Download citation
Download citation
link to html
In the title compound, C30H50O3, the three six-membered rings adopt chair, twist and twist-boat conformations. The five-membered ring is in a slightly distorted envelope conformation. The substituent on the five-membered ring is in an extended conformation, with its two hydroxyl O atoms forming an intramolecular hydrogen bond. One of these O atoms also forms an intermolecular hydrogen bond with the oxy­gen of the carbonyl group in a neighbouring mol­ecule.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100004820/bm1401sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100004820/bm1401Isup2.hkl
Contains datablock I

CCDC reference: 150335

Comment top

The title compound has been isolated from leaves of Aglaia harmsiana Perkins (Meliaceae) collected in Java, Indonesia. Extracts from this plant are used as a Chinese crude drug to treat arthritis, pharyngitis, tonsillitis and other ailments (Inada et al., 1994). NMR spectroscopic investigations of this compound have also been reported (Inada et al., 1995), but in order to establish the structure unequivocally, an X-ray structure analysis has been carried out.

The molecule (Figure 1) contains a methine proton geminal to a hydroxy group at C24; a cyclopropyl methylene group; a secondary methyl group at C20 and the six tertiary methyl groups are present at C4, C13, C14 and C25. Two hydroxyl groups are present in the side chain, at C24 and C25. The differentiation of the 24R and 24S stereomers of cycloartane type triterpenes using 13C NMR techniques has been reported by Greca et al. (1994). It has been found that the chemical shifts of the side chain carbons and C17 of the title compound are the same as those of (24R)-cycloartane-3β-24,25-triol and are different from those of the 24S isomer (Inada et al., 1995). Based on this evidence the compound is (24R)-24,25-dihydroxycycloartan-3-one, (I). The structure determination also establishes this fact. \sch

In the steroid skeleton, ring A (see Scheme) adopts a chair conformation while ring B adopts a twist conformation (Honda et al., 1996) with C6 and C7 deviating by 0.391 (2) and −0.418 (2) Å, respectively, from the least-squares mean plane through C5, C8, C9 and C10. Ring C is in a twist boat conformation while in ring D C13, C15, C16 and C17 are almost coplanar with C14 deviating by −0.620 (1) Å from this plane to give a 14α envelope conformation (Anthony et al., 1999). The carbonyl C3 is twisted from the plane of the ring A, the associated torsion angles being −138.3 (1) for C1—C2—C3—O1 and 138.7 (1)° for O1—C3—C4—C5. The cyclpropyl group is axial to the ring B, as demonstrated by the torsion angle C7—C8—C9—C19 of 89.1 (1)°. The side chain at C17 equatorial to the ring D and in an extended conformation (Honda et al., 1996). Ring-puckering parameters (Table 2) were calculated using the method of Cremer & Pople (1975).

O3 from the hydroxyl group attached to the quaternary carbon C25 forms an intramolecular hydrogen bond with O2 from the hydroxyl group on C24; O3 also forms an intermolecular hydrogen bond with the carbonyl oxygen O1 (Table 3). The former interaction generates a five-membered OCCOH ring while the latter links molecules into infinite chains running in the [101] direction.

The value of the Flack parameter obtained is 0.1 (3), which is just adequate to indicate the absolute configuration. Moreover, Greca et al. (1994) and Boar & Damps (1977) have isolated and examined by chemical methods a few cycloartane type triterpenes. Both have determined the absolute configuration at C24 by a modified Horeau's method (Brooks & Gilbert, 1973) and using this method the authors have differentiated between 24-R and 24-S configurations. Inada et al. (1995) found that the chemical shifts of the side chain carbons and C17 of the present compound are the same as those of 24-R isomers of the above mentioned cycloartane type triterpenes. Hence we may say that based on these comparisons, the absolute configuration of the present compound has been confirmed.

Experimental top

The dried and crushed leaves (700 g) were extracted with EtOH (3 x 10 litres) and the solvent was removed in vacuo. The EtOH extract (30.2 g) was suspended in H2O (600 ml) and the aqueous suspension was extracted successively with EtOAc (3 x 300 ml) and n-BuOH (3 x 300 ml). The EtOAc extract (25 g) was chromatographed on Si gel and fractions were further purified by high-pressure liquid chromatography to afford the title compound (140 mg) (Inada et al., 1995). Crystals of the title compound were obtained from a solution of the compound in EtOH-hexane by slow evaporation at room temperature.

Refinement top

The methyl H atoms on C18, C21, C26, C27, C28, C29 and C30 and the hydroxyl H atoms attached to O1 and O2 were found from circular difference Fourier synthesis. They were then refined as part of a rigid roating group with Uiso(H) = 1.5Ueq(parent). Other hydrogen atoms were included at geometrically calculated positions and allowed to ride on their parent atoms with Uiso(H) = 1.2Ueq(parent).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: CADRAL (Daresbury Laboratory, 19XX); program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ZORTEP (Zsolnai & Huttner, 1994); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997) and PARST (Nardelli, 1983).

Figures top
[Figure 1] Fig. 1. Structure of (I) showing the atom-numbering scheme and 30% probability displacement ellipsoids.
(24R)-cycloartane-24,25-diol-3-one top
Crystal data top
C30H50O3Dx = 1.125 Mg m3
Mr = 458.70Melting point: 423 K
Monoclinic, P21Cu Kα radiation, λ = 1.54180 Å
a = 9.9534 (10) ÅCell parameters from 25 reflections
b = 10.530 (3) Åθ = 38–70°
c = 13.837 (2) ŵ = 0.54 mm1
β = 110.942 (10)°T = 273 K
V = 1354.4 (5) Å3Plate, colourless
Z = 20.20 × 0.15 × 0.10 mm
F(000) = 508
Data collection top
Enraf-Nonius CAD4
diffractometer
2722 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.028
Graphite monochromatorθmax = 74.2°, θmin = 3.4°
ω/θ scansh = 129
Absorption correction: ψ scan
North et al. (1968)
k = 130
Tmin = 0.92, Tmax = 0.95l = 1717
6647 measured reflections2 standard reflections every 200 reflections
2825 independent reflections intensity decay: none
Refinement top
Refinement on F2Hydrogen site location: see text
Least-squares matrix: fullSee text
R[F2 > 2σ(F2)] = 0.040 w = 1/[σ2(Fo2) + (0.0796P)2 + 0.0939P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.114(Δ/σ)max = 0.022
S = 1.03Δρmax = 0.37 e Å3
2825 reflectionsΔρmin = 0.18 e Å3
308 parametersExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.0102 (6)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.1 (3)
Crystal data top
C30H50O3V = 1354.4 (5) Å3
Mr = 458.70Z = 2
Monoclinic, P21Cu Kα radiation
a = 9.9534 (10) ŵ = 0.54 mm1
b = 10.530 (3) ÅT = 273 K
c = 13.837 (2) Å0.20 × 0.15 × 0.10 mm
β = 110.942 (10)°
Data collection top
Enraf-Nonius CAD4
diffractometer
2722 reflections with I > 2σ(I)
Absorption correction: ψ scan
North et al. (1968)
Rint = 0.028
Tmin = 0.92, Tmax = 0.952 standard reflections every 200 reflections
6647 measured reflections intensity decay: none
2825 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.040See text
wR(F2) = 0.114Δρmax = 0.37 e Å3
S = 1.03Δρmin = 0.18 e Å3
2825 reflectionsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
308 parametersAbsolute structure parameter: 0.1 (3)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.32980 (10)0.02918 (12)0.96230 (7)0.0769 (3)
O21.27381 (10)0.13557 (14)0.32933 (7)0.0798 (3)
H21.35060.12470.32110.120*
O31.31939 (9)0.02963 (13)0.16653 (7)0.0773 (3)
H31.33100.02470.11090.116*
C10.43037 (11)0.07362 (13)0.74210 (8)0.0532 (3)
H1A0.49020.14450.77730.064*
H1B0.38390.09620.66980.064*
C20.31600 (11)0.04850 (15)0.78984 (9)0.0565 (3)
H2A0.24390.00810.74470.068*
H2B0.26880.12800.79340.068*
C30.37397 (12)0.00871 (14)0.89585 (8)0.0548 (3)
C40.48229 (12)0.11676 (13)0.91534 (8)0.0532 (3)
C50.59382 (11)0.08117 (12)0.86412 (8)0.0468 (3)
H50.64100.00400.89990.056*
C60.71431 (12)0.17699 (14)0.88270 (9)0.0571 (3)
H6A0.76400.18910.95640.068*
H6B0.67510.25810.85240.068*
C70.81889 (11)0.12751 (15)0.83353 (8)0.0558 (3)
H7A0.84680.04130.85660.067*
H7B0.90490.17970.85540.067*
C80.74968 (10)0.12995 (11)0.71561 (7)0.0441 (2)
H80.72830.21930.69650.053*
C90.60374 (10)0.05994 (11)0.67568 (7)0.0426 (2)
C100.52322 (10)0.04252 (11)0.75091 (8)0.0446 (2)
C110.58486 (11)0.04507 (13)0.59498 (8)0.0511 (3)
H11A0.48290.05290.55520.061*
H11B0.61560.12450.63180.061*
C120.66436 (11)0.03039 (13)0.51772 (8)0.0514 (3)
H12A0.71600.10840.51740.062*
H12B0.59350.01880.44880.062*
C130.77074 (10)0.08042 (11)0.54170 (7)0.0431 (2)
C140.85180 (10)0.08574 (10)0.66142 (7)0.0412 (2)
C150.97414 (11)0.17975 (12)0.67227 (8)0.0503 (3)
H15A1.05640.16240.73450.060*
H15B0.94270.26640.67520.060*
C161.01281 (12)0.15935 (14)0.57536 (9)0.0541 (3)
H16A1.10770.12180.59430.065*
H16B1.01290.23990.54130.065*
C170.89870 (10)0.06969 (12)0.50250 (7)0.0455 (2)
H170.93670.01670.51860.055*
C180.68710 (13)0.20298 (14)0.50082 (9)0.0578 (3)
H18A0.75090.27440.52250.087*
H18B0.61100.21120.52770.087*
H18C0.64700.20020.42660.087*
C190.47400 (11)0.14080 (14)0.66592 (8)0.0529 (3)
H19A0.49040.22940.68570.063*
H19B0.38570.12410.60810.063*
C200.87606 (11)0.09302 (13)0.38787 (8)0.0525 (3)
H200.84710.18160.37090.063*
C210.76014 (15)0.0069 (2)0.31583 (10)0.0790 (5)
H21A0.66850.02900.31940.118*
H21B0.78200.07990.33660.118*
H21C0.75690.01750.24610.118*
C221.01995 (12)0.07117 (15)0.37323 (8)0.0559 (3)
H22A1.09140.12560.42140.067*
H22B1.04920.01600.39220.067*
C231.02284 (12)0.09485 (14)0.26523 (8)0.0546 (3)
H23A0.94790.04490.21540.066*
H23B1.00260.18370.24770.066*
C241.16657 (12)0.06076 (14)0.25764 (9)0.0553 (3)
H241.18650.02780.27980.066*
C251.17439 (12)0.07041 (15)0.14944 (9)0.0587 (3)
C261.06977 (16)0.02014 (17)0.07500 (10)0.0723 (4)
H26A0.97330.00950.06020.108*
H26B1.08030.10310.10560.108*
H26C1.08930.02430.01200.108*
C271.15302 (19)0.20501 (19)0.10782 (12)0.0831 (4)
H27A1.17230.20830.04470.125*
H27B1.21760.26100.15780.125*
H27C1.05560.23090.09460.125*
C280.91880 (12)0.04354 (13)0.70453 (9)0.0514 (3)
H28A0.97420.07410.66500.077*
H28B0.84380.10320.69980.077*
H28C0.98030.03400.77560.077*
C290.55935 (15)0.13526 (19)1.03193 (9)0.0733 (4)
H29A0.62150.20791.04400.110*
H29B0.61540.06111.06080.110*
H29C0.48950.14831.06410.110*
C300.39618 (15)0.23698 (15)0.86843 (12)0.0698 (4)
H30A0.34730.22510.79540.105*
H30B0.46050.30800.87990.105*
H30C0.32690.25300.90060.105*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0952 (4)0.0874 (7)0.0716 (4)0.0159 (5)0.0584 (3)0.0056 (4)
O20.0689 (4)0.1071 (8)0.0700 (5)0.0147 (6)0.0328 (4)0.0174 (6)
O30.0688 (4)0.1066 (8)0.0727 (4)0.0089 (5)0.0450 (3)0.0062 (5)
C10.0529 (4)0.0614 (6)0.0532 (5)0.0088 (5)0.0286 (4)0.0073 (5)
C20.0500 (4)0.0714 (7)0.0561 (5)0.0063 (5)0.0289 (4)0.0006 (5)
C30.0585 (4)0.0617 (7)0.0561 (4)0.0031 (5)0.0350 (4)0.0026 (5)
C40.0570 (5)0.0590 (6)0.0522 (4)0.0012 (5)0.0300 (4)0.0035 (5)
C50.0489 (4)0.0510 (5)0.0447 (4)0.0019 (4)0.0220 (3)0.0019 (4)
C60.0585 (5)0.0692 (7)0.0509 (4)0.0129 (5)0.0287 (4)0.0165 (5)
C70.0484 (4)0.0758 (7)0.0465 (4)0.0110 (5)0.0211 (4)0.0134 (5)
C80.0454 (4)0.0453 (5)0.0462 (4)0.0035 (4)0.0221 (3)0.0042 (4)
C90.0409 (4)0.0500 (5)0.0409 (4)0.0013 (4)0.0193 (3)0.0001 (4)
C100.0421 (4)0.0516 (5)0.0445 (4)0.0019 (4)0.0207 (3)0.0015 (4)
C110.0496 (4)0.0608 (6)0.0493 (4)0.0139 (5)0.0255 (3)0.0104 (5)
C120.0503 (4)0.0629 (6)0.0457 (4)0.0106 (5)0.0228 (4)0.0094 (4)
C130.0421 (4)0.0478 (5)0.0427 (4)0.0002 (4)0.0192 (3)0.0010 (4)
C140.0395 (4)0.0458 (5)0.0418 (4)0.0001 (4)0.0189 (3)0.0003 (4)
C150.0483 (4)0.0546 (6)0.0530 (5)0.0089 (5)0.0241 (4)0.0055 (4)
C160.0500 (4)0.0670 (7)0.0514 (4)0.0082 (5)0.0257 (4)0.0012 (5)
C170.0471 (4)0.0488 (5)0.0460 (4)0.0024 (4)0.0233 (3)0.0035 (4)
C180.0566 (5)0.0655 (7)0.0573 (5)0.0157 (5)0.0275 (4)0.0163 (5)
C190.0470 (4)0.0638 (6)0.0518 (5)0.0073 (5)0.0226 (4)0.0067 (5)
C200.0542 (4)0.0631 (7)0.0475 (4)0.0019 (5)0.0272 (4)0.0040 (5)
C210.0679 (6)0.1261 (13)0.0473 (5)0.0230 (8)0.0259 (5)0.0130 (7)
C220.0585 (5)0.0679 (7)0.0501 (4)0.0004 (5)0.0302 (4)0.0008 (5)
C230.0600 (5)0.0616 (7)0.0524 (4)0.0000 (5)0.0325 (4)0.0005 (5)
C240.0611 (5)0.0611 (6)0.0528 (5)0.0005 (5)0.0315 (4)0.0003 (5)
C250.0654 (5)0.0684 (7)0.0551 (5)0.0026 (6)0.0373 (4)0.0029 (5)
C260.0822 (7)0.0827 (10)0.0571 (6)0.0010 (8)0.0311 (5)0.0121 (6)
C270.1150 (8)0.0787 (10)0.0783 (6)0.0007 (8)0.0623 (6)0.0141 (7)
C280.0497 (4)0.0553 (6)0.0524 (5)0.0060 (5)0.0220 (4)0.0079 (5)
C290.0835 (6)0.0943 (10)0.0546 (5)0.0159 (8)0.0400 (5)0.0148 (6)
C300.0781 (6)0.0606 (7)0.0897 (7)0.0111 (6)0.0534 (5)0.0000 (6)
Geometric parameters (Å, º) top
O1—C31.2192 (17)C15—H15A0.9700
O2—C241.4096 (16)C15—H15B0.9700
O2—H20.8200C16—C171.5424 (16)
O3—C251.4420 (16)C16—H16A0.9700
O3—H30.8200C16—H16B0.9700
C1—C101.5113 (17)C17—C201.5399 (15)
C1—C21.5296 (17)C17—H170.9800
C1—H1A0.9700C18—H18A0.9600
C1—H1B0.9700C18—H18B0.9600
C2—C31.4975 (17)C18—H18C0.9600
C2—H2A0.9700C19—H19A0.9700
C2—H2B0.9700C19—H19B0.9700
C3—C41.5237 (19)C20—C211.525 (2)
C4—C291.5310 (16)C20—C221.5338 (17)
C4—C301.537 (2)C20—H200.9800
C4—C51.5614 (17)C21—H21A0.9600
C5—C61.5172 (18)C21—H21B0.9600
C5—C101.5252 (14)C21—H21C0.9600
C5—H50.9800C22—C231.5253 (17)
C6—C71.5245 (18)C22—H22A0.9700
C6—H6A0.9700C22—H22B0.9700
C6—H6B0.9700C23—C241.5146 (17)
C7—C81.5278 (14)C23—H23A0.9700
C7—H7A0.9700C23—H23B0.9700
C7—H7B0.9700C24—C251.5301 (17)
C8—C141.5352 (15)C24—H240.9800
C8—C91.5444 (14)C25—C261.513 (2)
C8—H80.9800C25—C271.516 (2)
C9—C191.5120 (16)C26—H26A0.9600
C9—C111.5346 (16)C26—H26B0.9600
C9—C101.5349 (15)C26—H26C0.9600
C10—C191.5107 (17)C27—H27A0.9600
C11—C121.5484 (17)C27—H27B0.9600
C11—H11A0.9700C27—H27C0.9600
C11—H11B0.9700C28—H28A0.9600
C12—C131.5303 (17)C28—H28B0.9600
C12—H12A0.9700C28—H28C0.9600
C12—H12B0.9700C29—H29A0.9600
C13—C181.5304 (17)C29—H29B0.9600
C13—C171.5566 (15)C29—H29C0.9600
C13—C141.5629 (13)C30—H30A0.9600
C14—C151.5345 (16)C30—H30B0.9600
C14—C281.5393 (17)C30—H30C0.9600
C15—C161.5366 (17)
C24—O2—H2109.5C15—C16—H16A110.2
C25—O3—H3109.5C17—C16—H16A110.2
C10—C1—C2110.69 (11)C15—C16—H16B110.2
C10—C1—H1A109.5C17—C16—H16B110.2
C2—C1—H1A109.5H16A—C16—H16B108.5
C10—C1—H1B109.5C20—C17—C16112.22 (10)
C2—C1—H1B109.5C20—C17—C13120.70 (8)
H1A—C1—H1B108.1C16—C17—C13103.35 (9)
C3—C2—C1114.01 (9)C20—C17—H17106.6
C3—C2—H2A108.8C16—C17—H17106.6
C1—C2—H2A108.8C13—C17—H17106.6
C3—C2—H2B108.8C13—C18—H18A109.5
C1—C2—H2B108.8C13—C18—H18B109.5
H2A—C2—H2B107.6H18A—C18—H18B109.5
O1—C3—C2119.37 (12)C13—C18—H18C109.5
O1—C3—C4122.27 (11)H18A—C18—H18C109.5
C2—C3—C4118.31 (11)H18B—C18—H18C109.5
C3—C4—C29109.74 (11)C10—C19—C961.03 (8)
C3—C4—C30106.73 (10)C10—C19—H19A117.7
C29—C4—C30109.51 (12)C9—C19—H19A117.7
C3—C4—C5108.26 (10)C10—C19—H19B117.7
C29—C4—C5109.82 (9)C9—C19—H19B117.7
C30—C4—C5112.69 (11)H19A—C19—H19B114.8
C6—C5—C10113.43 (10)C21—C20—C22110.40 (11)
C6—C5—C4114.25 (10)C21—C20—C17112.12 (11)
C10—C5—C4112.88 (8)C22—C20—C17108.20 (8)
C6—C5—H5105.0C21—C20—H20108.7
C10—C5—H5105.0C22—C20—H20108.7
C4—C5—H5105.0C17—C20—H20108.7
C5—C6—C7108.75 (11)C20—C21—H21A109.5
C5—C6—H6A109.9C20—C21—H21B109.5
C7—C6—H6A109.9H21A—C21—H21B109.5
C5—C6—H6B109.9C20—C21—H21C109.5
C7—C6—H6B109.9H21A—C21—H21C109.5
H6A—C6—H6B108.3H21B—C21—H21C109.5
C6—C7—C8110.59 (9)C23—C22—C20116.77 (9)
C6—C7—H7A109.5C23—C22—H22A108.1
C8—C7—H7A109.5C20—C22—H22A108.1
C6—C7—H7B109.5C23—C22—H22B108.1
C8—C7—H7B109.5C20—C22—H22B108.1
H7A—C7—H7B108.1H22A—C22—H22B107.3
C7—C8—C14113.08 (8)C24—C23—C22112.22 (9)
C7—C8—C9112.42 (9)C24—C23—H23A109.2
C14—C8—C9112.51 (9)C22—C23—H23A109.2
C7—C8—H8106.0C24—C23—H23B109.2
C14—C8—H8106.0C22—C23—H23B109.2
C9—C8—H8106.0H23A—C23—H23B107.9
C19—C9—C11117.53 (8)O2—C24—C23108.37 (11)
C19—C9—C1059.44 (7)O2—C24—C25111.15 (11)
C11—C9—C10116.71 (9)C23—C24—C25115.58 (9)
C19—C9—C8115.30 (10)O2—C24—H24107.1
C11—C9—C8117.33 (9)C23—C24—H24107.1
C10—C9—C8117.83 (8)C25—C24—H24107.1
C19—C10—C1118.21 (8)O3—C25—C26109.21 (12)
C19—C10—C5121.26 (10)O3—C25—C27109.70 (13)
C1—C10—C5110.05 (9)C26—C25—C27111.20 (11)
C19—C10—C959.53 (7)O3—C25—C24102.58 (9)
C1—C10—C9119.64 (10)C26—C25—C24111.16 (12)
C5—C10—C9120.26 (8)C27—C25—C24112.61 (12)
C9—C11—C12118.07 (10)C25—C26—H26A109.5
C9—C11—H11A107.8C25—C26—H26B109.5
C12—C11—H11A107.8H26A—C26—H26B109.5
C9—C11—H11B107.8C25—C26—H26C109.5
C12—C11—H11B107.8H26A—C26—H26C109.5
H11A—C11—H11B107.1H26B—C26—H26C109.5
C13—C12—C11114.28 (10)C25—C27—H27A109.5
C13—C12—H12A108.7C25—C27—H27B109.5
C11—C12—H12A108.7H27A—C27—H27B109.5
C13—C12—H12B108.7C25—C27—H27C109.5
C11—C12—H12B108.7H27A—C27—H27C109.5
H12A—C12—H12B107.6H27B—C27—H27C109.5
C12—C13—C18108.67 (9)C14—C28—H28A109.5
C12—C13—C17117.26 (10)C14—C28—H28B109.5
C18—C13—C17109.70 (10)H28A—C28—H28B109.5
C12—C13—C14108.19 (9)C14—C28—H28C109.5
C18—C13—C14111.60 (9)H28A—C28—H28C109.5
C17—C13—C14101.26 (7)H28B—C28—H28C109.5
C15—C14—C8113.42 (9)C4—C29—H29A109.5
C15—C14—C28108.29 (8)C4—C29—H29B109.5
C8—C14—C28110.46 (9)H29A—C29—H29B109.5
C15—C14—C13102.58 (8)C4—C29—H29C109.5
C8—C14—C13110.33 (7)H29A—C29—H29C109.5
C28—C14—C13111.53 (9)H29B—C29—H29C109.5
C14—C15—C16105.19 (9)C4—C30—H30A109.5
C14—C15—H15A110.7C4—C30—H30B109.5
C16—C15—H15A110.7H30A—C30—H30B109.5
C14—C15—H15B110.7C4—C30—H30C109.5
C16—C15—H15B110.7H30A—C30—H30C109.5
H15A—C15—H15B108.8H30B—C30—H30C109.5
C15—C16—C17107.48 (10)
C10—C1—C2—C349.17 (15)C11—C12—C13—C17154.07 (9)
C1—C2—C3—O1138.27 (13)C11—C12—C13—C1440.45 (12)
C1—C2—C3—C444.24 (17)C7—C8—C14—C1570.01 (12)
O1—C3—C4—C2918.82 (18)C9—C8—C14—C15161.28 (8)
C2—C3—C4—C29163.77 (12)C7—C8—C14—C2851.77 (12)
O1—C3—C4—C3099.77 (14)C9—C8—C14—C2876.94 (10)
C2—C3—C4—C3077.65 (14)C7—C8—C14—C13175.56 (10)
O1—C3—C4—C5138.67 (12)C9—C8—C14—C1346.84 (12)
C2—C3—C4—C543.91 (14)C12—C13—C14—C15168.48 (9)
C3—C4—C5—C6176.55 (9)C18—C13—C14—C1572.02 (11)
C29—C4—C5—C656.74 (15)C17—C13—C14—C1544.63 (11)
C30—C4—C5—C665.64 (12)C12—C13—C14—C870.39 (11)
C3—C4—C5—C1051.88 (13)C18—C13—C14—C849.11 (12)
C29—C4—C5—C10171.69 (12)C17—C13—C14—C8165.76 (9)
C30—C4—C5—C1065.93 (13)C12—C13—C14—C2852.77 (11)
C10—C5—C6—C751.58 (13)C18—C13—C14—C28172.28 (9)
C4—C5—C6—C7177.11 (9)C17—C13—C14—C2871.08 (11)
C5—C6—C7—C869.51 (14)C8—C14—C15—C16151.81 (9)
C6—C7—C8—C14177.87 (11)C28—C14—C15—C1685.21 (10)
C6—C7—C8—C953.37 (15)C13—C14—C15—C1632.82 (11)
C7—C8—C9—C1989.08 (12)C14—C15—C16—C178.38 (12)
C14—C8—C9—C19141.86 (9)C15—C16—C17—C20151.07 (10)
C7—C8—C9—C11125.86 (11)C15—C16—C17—C1319.49 (12)
C14—C8—C9—C113.20 (13)C12—C13—C17—C2077.09 (14)
C7—C8—C9—C1021.81 (14)C18—C13—C17—C2047.45 (14)
C14—C8—C9—C10150.87 (9)C14—C13—C17—C20165.48 (11)
C2—C1—C10—C1987.67 (12)C12—C13—C17—C16156.55 (9)
C2—C1—C10—C557.67 (11)C18—C13—C17—C1678.91 (10)
C2—C1—C10—C9156.75 (9)C14—C13—C17—C1639.12 (11)
C6—C5—C10—C1949.13 (14)C1—C10—C19—C9109.60 (11)
C4—C5—C10—C1982.84 (13)C5—C10—C19—C9109.08 (11)
C6—C5—C10—C1166.76 (10)C11—C9—C19—C10106.31 (11)
C4—C5—C10—C161.27 (13)C8—C9—C19—C10108.70 (10)
C6—C5—C10—C921.44 (15)C16—C17—C20—C21178.35 (12)
C4—C5—C10—C9153.41 (10)C13—C17—C20—C2156.17 (16)
C11—C9—C10—C19107.68 (10)C16—C17—C20—C2259.67 (14)
C8—C9—C10—C19104.44 (11)C13—C17—C20—C22178.15 (11)
C19—C9—C10—C1107.23 (10)C21—C20—C22—C2359.45 (17)
C11—C9—C10—C10.45 (13)C17—C20—C22—C23177.52 (11)
C8—C9—C10—C1148.32 (10)C20—C22—C23—C24175.61 (12)
C19—C9—C10—C5110.71 (12)C22—C23—C24—O259.76 (15)
C11—C9—C10—C5141.60 (10)C22—C23—C24—C25174.75 (12)
C8—C9—C10—C56.27 (15)O2—C24—C25—O357.48 (15)
C19—C9—C11—C12112.19 (11)C23—C24—C25—O3178.47 (12)
C10—C9—C11—C12179.88 (9)O2—C24—C25—C26174.09 (12)
C8—C9—C11—C1232.08 (13)C23—C24—C25—C2661.86 (17)
C9—C11—C12—C138.26 (13)O2—C24—C25—C2760.36 (15)
C11—C12—C13—C1880.88 (11)C23—C24—C25—C2763.69 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O30.822.282.693 (2)112
O3—H3···O1i0.822.132.930 (2)166
Symmetry code: (i) x+1, y, z1.

Experimental details

Crystal data
Chemical formulaC30H50O3
Mr458.70
Crystal system, space groupMonoclinic, P21
Temperature (K)273
a, b, c (Å)9.9534 (10), 10.530 (3), 13.837 (2)
β (°) 110.942 (10)
V3)1354.4 (5)
Z2
Radiation typeCu Kα
µ (mm1)0.54
Crystal size (mm)0.20 × 0.15 × 0.10
Data collection
DiffractometerEnraf-Nonius CAD4
diffractometer
Absorption correctionψ scan
North et al. (1968)
Tmin, Tmax0.92, 0.95
No. of measured, independent and
observed [I > 2σ(I)] reflections
6647, 2825, 2722
Rint0.028
(sin θ/λ)max1)0.624
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.114, 1.03
No. of reflections2825
No. of parameters308
No. of restraints1
H-atom treatmentSee text
Δρmax, Δρmin (e Å3)0.37, 0.18
Absolute structureFlack H D (1983), Acta Cryst. A39, 876-881
Absolute structure parameter0.1 (3)

Computer programs: CAD-4 EXPRESS (Enraf-Nonius, 1994), CAD-4 EXPRESS, CADRAL (Daresbury Laboratory, 19XX), SHELXS86 (Sheldrick, 1990), ZORTEP (Zsolnai & Huttner, 1994), SHELXL97 (Sheldrick, 1997) and PARST (Nardelli, 1983).

Selected geometric parameters (Å, º) top
O1—C31.2192 (17)C17—C201.5399 (15)
O2—C241.4096 (16)C20—C211.525 (2)
O3—C251.4420 (16)C20—C221.5338 (17)
C9—C191.5120 (16)C24—C251.5301 (17)
C10—C191.5107 (17)
O1—C3—C2119.37 (12)C10—C19—C961.03 (8)
O1—C3—C4122.27 (11)O2—C24—C23108.37 (11)
C19—C9—C1059.44 (7)O2—C24—C25111.15 (11)
C19—C10—C959.53 (7)O3—C25—C26109.21 (12)
C20—C17—C16112.22 (10)O3—C25—C27109.70 (13)
C20—C17—C13120.70 (8)
C1—C2—C3—O1138.27 (13)C15—C16—C17—C20151.07 (10)
O1—C3—C4—C5138.67 (12)C14—C13—C17—C20165.48 (11)
C7—C8—C9—C1989.08 (12)C5—C10—C19—C9109.08 (11)
C6—C5—C10—C1949.13 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O30.822.282.693 (2)112
O3—H3···O1i0.822.132.930 (2)166
Symmetry code: (i) x+1, y, z1.
Ring-puckering parameters (Å, °) for four rings top
Ringq2q3QTθ
A0.120 (1)0.520 (1)0.533 (1)13.0 (1)
B0.385 (1)0.373 (1)0.536 (2)45.9 (1)
C0.619 (1)0.198 (1)0.649 (1)72.3 (1)
D0.447 (1)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds