53270.25950.062*
C50.7918 (3)0.5455 (4)0.1713 (2)0.0480 (11)
H50.81730.56000.13300.058*
C60.7190 (3)0.4605 (4)0.1401 (2)0.0494 (11)
H60.67860.49600.09500.059*
C70.8054 (3)0.2937 (4)0.1852 (3)0.0552 (13)
H70.82290.21610.16950.066*
C80.8672 (3)0.4064 (4)0.4279 (2)0.0527 (12)
C90.9400 (3)0.3561 (4)0.4890 (2)0.0519 (12)
C100.9307 (4)0.3362 (5)0.5578 (3)0.0616 (14)
H100.88040.35280.56440.074*
C110.9968 (4)0.2916 (5)0.6161 (3)0.0686 (15)
H110.99040.27590.66200.082*
C121.0715 (4)0.2701 (5)0.6078 (3)0.0695 (15)
H121.11600.24180.64810.083*
C131.0806 (3)0.2904 (5)0.5391 (3)0.0662 (14)
H131.13130.27520.53300.079*
C141.0145 (3)0.3334 (4)0.4795 (3)0.0593 (13)
H141.02040.34690.43320.071*
C150.9275 (3)0.0028 (5)0.2667 (3)0.0717 (16)
H15A0.97910.04560.29190.086*
H15B0.94080.07970.25580.086*
C160.8807 (4)0.0665 (5)0.1960 (3)0.0734 (17)
H16A0.91590.07750.16590.088*
H16B0.86350.14650.20720.088*
C170.7597 (4)0.0517 (5)0.0883 (3)0.0738 (17)
H17A0.73800.12880.09890.089*
H17B0.79170.06760.05590.089*
C180.6919 (4)0.0315 (6)0.0517 (3)0.0746 (17)
H18A0.71410.11100.04600.090*
H18B0.66060.00080.00220.090*
C190.5731 (4)0.1283 (7)0.0646 (3)0.0847 (18)
H19A0.54300.10940.01230.102*
H19B0.59520.21050.06740.102*
C200.5164 (4)0.1203 (7)0.1088 (3)0.093 (2)
H20A0.46740.16990.08550.112*
H20B0.49880.03630.11030.112*
C210.5072 (4)0.1644 (8)0.2271 (4)0.112 (3)
H21A0.49070.08170.23410.134*
H21B0.45750.21140.20200.134*
C220.5529 (4)0.2198 (8)0.3005 (4)0.105 (2)
H22A0.57050.30170.29330.126*
H22B0.51700.22540.33030.126*
C230.6693 (4)0.1913 (7)0.4113 (3)0.097 (2)
H23A0.63520.18890.44290.116*
H23B0.68570.27540.40800.116*
C240.7436 (4)0.1149 (6)0.4443 (3)0.087 (2)
H24A0.77350.14180.49520.104*
H24B0.72730.03040.44630.104*
C250.8683 (4)0.0549 (6)0.4308 (3)0.0811 (18)
H25A0.85430.03000.43520.097*
H25B0.89990.08480.48060.097*
C260.9187 (4)0.0647 (5)0.3816 (3)0.0762 (16)
H26A0.92550.15000.37100.091*
H26B0.97330.03000.40660.091*
O16A0.2743 (8)0.3018 (15)0.1048 (7)0.161 (7)*0.491 (13)
O16B0.2908 (5)0.1835 (8)0.1004 (4)0.087 (4)*0.509 (13)
O17A0.3739 (8)0.3504 (9)0.0200 (5)0.121 (5)*0.582 (18)
O17B0.3101 (11)0.3334 (12)0.0010 (7)0.113 (6)*0.418 (18)
O18A0.5105 (9)0.0607 (13)0.4710 (8)0.202 (7)*0.579 (13)
O18B0.5220 (12)0.0380 (17)0.4008 (10)0.184 (9)*0.421 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K0.0691 (8)0.0560 (7)0.0579 (6)0.0058 (6)0.0337 (6)0.0056 (5)
P0.0765 (10)0.0481 (8)0.0661 (9)0.0036 (7)0.0359 (8)0.0037 (7)
O10.067 (2)0.0489 (19)0.0607 (19)0.0010 (17)0.0359 (18)0.0007 (16)
O20.076 (2)0.0430 (18)0.0490 (17)0.0028 (17)0.0311 (17)0.0021 (15)
O30.062 (2)0.064 (2)0.0368 (16)0.0017 (17)0.0219 (16)0.0018 (15)
O40.067 (2)0.054 (2)0.0586 (19)0.0022 (18)0.0374 (18)0.0034 (16)
O50.076 (2)0.0408 (18)0.068 (2)0.0023 (17)0.0390 (19)0.0016 (16)
O60.084 (2)0.053 (2)0.0423 (17)0.0060 (18)0.0273 (18)0.0065 (15)
O70.116 (3)0.046 (2)0.097 (3)0.001 (2)0.061 (3)0.011 (2)
O80.097 (3)0.086 (3)0.071 (2)0.022 (2)0.024 (2)0.021 (2)
O90.068 (2)0.076 (2)0.0504 (19)0.008 (2)0.0305 (18)0.0025 (17)
O100.067 (2)0.057 (2)0.067 (2)0.0028 (18)0.0295 (19)0.0010 (17)
O110.092 (3)0.052 (2)0.059 (2)0.003 (2)0.039 (2)0.0021 (17)
O120.103 (3)0.082 (3)0.058 (2)0.007 (3)0.040 (2)0.003 (2)
O130.058 (2)0.120 (3)0.074 (2)0.011 (2)0.030 (2)0.019 (2)
O140.083 (3)0.120 (4)0.076 (3)0.012 (3)0.047 (2)0.026 (3)
O150.089 (3)0.079 (3)0.0469 (19)0.001 (2)0.032 (2)0.0079 (18)
C10.051 (3)0.047 (3)0.048 (2)0.012 (2)0.023 (2)0.007 (2)
C20.068 (3)0.042 (3)0.049 (3)0.001 (2)0.038 (3)0.002 (2)
C30.050 (3)0.048 (3)0.041 (2)0.002 (2)0.021 (2)0.002 (2)
C40.067 (3)0.045 (3)0.057 (3)0.006 (2)0.037 (3)0.004 (2)
C50.066 (3)0.040 (3)0.047 (3)0.003 (2)0.032 (2)0.005 (2)
C60.065 (3)0.048 (3)0.040 (2)0.003 (2)0.023 (2)0.000 (2)
C70.079 (4)0.044 (3)0.051 (3)0.002 (3)0.034 (3)0.004 (2)
C80.069 (3)0.050 (3)0.043 (3)0.009 (3)0.025 (3)0.010 (2)
C90.069 (3)0.044 (3)0.043 (2)0.010 (2)0.019 (2)0.001 (2)
C100.081 (4)0.062 (3)0.049 (3)0.007 (3)0.030 (3)0.002 (2)
C110.093 (4)0.062 (3)0.048 (3)0.005 (3)0.020 (3)0.006 (3)
C120.088 (4)0.050 (3)0.058 (3)0.003 (3)0.010 (3)0.004 (3)
C130.061 (3)0.055 (3)0.078 (4)0.009 (3)0.017 (3)0.006 (3)
C140.068 (4)0.057 (3)0.052 (3)0.011 (3)0.019 (3)0.002 (2)
C150.070 (4)0.065 (4)0.094 (4)0.014 (3)0.048 (3)0.011 (3)
C160.099 (5)0.058 (3)0.087 (4)0.006 (3)0.063 (4)0.005 (3)
C170.114 (5)0.060 (3)0.061 (3)0.018 (4)0.048 (4)0.014 (3)
C180.095 (4)0.087 (4)0.047 (3)0.021 (4)0.031 (3)0.008 (3)
C190.094 (5)0.100 (5)0.050 (3)0.016 (4)0.012 (3)0.004 (3)
C200.065 (4)0.123 (6)0.082 (4)0.015 (4)0.012 (3)0.019 (4)
C210.063 (4)0.163 (7)0.123 (6)0.013 (5)0.050 (4)0.027 (6)
C220.076 (5)0.154 (7)0.105 (5)0.009 (5)0.057 (4)0.039 (5)
C230.119 (6)0.128 (6)0.069 (4)0.037 (5)0.067 (4)0.038 (4)
C240.121 (6)0.102 (5)0.054 (3)0.027 (4)0.051 (4)0.004 (3)
C250.115 (5)0.068 (4)0.052 (3)0.001 (4)0.019 (4)0.004 (3)
C260.073 (4)0.072 (4)0.072 (4)0.001 (3)0.009 (3)0.012 (3)
Geometric parameters (Å, º) top
K—O22.896 (3)C6—H60.9800
K—O7i2.771 (4)C7—H70.9800
K—O102.808 (4)C8—C91.489 (7)
K—O112.979 (3)C9—C141.372 (7)
K—O122.818 (4)C9—C101.384 (6)
K—O132.830 (4)C10—C111.374 (7)
K—O142.823 (4)C10—H100.9300
K—O152.913 (4)C11—C121.364 (8)
P—O11.608 (3)C11—H110.9300
P—O51.627 (3)C12—C131.383 (7)
P—O71.472 (4)C12—H120.9300
P—O81.476 (4)C13—C141.382 (7)
O1—C11.437 (5)C13—H130.9300
O2—C71.395 (5)C14—H140.9300
O2—C21.444 (5)C15—C161.480 (8)
O3—C81.355 (5)C15—H15A0.9700
O3—C31.447 (5)C15—H15B0.9700
O4—C71.401 (6)C16—H16A0.9700
O4—C41.434 (5)C16—H16B0.9700
O5—C51.427 (5)C17—C181.452 (8)
O6—C71.386 (6)C17—H17A0.9700
O6—C61.423 (5)C17—H17B0.9700
O7—Kii2.771 (4)C18—H18A0.9700
O9—C81.203 (5)C18—H18B0.9700
O10—C151.415 (5)C19—C201.488 (8)
O10—C261.423 (6)C19—H19A0.9700
O11—C161.409 (6)C19—H19B0.9700
O11—C171.415 (6)C20—H20A0.9700
O12—C181.418 (6)C20—H20B0.9700
O12—C191.419 (7)C21—C221.474 (9)
O13—C211.412 (6)C21—H21A0.9700
O13—C201.422 (6)C21—H21B0.9700
O14—C221.422 (8)C22—H22A0.9700
O14—C231.424 (7)C22—H22B0.9700
O15—C241.409 (6)C23—C241.472 (9)
O15—C251.409 (7)C23—H23A0.9700
C1—C21.517 (6)C23—H23B0.9700
C1—C61.525 (5)C24—H24A0.9700
C1—H10.9800C24—H24B0.9700
C2—C31.505 (6)C25—C261.477 (8)
C2—H20.9800C25—H25A0.9700
C3—C41.509 (5)C25—H25B0.9700
C3—H30.9800C26—H26A0.9700
C4—C51.540 (7)C26—H26B0.9700
C4—H40.9800O16A—O16B1.334 (15)
C5—C61.506 (6)O17A—O17B1.045 (13)
C5—H50.9800O18A—O18B1.78 (2)
O7i—K—O1092.66 (12)O6—C7—O4111.3 (4)
O7i—K—O1292.81 (12)O2—C7—O4111.3 (4)
O10—K—O12115.80 (11)O6—C7—H7107.5
O7i—K—O14111.02 (12)O2—C7—H7107.5
O10—K—O14118.17 (12)O4—C7—H7107.5
O12—K—O14118.80 (14)O9—C8—O3122.9 (5)
O7i—K—O13113.81 (13)O9—C8—C9126.0 (4)
O10—K—O13152.94 (12)O3—C8—C9111.1 (4)
O12—K—O1359.92 (12)C14—C9—C10120.6 (5)
O14—K—O1358.88 (12)C14—C9—C8122.3 (4)
O7i—K—O2163.85 (10)C10—C9—C8117.1 (5)
O10—K—O275.27 (10)C11—C10—C9119.0 (5)
O12—K—O283.16 (10)C11—C10—H10120.5
O14—K—O284.44 (11)C9—C10—H10120.5
O13—K—O277.67 (11)C12—C11—C10121.1 (5)
O7i—K—O15113.74 (12)C12—C11—H11119.4
O10—K—O1560.08 (10)C10—C11—H11119.4
O12—K—O15152.88 (11)C11—C12—C13119.6 (5)
O14—K—O1558.09 (12)C11—C12—H12120.2
O13—K—O15110.30 (12)C13—C12—H12120.2
O2—K—O1569.79 (9)C14—C13—C12120.0 (5)
O7i—K—O1192.05 (10)C14—C13—H13120.0
O10—K—O1158.07 (11)C12—C13—H13120.0
O12—K—O1157.83 (12)C9—C14—C13119.6 (5)
O14—K—O11156.92 (12)C9—C14—H14120.2
O13—K—O11112.81 (11)C13—C14—H14120.2
O2—K—O1172.54 (9)O10—C15—C16109.1 (4)
O15—K—O11113.14 (11)O10—C15—H15A109.9
O1—P—O5101.31 (17)C16—C15—H15A109.9
O1—P—O7107.57 (19)O10—C15—H15B109.9
O1—P—O8109.2 (2)C16—C15—H15B109.9
O5—P—O7106.7 (2)H15A—C15—H15B108.3
O5—P—O8110.2 (2)O11—C16—C15109.5 (4)
O7—P—O8120.2 (2)O11—C16—H16A109.8
C1—O1—P120.8 (2)C15—C16—H16A109.8
C7—O2—C2110.4 (3)O11—C16—H16B109.8
C7—O2—K121.6 (2)C15—C16—H16B109.8
C2—O2—K124.1 (2)H16A—C16—H16B108.2
C8—O3—C3115.9 (4)O11—C17—C18108.1 (4)
C7—O4—C4110.5 (3)O11—C17—H17A110.1
C5—O5—P119.3 (3)C18—C17—H17A110.1
C7—O6—C6111.4 (3)O11—C17—H17B110.1
P—O7—Kii131.7 (2)C18—C17—H17B110.1
C15—O10—C26112.1 (4)H17A—C17—H17B108.4
C15—O10—K120.8 (3)O12—C18—C17110.5 (4)
C26—O10—K116.3 (3)O12—C18—H18A109.5
C16—O11—C17114.0 (4)C17—C18—H18A109.5
C16—O11—K107.4 (3)O12—C18—H18B109.5
C17—O11—K106.1 (3)C17—C18—H18B109.5
C18—O12—C19114.1 (4)H18A—C18—H18B108.1
C18—O12—K119.5 (3)O12—C19—C20108.5 (5)
C19—O12—K116.6 (3)O12—C19—H19A110.0
C21—O13—C20112.1 (5)C20—C19—H19A110.0
C21—O13—K111.7 (4)O12—C19—H19B110.0
C20—O13—K111.1 (4)C20—C19—H19B110.0
C22—O14—C23113.1 (5)H19A—C19—H19B108.4
C22—O14—K118.3 (3)O13—C20—C19109.0 (5)
C23—O14—K120.1 (4)O13—C20—H20A109.9
C24—O15—C25111.8 (4)C19—C20—H20A109.9
C24—O15—K108.2 (3)O13—C20—H20B109.9
C25—O15—K107.4 (3)C19—C20—H20B109.9
O1—C1—C2108.2 (3)H20A—C20—H20B108.3
O1—C1—C6111.8 (3)O13—C21—C22109.0 (5)
C2—C1—C6107.0 (4)O13—C21—H21A109.9
O1—C1—H1109.9C22—C21—H21A109.9
C2—C1—H1109.9O13—C21—H21B109.9
C6—C1—H1109.9C22—C21—H21B109.9
O2—C2—C3109.3 (4)H21A—C21—H21B108.3
O2—C2—C1108.7 (3)O14—C22—C21109.4 (6)
C3—C2—C1110.0 (4)O14—C22—H22A109.8
O2—C2—H2109.6C21—C22—H22A109.8
C3—C2—H2109.6O14—C22—H22B109.8
C1—C2—H2109.6C21—C22—H22B109.8
O3—C3—C2112.6 (4)H22A—C22—H22B108.2
O3—C3—C4105.7 (3)O14—C23—C24109.3 (5)
C2—C3—C4107.2 (4)O14—C23—H23A109.8
O3—C3—H3110.4C24—C23—H23A109.8
C2—C3—H3110.4O14—C23—H23B109.8
C4—C3—H3110.4C24—C23—H23B109.8
O4—C4—C3109.8 (4)H23A—C23—H23B108.3
O4—C4—C5107.7 (4)O15—C24—C23109.5 (5)
C3—C4—C5109.5 (4)O15—C24—H24A109.8
O4—C4—H4109.9C23—C24—H24A109.8
C3—C4—H4109.9O15—C24—H24B109.8
C5—C4—H4109.9C23—C24—H24B109.8
O5—C5—C6113.5 (4)H24A—C24—H24B108.2
O5—C5—C4108.0 (3)O15—C25—C26109.6 (5)
C6—C5—C4107.5 (4)O15—C25—H25A109.8
O5—C5—H5109.2C26—C25—H25A109.8
C6—C5—H5109.2O15—C25—H25B109.8
C4—C5—H5109.2C26—C25—H25B109.8
O6—C6—C5108.8 (4)H25A—C25—H25B108.2
O6—C6—C1109.4 (3)O10—C26—C25109.4 (5)
C5—C6—C1108.8 (3)O10—C26—H26A109.8
O6—C6—H6109.9C25—C26—H26A109.8
C5—C6—H6109.9O10—C26—H26B109.8
C1—C6—H6109.9C25—C26—H26B109.8
O6—C7—O2111.3 (4)H26A—C26—H26B108.2
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z.
Hydrogen-bond geometry (Å) top
D—H···AD···A
O16A···O7iii2.600 (14)
O16B···O7iii2.883 (9)
O16B···O9iii3.033 (9)
O17A···O8iv2.668 (10)
O17B···O8iv2.880 (13)
O18A···O8iii2.726 (15)
O16B···O17B2.603 (15)
Symmetry codes: (iii) x+1, y1/2, z+1/2; (iv) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[K(C12H24O6)](C14H12O9P)·3H2O
Mr712.67
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)17.146 (2), 10.9380 (16), 18.965 (9)
β (°) 109.96 (2)
V3)3343.1 (18)
Z4
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.30 × 0.30 × 0.20
Data collection
DiffractometerEnraf-Nonius MACH3
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5867, 5867, 2662
Rint0.0
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.198, 1.04
No. of reflections5867
No. of parameters416
H-atom treatmentSee text
Δρmax, Δρmin (e Å3)0.53, 0.31

Computer programs: CAD-4 Software (Enraf-Nonius, 1989), CAD-4 Software, SDP (Frenz, 1985), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEX (McArdle, 1995), SHELXL97.

Selected geometric parameters (Å, º) top
K—O22.896 (3)K—O142.823 (4)
K—O7i2.771 (4)K—O152.913 (4)
K—O102.808 (4)P—O11.608 (3)
K—O112.979 (3)P—O51.627 (3)
K—O122.818 (4)P—O71.472 (4)
K—O132.830 (4)P—O81.476 (4)
O1—P—O5101.31 (17)O5—P—O7106.7 (2)
O1—P—O7107.57 (19)O5—P—O8110.2 (2)
O1—P—O8109.2 (2)O7—P—O8120.2 (2)
Symmetry code: (i) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD···A
O16A···O7ii2.600 (14)
O16B···O7ii2.883 (9)
O16B···O9ii3.033 (9)
O17A···O8iii2.668 (10)
O17B···O8iii2.880 (13)
O18A···O8ii2.726 (15)
O16B···O17B2.603 (15)
Symmetry codes: (ii) x+1, y1/2, z+1/2; (iii) x+1, y+1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds