Download citation
Download citation
link to html
In the title complex, [Cu(C7H4NO3S)2(C2H7NO)2], the CuII centre lies on an inversion centre and exhibits octahedral coordination, with the two ethano­lamine (Hea) and two saccharinate [sac; anionic 1,2-benziso­thia­zol-3(2H)-one 1,1-dioxide] ligands in a trans configuration. The bidentate Hea ligands bridge axial and equatorial positions and the sac anions occupy equatorial sites around the distorted octahedral copper(II) centre [Cu-O = 2.3263 (16), Cu-NHea = 1.9923 (16) and Cu-Nsac = 2.1776 (16) Å].

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100019867/bm1435sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100019867/bm1435Isup2.hkl
Contains datablock I

CCDC reference: 162556

Comment top

Saccharin (o-sulfobenzimide) is widely used as a non-calorific artificial sweetener. The chemistry of its mixed-ligand metal complexes is of interest owing to their potential effectiveness in biological systems, due to the coordination ability of saccharin towards most metals present in body fluid (Haider et al., 1985). It has also been suggested that the importance of saccharin lies in its potential use as an antidote for metal poisoning (Ainscough et al., 1990). In the light of this interest, we have prepared the title compound, (I), and present its crystal structure here. \sch

In compound (I), the complex lies on an inversion centre and is octahedrally coordinated to two saccharinate (sac) ions and two ethanolamine (Hea) molecules. The Hea act as bidentate ligands and form two five-membered trans chelate rings which constitute the plane of the coordination octahedron, while each sac behaves as a monodentate ligand occupying an axial position (Fig. 1).

The Cu—O and Cu—NHea distances of 2.3263 (16) and 1.9923 (16) Å, respectively, are typical for Cu-Hea complexes (Hursthouse et al., 1990; Bombicz et al., 1997). The sac ligand is essentially planar and intramolecular bond lengths are virtually identical to those found in the free saccharin molecule (Okaya, 1969). The Cu—Nsac distance of 2.1776 (16) Å is significantly longer than in related CuII complexes: 2.030 (5) Å in [Cu(sac)2(bpy)2]sac·2H2O (Hergold-Brundić et al., 1991) and 2.032 (2) Å in [Cu(H2O)(py)2(sac)2] (Jovanovski et al., 1998).

The H atoms of the hydroxyl and nitrogen groups of the Hea molecules participate in both intra- and intermolecular hydrogen bonding with the carbonyl and sulfonyl O atoms of the sac ligand (Table 2). The phenyl H6 atom of the sac ligand appears to be involved in an intermolecular hydrogen bond with the carbonyl atom O1 of a sac ligand in a neighbouring molecule related by a screw axis operation.

Related literature top

For related literature, see: Ainscough et al. (1990); Bombicz et al. (1997); Haider et al. (1985); Hergold-Brundić, Grupče & Jovanovski (1991); Hursthouse et al. (1990); Jovanovski et al. (1998); Okaya (1969).

Experimental top

Previously prepared [Cu(sac)2(H2O)4]·2H2O (1.07 g, 2.0 mmol) was dissolved with stirring in ethanol (50 ml) at 343 K and the solution was cooled to room temperature. Ethanolamine (0.25 g, 4.0 mmol) was then added to the solution dropwise. The resulting dark blue solution was left at room temperature until evaporation resulted in the formation of blue crystals of (I) suitable for X-ray diffraction analysis.

Refinement top

The hydroxyl-group H atom was located from a difference map and freely refined, with Uiso(H) = 1.5Ueq(O). The other H atoms were geometrically positioned at distances of 0.90, 0.93 and 0.97 Å for amino N—H, methylene and methyl C—H, and aromatic C—H, respectively, and refined riding on their parent atoms.

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The structure of (I) showing the atom-numbering scheme. Displacement ellipsoids are shown at the 50% probability level and H atoms are drawn as small spheres of arbitrary radii [symmetry code: (i) -x, -y, 1 - z].
trans-bis(ethanolamine)bis(saccharinato)copper(II) top
Crystal data top
[Cu(C7H4NO3S)2(C2H7NO)2]F(000) = 566
Mr = 550.06Dx = 1.680 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.0346 (5) ÅCell parameters from 4688 reflections
b = 8.8957 (4) Åθ = 2.9–30.0°
c = 11.4161 (5) ŵ = 1.25 mm1
β = 103.946 (1)°T = 298 K
V = 1087.58 (8) Å3Block, blue
Z = 20.32 × 0.24 × 0.17 mm
Data collection top
Bruker SMART1000 CCD area-detector
diffractometer
3165 independent reflections
Radiation source: fine-focus sealed tube2524 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ω scansθmax = 30.0°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 1515
Tmin = 0.667, Tmax = 0.808k = 1112
9396 measured reflectionsl = 1613
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0634P)2 + 0.0557P]
where P = (Fo2 + 2Fc2)/3
3165 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.82 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
[Cu(C7H4NO3S)2(C2H7NO)2]V = 1087.58 (8) Å3
Mr = 550.06Z = 2
Monoclinic, P21/cMo Kα radiation
a = 11.0346 (5) ŵ = 1.25 mm1
b = 8.8957 (4) ÅT = 298 K
c = 11.4161 (5) Å0.32 × 0.24 × 0.17 mm
β = 103.946 (1)°
Data collection top
Bruker SMART1000 CCD area-detector
diffractometer
3165 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
2524 reflections with I > 2σ(I)
Tmin = 0.667, Tmax = 0.808Rint = 0.022
9396 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.82 e Å3
3165 reflectionsΔρmin = 0.40 e Å3
154 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu001/20.02747 (10)
S10.19411 (4)0.25565 (5)0.33495 (4)0.03308 (12)
O10.28468 (15)0.02092 (15)0.56514 (14)0.0403 (3)
O20.19720 (16)0.17922 (17)0.22247 (14)0.0474 (4)
O30.10999 (15)0.38007 (16)0.36242 (16)0.0472 (4)
O40.12257 (15)0.19256 (19)0.45247 (14)0.0426 (3)
H4O0.174 (3)0.145 (3)0.437 (3)0.064*
N10.17082 (15)0.13121 (17)0.44424 (15)0.0318 (3)
N20.03883 (16)0.10842 (18)0.65734 (15)0.0358 (3)
H2A0.02970.11120.68700.043*
H2B0.09910.05900.71050.043*
C10.27366 (18)0.11583 (19)0.48943 (17)0.0313 (4)
C20.37596 (17)0.2233 (2)0.43427 (17)0.0318 (4)
C30.4905 (2)0.2415 (2)0.4620 (2)0.0414 (5)
H30.51310.18230.52040.050*
C40.5704 (2)0.3508 (3)0.4000 (2)0.0495 (5)
H40.64780.36500.41720.059*
C50.5371 (2)0.4392 (3)0.3131 (2)0.0483 (5)
H50.59220.51230.27360.058*
C60.4226 (2)0.4208 (2)0.28358 (19)0.0409 (4)
H60.39990.47960.22500.049*
C70.34472 (17)0.3109 (2)0.34576 (17)0.0319 (4)
C80.1717 (3)0.2681 (3)0.5644 (3)0.0563 (6)
H8A0.18970.37200.54880.068*
H8B0.24920.22060.60620.068*
C90.0806 (3)0.2630 (3)0.6418 (2)0.0505 (6)
H9A0.11910.30510.72040.061*
H9B0.00870.32440.60560.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.02934 (16)0.02610 (15)0.03108 (17)0.00061 (11)0.01530 (12)0.00205 (11)
S10.0354 (2)0.0288 (2)0.0422 (3)0.00157 (16)0.02328 (19)0.00524 (18)
O10.0463 (8)0.0366 (7)0.0474 (8)0.0043 (6)0.0298 (7)0.0086 (6)
O20.0622 (10)0.0477 (8)0.0419 (8)0.0083 (7)0.0314 (7)0.0036 (7)
O30.0402 (8)0.0340 (7)0.0737 (11)0.0043 (6)0.0263 (8)0.0095 (7)
O40.0431 (8)0.0490 (8)0.0413 (8)0.0062 (7)0.0208 (6)0.0002 (7)
N10.0344 (8)0.0290 (7)0.0382 (8)0.0012 (6)0.0207 (6)0.0039 (6)
N20.0403 (9)0.0365 (8)0.0357 (8)0.0026 (7)0.0188 (7)0.0028 (7)
C10.0355 (9)0.0284 (8)0.0359 (9)0.0022 (7)0.0198 (7)0.0031 (7)
C20.0318 (9)0.0312 (8)0.0366 (9)0.0018 (7)0.0164 (7)0.0020 (7)
C30.0374 (10)0.0478 (11)0.0464 (11)0.0011 (8)0.0245 (9)0.0044 (9)
C40.0348 (10)0.0635 (14)0.0561 (13)0.0084 (10)0.0227 (10)0.0050 (11)
C50.0428 (12)0.0538 (13)0.0502 (12)0.0135 (10)0.0151 (10)0.0097 (11)
C60.0443 (11)0.0415 (10)0.0418 (10)0.0041 (8)0.0199 (9)0.0054 (9)
C70.0330 (9)0.0315 (8)0.0355 (9)0.0010 (7)0.0162 (7)0.0013 (7)
C80.0656 (16)0.0457 (12)0.0679 (16)0.0202 (11)0.0362 (13)0.0177 (11)
C90.0649 (15)0.0439 (12)0.0486 (12)0.0119 (10)0.0254 (11)0.0134 (10)
Geometric parameters (Å, º) top
Cu—N12.1776 (16)N2—C91.475 (3)
Cu—N21.9923 (16)C1—C21.498 (3)
Cu—O42.3263 (16)C2—C71.384 (2)
S1—N11.6412 (16)C2—C31.384 (2)
S1—O21.4461 (15)C3—C41.387 (3)
S1—O31.4299 (15)C4—C51.383 (3)
S1—C71.7657 (18)C5—C61.393 (3)
O1—C11.235 (2)C6—C71.380 (3)
O4—C81.430 (3)C8—C91.490 (3)
N1—C11.362 (2)O4—H4O0.76 (3)
N1—Cu—N289.26 (7)C1—N1—S1111.32 (13)
N1—Cu—O492.76 (5)C1—N1—Cu125.24 (12)
N2—Cu—O480.97 (6)S1—N1—Cu123.34 (8)
N2—Cu—N2i180C9—N2—Cu110.41 (13)
N2i—Cu—N190.74 (7)O1—C1—N1124.43 (18)
N2—Cu—N1i90.74 (7)O1—C1—C2122.64 (16)
N2i—Cu—N1i89.26 (7)N1—C1—C2112.89 (15)
N1—Cu—N1i180C7—C2—C3120.21 (18)
N2i—Cu—O499.03 (6)C7—C2—C1111.80 (15)
N1i—Cu—O487.24 (5)C3—C2—C1127.99 (17)
N2—Cu—O4i99.03 (6)C2—C3—C4117.91 (19)
N2i—Cu—O4i80.97 (6)C5—C4—C3121.2 (2)
N1—Cu—O4i87.24 (5)C4—C5—C6121.3 (2)
N1i—Cu—O4i92.76 (5)C7—C6—C5116.56 (19)
O4—Cu—O4i180C6—C7—C2122.72 (17)
O3—S1—O2115.71 (9)C6—C7—S1129.90 (14)
O3—S1—N1112.39 (10)C2—C7—S1107.37 (14)
O2—S1—N1108.89 (9)O4—C8—C9110.6 (2)
O3—S1—C7109.96 (9)N2—C9—C8112.03 (18)
O2—S1—C7111.83 (9)C8—O4—H4O109 (2)
N1—S1—C796.45 (8)Cu1—O4—H4O99 (2)
C8—O4—Cu104.73 (12)
N2—Cu—O4—C87.85 (15)Cu—N1—C1—C2179.28 (12)
N2i—Cu—O4—C8172.15 (15)O1—C1—C2—C7175.58 (18)
N1—Cu—O4—C896.66 (15)N1—C1—C2—C72.3 (2)
N1i—Cu—O4—C883.34 (15)O1—C1—C2—C34.5 (3)
O3—S1—N1—C1118.60 (14)N1—C1—C2—C3177.61 (19)
O2—S1—N1—C1111.85 (14)C7—C2—C3—C41.0 (3)
C7—S1—N1—C13.88 (15)C1—C2—C3—C4179.0 (2)
O3—S1—N1—Cu64.78 (12)C2—C3—C4—C50.0 (4)
O2—S1—N1—Cu64.77 (12)C3—C4—C5—C60.7 (4)
C7—S1—N1—Cu179.50 (10)C4—C5—C6—C70.3 (4)
N2—Cu—N1—C170.87 (16)C5—C6—C7—C20.8 (3)
N2i—Cu—N1—C1109.13 (16)C5—C6—C7—S1179.47 (18)
O4—Cu—N1—C1151.79 (15)C3—C2—C7—C61.5 (3)
O4i—Cu—N1—C128.21 (15)C1—C2—C7—C6178.51 (18)
N2—Cu—N1—S1112.99 (11)C3—C2—C7—S1179.59 (16)
N2i—Cu—N1—S167.01 (11)C1—C2—C7—S10.44 (19)
O4—Cu—N1—S132.07 (11)O3—S1—C7—C659.7 (2)
O4i—Cu—N1—S1147.93 (11)O2—S1—C7—C670.2 (2)
N1—Cu—N2—C974.11 (15)N1—S1—C7—C6176.4 (2)
N1i—Cu—N2—C9105.89 (15)O3—S1—C7—C2119.12 (14)
O4—Cu—N2—C918.80 (15)O2—S1—C7—C2110.90 (14)
O4i—Cu—N2—C9161.20 (15)N1—S1—C7—C22.44 (15)
S1—N1—C1—O1173.70 (16)Cu—O4—C8—C932.6 (2)
Cu—N1—C1—O12.8 (3)Cu—N2—C9—C844.3 (3)
S1—N1—C1—C24.2 (2)O4—C8—C9—N252.8 (3)
Symmetry code: (i) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4O···O1i0.76 (3)1.92 (3)2.650 (2)160 (3)
N2—H2B···O2i0.902.423.214 (2)148
N2—H2A···O3ii0.902.383.169 (2)147
C6—H6···O1iii0.932.463.261 (2)144
Symmetry codes: (i) x, y, z+1; (ii) x, y+1/2, z+1/2; (iii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Cu(C7H4NO3S)2(C2H7NO)2]
Mr550.06
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)11.0346 (5), 8.8957 (4), 11.4161 (5)
β (°) 103.946 (1)
V3)1087.58 (8)
Z2
Radiation typeMo Kα
µ (mm1)1.25
Crystal size (mm)0.32 × 0.24 × 0.17
Data collection
DiffractometerBruker SMART1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.667, 0.808
No. of measured, independent and
observed [I > 2σ(I)] reflections
9396, 3165, 2524
Rint0.022
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.099, 1.04
No. of reflections3165
No. of parameters154
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.82, 0.40

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SAINT, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), SHELXL97.

Selected geometric parameters (Å, º) top
Cu—N12.1776 (16)Cu—O42.3263 (16)
Cu—N21.9923 (16)
N1—Cu—N289.26 (7)N2—Cu—O480.97 (6)
N1—Cu—O492.76 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4O···O1i0.76 (3)1.92 (3)2.650 (2)160 (3)
N2—H2B···O2i0.902.423.214 (2)148
N2—H2A···O3ii0.902.383.169 (2)147
C6—H6···O1iii0.932.463.261 (2)144
Symmetry codes: (i) x, y, z+1; (ii) x, y+1/2, z+1/2; (iii) x, y+1/2, z1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds