Download citation
Download citation
link to html
The structures of the potential non-linear optical (NLO) materials N-[2-(iso­propyl­amino)-5-nitro­phenyl]­acet­amide, (I) C11H15N3O3, and N-[2-(butyl­amino)-5-nitro­phenyl]­acet­amide, (II) C12H17N3O3, have been investigated by X-ray analysis. To compare them with the structure of N-[2-(di­methyl­amino)-5-nitro­phenyl]­acet­amide, (III) C10H13N3O3, a known NLO compound, we had to redetermine the structure of (III), since it was described only briefly in the literature. There are two mol­ecules in the asymmetric unit of compound (I), which have different orientations of the substituents with respect to the benzene ring. The packing of mol­ecules in (II) and (III) contains stacks but both (I) and (II) crystallize in a centrosymmetric space group, which renders them inappropriate for NLO applications.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270199014985/bm1387sup1.cif
Contains datablocks I, II, III, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270199014985/bm1387Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270199014985/bm1387IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270199014985/bm1387IIIsup4.hkl
Contains datablock usa1

CCDC references: 143245; 143246; 143247

Comment top

In recent years organic nonlinear optical (NLO) materials have been the subject of intensive study because of their crucial advantages in comparison with currently used inorganics (Zyss et al., 1994). To possess NLO properties organic molecules should contain a polar and highly conjugated p-electron system terminated with electron donor and acceptor groups. One such compound is the donor-acceptor substituted benzene derivative N-[2-(dimethylamino)-5-nitrophenyl]acetamide, (III), which crystallizes in a noncentrosymmetric space group and which therefore allows second-harmonic generation (Baumert et al., 1987; Norman et al., 1987). As a part of a search for new NLO materials (Antipin et al., 1997, 1998), we synthesized two new compounds, N-[2-(isopropylamino)-5-nitrophenyl]acetamide, (I), and N-[2-(butylamino)-5-nitrophenyl]acetamide, (II), which are analogous to (III). In this work we present the results of structural investigations of the compounds (I), (II) and (III). Despite the fact that the structure of (III) has been published at least twice, it was discussed only very briefly in each case (Baumert et al., 1987; Norman et al., 1987) and atomic coordinates are absent from these publications and from the Cambridge Structural Database (Allen et al., 1987?). Thus, to compare the structural peculiarities of (I), (II) and (III) we had to redetermine the crystal structure of (III). \scheme

There are two molecules, A and B, in the asymmetric unit of compound (I) (Fig. 1) which differ primarily by the degree of rotation of the acetamido group with respect to the benzene ring: the C7—N1—C1—C6 torsion angle is -63.7 (3)° in molecule A and 38.3 (3)° in molecule B. In addition, the aminoisopropyl group of molecule A is twisted with respect to the ring somewhat more than that of molecule B [the C9—N2—C2—C3 torsion angles are -11.9 (3) and -3.9 (3)°, respectively]. Molecules of (II) (Fig. 2) and (III) (Fig. 3) are also non-planar, with respective C7—N1—C1—C6 torsion angles of -57.1 (4) and -46.4 (3)°, and C9—N2—C2—C3 torsion angles of -4.2 (4) and -11.7 (3)°.

The nitro groups in molecule A of (I) and in (II) and (III) are nearly coplanar with the benzene ring, with the O2—N3—C5—C4 torsion angle adopting values of -3.8 (3), -0.2 (4) and -0.5 (3)°, but in molecule B of (I) this group is rotated out of the ring plane by -15.7 (3)°. All bond lengths in the molecules studied are close to standard values (Allen et al., 1987).

In the crystal phase molecules (II) and (III) are stacked along the [100] direction, linked by intermolecular N—H···O bonds (Tables 2 and 3) forming infinite chains. In addition, in (II) neighbouring stacks (symmetry code: -x, -y, -z) are connected by bifurcated intermolecular hydrogen bonds involving O3 (Table 2). In the case of (I), infinite zigzag chains due to intermolecular N—H···O bonds (Table 1) are observed, and molecules A and B alternate within them. Stacking is absent here. Finally, X-ray investigation has shown that (I) and (II) crystallize in centrosymmetric space groups, where the second-order NLO effect is necessarily absent, rendering these compounds inappropriate as possible NLO materials.

Experimental top

Compounds (I), (II) and (III) were prepared according to a known procedure (Martinez et al., 1993). Suitable single crystals were obtained by isothermal evaporation of solvent from solutions of (I), (II) and (III) in ethanol at ambient temperature.

Refinement top

The dataset for (II) is complete to 2θmax = 50°, although some data were collected to 54°. For (II), H atoms on N were located in difference Fourier syntheses and then refined freely, those in methyl groups were located similarly and refined as part of rigid rotating groups, and all others were placed geometrically. In (III), the H1(–N1) atom was treated as a riding atom; all other H atom positions were refined isotropically.

Computing details top

For all compounds, data collection: P3 (Siemens, 1989); cell refinement: P3; data reduction: XDISK (Siemens, 1991); program(s) used to solve structure: SHELXTL/PC (Sheldrick, 1994); program(s) used to refine structure: SHELXTL/PC; molecular graphics: SHELXTL/PC; software used to prepare material for publication: SHELXTL/PC.

Figures top
[Figure 1] Fig. 1. A view of the two independent molecules of (I) showing the atom-numbering scheme. Non-H atoms are shown with displacement ellipsoids drawn at the 50% probability level and H atoms are drawn as spheres of arbitrary small radius for clarity.
[Figure 2] Fig. 2. A view of a molecule of (II) showing the atom-numbering scheme. Non-H atoms are shown with displacement ellipsoids drawn at the 50% probability level and H atoms are drawn as spheres of arbitrary small radius for clarity.
[Figure 3] Fig. 3. A view of a molecule of (III) showing the atom-numbering scheme. Non-H atoms are shown with displacement ellipsoids drawn at the 50% probability level and H atoms are drawn as spheres of arbitrary small radius for clarity.
(I) N-[2-(isopropylamino)-5-nitrophenyl]acetamide top
Crystal data top
C11H15N3O3F(000) = 1008
Mr = 237.26Dx = 1.339 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 13.408 (7) ÅCell parameters from 24 reflections
b = 13.277 (4) Åθ = 10–11°
c = 13.577 (6) ŵ = 0.10 mm1
β = 103.07 (4)°T = 293 K
V = 2354.3 (18) Å3Prism, yellow
Z = 80.4 × 0.3 × 0.3 mm
Data collection top
Syntex P21/PC
diffractometer
Rint = 0.039
Radiation source: fine-focus sealed tubeθmax = 25.1°, θmin = 1.9°
Graphite monochromatorh = 1215
θ/2θ scansk = 715
4351 measured reflectionsl = 1615
4164 independent reflections2 standard reflections every 98 reflections
2976 reflections with I > 2σ(I) intensity decay: 4.7%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: difference Fourier map
wR(F2) = 0.110All H-atom parameters refined
S = 1.03Calculated w = 1/[σ2(Fo2) + (0.0622P)2 + 1.0315P]
where P = (Fo2 + 2Fc2)/3
4106 reflections(Δ/σ)max = 0.001
427 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C11H15N3O3V = 2354.3 (18) Å3
Mr = 237.26Z = 8
Monoclinic, P21/nMo Kα radiation
a = 13.408 (7) ŵ = 0.10 mm1
b = 13.277 (4) ÅT = 293 K
c = 13.577 (6) Å0.4 × 0.3 × 0.3 mm
β = 103.07 (4)°
Data collection top
Syntex P21/PC
diffractometer
Rint = 0.039
4351 measured reflections2 standard reflections every 98 reflections
4164 independent reflections intensity decay: 4.7%
2976 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.110All H-atom parameters refined
S = 1.03Δρmax = 0.20 e Å3
4106 reflectionsΔρmin = 0.27 e Å3
427 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement on F2 for ALL reflections except for 58 with very negative F2 or flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating R factor obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.73029 (14)0.33587 (14)0.98352 (14)0.0256 (4)
H10.7799 (19)0.3186 (17)1.0331 (18)0.027 (6)*
N20.7233 (2)0.12639 (14)0.95543 (15)0.0303 (5)
H20.782 (2)0.161 (2)0.982 (2)0.045 (8)*
N30.3650 (2)0.3359 (2)0.97602 (15)0.0354 (5)
O10.68140 (11)0.42438 (11)0.83819 (11)0.0282 (4)
O20.28318 (14)0.2890 (2)0.9614 (2)0.0541 (5)
O30.37067 (13)0.42607 (14)0.99527 (14)0.0448 (5)
C10.6366 (2)0.2821 (2)0.9748 (2)0.0252 (5)
C20.6352 (2)0.1755 (2)0.9612 (2)0.0269 (5)
C30.5409 (2)0.1259 (2)0.9523 (2)0.0341 (6)
H30.5369 (19)0.054 (2)0.9429 (19)0.041 (7)*
C40.4531 (2)0.1779 (2)0.9559 (2)0.0353 (6)
H40.391 (2)0.1428 (19)0.9484 (19)0.040 (7)*
C50.4574 (2)0.2815 (2)0.9709 (2)0.0291 (5)
C60.5489 (2)0.3334 (2)0.9811 (2)0.0261 (5)
H60.5518 (17)0.4019 (19)0.9906 (17)0.028 (6)*
C70.7452 (2)0.4067 (2)0.9172 (2)0.0237 (5)
C80.8444 (2)0.4633 (2)0.9453 (2)0.0313 (5)
H8A0.873 (2)0.472 (2)0.886 (2)0.047 (8)*
H8B0.830 (2)0.528 (2)0.972 (2)0.054 (8)*
H8C0.895 (2)0.431 (2)1.000 (2)0.058 (9)*
C90.7348 (2)0.0162 (2)0.9585 (2)0.0348 (6)
H90.7076 (18)0.0111 (18)1.0137 (19)0.035 (7)*
C100.6813 (3)0.0331 (2)0.8596 (2)0.0483 (7)
H10A0.720 (2)0.022 (2)0.809 (2)0.047 (8)*
H10B0.611 (3)0.008 (3)0.831 (3)0.083 (12)*
H10C0.685 (3)0.105 (4)0.875 (3)0.075 (10)*
C110.8483 (2)0.0093 (2)0.9827 (2)0.0446 (7)
H11A0.859 (3)0.081 (3)0.992 (2)0.076 (10)*
H11B0.875 (2)0.011 (2)0.925 (2)0.044 (7)*
H11C0.887 (2)0.024 (2)1.046 (3)0.062 (9)*
N1'0.47907 (14)0.37470 (13)0.73534 (14)0.0226 (4)
H1'0.5374 (18)0.3849 (17)0.7738 (17)0.021 (6)*
N2'0.52413 (15)0.58013 (14)0.74652 (15)0.0279 (4)
H2'0.572 (2)0.536 (2)0.7591 (19)0.041 (8)*
N3'0.12761 (15)0.45403 (15)0.7528 (2)0.0334 (5)
O1'0.38257 (12)0.26966 (12)0.62057 (13)0.0365 (4)
O2'0.07007 (13)0.51303 (14)0.7835 (2)0.0506 (5)
O3'0.10023 (13)0.36966 (13)0.7200 (2)0.0506 (5)
C1'0.4019 (2)0.4456 (2)0.74413 (15)0.0215 (5)
C2'0.4282 (2)0.5496 (2)0.75166 (15)0.0230 (5)
C3'0.3515 (2)0.6192 (2)0.7607 (2)0.0278 (5)
H3'0.3675 (18)0.6866 (19)0.7655 (17)0.030 (6)*
C4'0.2543 (2)0.5879 (2)0.7630 (2)0.0290 (5)
H4'0.2030 (18)0.6366 (18)0.7678 (17)0.029 (6)*
C5'0.2305 (2)0.4870 (2)0.7531 (2)0.0255 (5)
C6'0.3035 (2)0.4151 (2)0.7436 (2)0.0244 (5)
H6'0.2856 (17)0.3452 (19)0.7363 (17)0.030 (6)*
C7'0.4660 (2)0.2923 (2)0.6762 (2)0.0247 (5)
C8'0.5595 (2)0.2291 (2)0.6804 (2)0.0350 (6)
H8D0.574 (3)0.222 (3)0.616 (3)0.092 (13)*
H8E0.619 (3)0.256 (3)0.727 (3)0.076 (10)*
H8F0.549 (3)0.163 (3)0.697 (3)0.086 (12)*
C9'0.5553 (2)0.6855 (2)0.7435 (2)0.0281 (5)
H9'0.5303 (16)0.7212 (16)0.7959 (16)0.021 (6)*
C10'0.5101 (2)0.7328 (2)0.6407 (2)0.0391 (6)
H10D0.531 (2)0.806 (2)0.644 (2)0.048 (8)*
H10E0.542 (2)0.700 (2)0.589 (2)0.053 (8)*
H10F0.436 (3)0.729 (2)0.623 (2)0.067 (10)*
C11'0.6717 (2)0.6896 (2)0.7682 (2)0.0351 (6)
H11D0.696 (2)0.649 (2)0.719 (2)0.042 (7)*
H11E0.702 (2)0.664 (2)0.837 (2)0.061 (9)*
H11F0.696 (2)0.760 (2)0.764 (2)0.052 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0225 (10)0.0237 (10)0.0269 (10)0.0012 (8)0.0023 (8)0.0038 (8)
N20.0336 (12)0.0231 (10)0.0340 (11)0.0015 (9)0.0073 (9)0.0021 (8)
N30.0328 (12)0.0414 (13)0.0331 (11)0.0030 (10)0.0102 (9)0.0026 (9)
O10.0251 (8)0.0290 (8)0.0271 (8)0.0017 (7)0.0009 (7)0.0052 (7)
O20.0308 (11)0.0630 (13)0.0716 (14)0.0104 (9)0.0178 (9)0.0103 (11)
O30.0398 (11)0.0403 (11)0.0561 (12)0.0047 (8)0.0148 (9)0.0079 (9)
C10.0318 (13)0.0215 (11)0.0208 (11)0.0027 (9)0.0028 (9)0.0022 (8)
C20.0351 (13)0.0243 (12)0.0225 (11)0.0023 (10)0.0089 (9)0.0003 (9)
C30.0419 (15)0.0244 (13)0.0390 (14)0.0098 (11)0.0158 (11)0.0035 (10)
C40.0351 (15)0.0368 (14)0.0377 (14)0.0120 (12)0.0161 (11)0.0040 (11)
C50.0286 (13)0.0341 (13)0.0261 (12)0.0030 (10)0.0097 (9)0.0020 (10)
C60.0320 (13)0.0223 (12)0.0234 (11)0.0005 (10)0.0049 (9)0.0020 (9)
C70.0234 (12)0.0200 (11)0.0271 (12)0.0023 (9)0.0047 (9)0.0018 (9)
C80.0259 (13)0.0288 (13)0.0365 (14)0.0033 (10)0.0013 (11)0.0008 (11)
C90.051 (2)0.0224 (12)0.0349 (13)0.0014 (11)0.0182 (12)0.0031 (10)
C100.057 (2)0.039 (2)0.053 (2)0.0073 (15)0.021 (2)0.0167 (14)
C110.058 (2)0.038 (2)0.036 (2)0.0202 (14)0.0077 (14)0.0054 (13)
N1'0.0176 (10)0.0218 (9)0.0246 (10)0.0008 (8)0.0034 (8)0.0016 (8)
N2'0.0237 (11)0.0200 (10)0.0403 (12)0.0019 (9)0.0080 (9)0.0013 (8)
N3'0.0242 (11)0.0303 (11)0.0454 (12)0.0003 (9)0.0076 (9)0.0047 (9)
O1'0.0280 (9)0.0307 (9)0.0440 (10)0.0002 (7)0.0062 (7)0.0142 (8)
O2'0.0291 (10)0.0453 (11)0.0820 (15)0.0043 (9)0.0221 (10)0.0081 (10)
O3'0.0318 (10)0.0307 (10)0.090 (2)0.0086 (8)0.0152 (10)0.0036 (10)
C1'0.0226 (11)0.0209 (10)0.0195 (10)0.0012 (9)0.0017 (8)0.0006 (9)
C2'0.0221 (12)0.0234 (11)0.0225 (11)0.0032 (9)0.0030 (9)0.0004 (9)
C3'0.0284 (13)0.0186 (12)0.0360 (13)0.0015 (10)0.0064 (10)0.0028 (10)
C4'0.0258 (13)0.0266 (12)0.0341 (13)0.0050 (10)0.0059 (10)0.0012 (10)
C5'0.0186 (12)0.0271 (12)0.0303 (12)0.0018 (9)0.0047 (9)0.0005 (9)
C6'0.0252 (12)0.0192 (11)0.0271 (12)0.0032 (9)0.0027 (9)0.0009 (9)
C7'0.0246 (12)0.0207 (11)0.0264 (11)0.0033 (9)0.0010 (9)0.0003 (9)
C8'0.0282 (14)0.0289 (14)0.046 (2)0.0041 (11)0.0038 (12)0.0058 (12)
C9'0.0292 (13)0.0226 (12)0.0344 (13)0.0057 (10)0.0110 (10)0.0054 (10)
C10'0.043 (2)0.0310 (14)0.045 (2)0.0017 (12)0.0136 (13)0.0051 (12)
C11'0.0297 (14)0.0307 (14)0.048 (2)0.0090 (11)0.0151 (12)0.0109 (12)
Geometric parameters (Å, º) top
N1—C71.348 (3)N1'—C7'1.345 (3)
N1—C11.427 (3)N1'—C1'1.424 (3)
N2—C21.367 (3)N2'—C2'1.365 (3)
N2—C91.471 (3)N2'—C9'1.463 (3)
N3—O31.224 (3)N3'—O3'1.231 (3)
N3—O21.238 (3)N3'—O2'1.236 (3)
N3—C51.449 (3)N3'—C5'1.447 (3)
O1—C71.233 (3)O1'—C7'1.237 (3)
C1—C61.378 (3)C1'—C6'1.378 (3)
C1—C21.427 (3)C1'—C2'1.424 (3)
C2—C31.406 (3)C2'—C3'1.409 (3)
C3—C41.375 (4)C3'—C4'1.374 (3)
C4—C51.390 (3)C4'—C5'1.377 (3)
C5—C61.386 (3)C5'—C6'1.394 (3)
C7—C81.501 (3)C7'—C8'1.499 (3)
C9—C101.520 (4)C9'—C11'1.520 (3)
C9—C111.520 (4)C9'—C10'1.526 (4)
C7—N1—C1123.7 (2)C7'—N1'—C1'126.1 (2)
C2—N2—C9124.0 (2)C2'—N2'—C9'124.3 (2)
O3—N3—O2122.4 (2)O3'—N3'—O2'122.8 (2)
O3—N3—C5119.0 (2)O3'—N3'—C5'118.9 (2)
O2—N3—C5118.5 (2)O2'—N3'—C5'118.4 (2)
C6—C1—C2120.8 (2)C6'—C1'—N1'121.2 (2)
C6—C1—N1119.7 (2)C6'—C1'—C2'120.5 (2)
C2—C1—N1119.5 (2)N1'—C1'—C2'118.3 (2)
N2—C2—C3122.9 (2)N2'—C2'—C3'121.7 (2)
N2—C2—C1119.6 (2)N2'—C2'—C1'120.4 (2)
C3—C2—C1117.4 (2)C3'—C2'—C1'117.9 (2)
C4—C3—C2121.5 (2)C4'—C3'—C2'121.2 (2)
C3—C4—C5119.6 (2)C3'—C4'—C5'119.5 (2)
C6—C5—C4120.9 (2)C4'—C5'—C6'121.6 (2)
C6—C5—N3119.6 (2)C4'—C5'—N3'119.6 (2)
C4—C5—N3119.5 (2)C6'—C5'—N3'118.7 (2)
C1—C6—C5119.7 (2)C1'—C6'—C5'119.3 (2)
O1—C7—N1122.4 (2)O1'—C7'—N1'122.7 (2)
O1—C7—C8121.8 (2)O1'—C7'—C8'121.4 (2)
N1—C7—C8115.9 (2)N1'—C7'—C8'116.0 (2)
N2—C9—C10112.2 (2)N2'—C9'—C11'108.3 (2)
N2—C9—C11108.7 (2)N2'—C9'—C10'111.2 (2)
C10—C9—C11110.2 (2)C11'—C9'—C10'111.3 (2)
C7—N1—C1—C663.7 (3)C7'—N1'—C1'—C6'38.3 (3)
C7—N1—C1—C2117.3 (2)C7'—N1'—C1'—C2'140.6 (2)
C9—N2—C2—C311.9 (3)C9'—N2'—C2'—C3'3.9 (3)
C9—N2—C2—C1169.5 (2)C9'—N2'—C2'—C1'173.7 (2)
C6—C1—C2—N2179.8 (2)C6'—C1'—C2'—N2'176.4 (2)
N1—C1—C2—N20.9 (3)N1'—C1'—C2'—N2'2.5 (3)
C6—C1—C2—C31.5 (3)C6'—C1'—C2'—C3'1.4 (3)
N1—C1—C2—C3179.6 (2)N1'—C1'—C2'—C3'179.7 (2)
N2—C2—C3—C4178.3 (2)N2'—C2'—C3'—C4'178.2 (2)
C1—C2—C3—C40.4 (3)C1'—C2'—C3'—C4'0.5 (3)
C2—C3—C4—C51.5 (4)C2'—C3'—C4'—C5'2.1 (3)
C3—C4—C5—C60.8 (4)C3'—C4'—C5'—C6'1.9 (3)
C3—C4—C5—N3179.2 (2)C3'—C4'—C5'—N3'178.4 (2)
O3—N3—C5—C64.3 (3)O3'—N3'—C5'—C4'162.6 (2)
O2—N3—C5—C6176.2 (2)O2'—N3'—C5'—C4'15.7 (3)
O3—N3—C5—C4175.7 (2)O3'—N3'—C5'—C6'17.8 (3)
O2—N3—C5—C43.8 (3)O2'—N3'—C5'—C6'163.9 (2)
C2—C1—C6—C52.2 (3)N1'—C1'—C6'—C5'179.6 (2)
N1—C1—C6—C5178.9 (2)C2'—C1'—C6'—C5'1.5 (3)
C4—C5—C6—C11.0 (3)C4'—C5'—C6'—C1'0.1 (3)
N3—C5—C6—C1179.0 (2)N3'—C5'—C6'—C1'179.8 (2)
C1—N1—C7—O16.6 (3)C1'—N1'—C7'—O1'0.9 (3)
C1—N1—C7—C8173.2 (2)C1'—N1'—C7'—C8'179.9 (2)
C2—N2—C9—C1075.2 (3)C2'—N2'—C9'—C11'164.0 (2)
C2—N2—C9—C11162.7 (2)C2'—N2'—C9'—C10'73.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.86 (2)1.99 (3)2.806 (3)159 (2)
N2—H2···O1i0.92 (3)2.25 (3)3.054 (3)147 (2)
N1—H1···O10.85 (2)2.00 (2)2.834 (3)168 (2)
N2—H2···O10.85 (3)2.19 (3)3.014 (3)162 (2)
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
(II) N-[2-(butylamino)-5-nitrophenyl]acetamide top
Crystal data top
C12H17N3O3Z = 2
Mr = 251.29F(000) = 268
Triclinic, P1Dx = 1.312 Mg m3
a = 4.874 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.002 (5) ÅCell parameters from 24 reflections
c = 12.335 (7) Åθ = 10–11°
α = 76.14°µ = 0.10 mm1
β = 82.27°T = 193 K
γ = 86.99°Prism, yellow
V = 636.2 (5) Å30.5 × 0.4 × 0.3 mm
Data collection top
Syntex P21/PC
diffractometer
Rint = 0.060
Radiation source: fine-focus sealed tubeθmax = 27.1°, θmin = 1.7°
Graphite monochromatorh = 55
θ/2θ scansk = 1414
2900 measured reflectionsl = 1515
2569 independent reflections2 standard reflections every 98 reflections
1391 reflections with I > 2σ(I) intensity decay: 4.1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H atoms treated by a mixture of independent and constrained refinement
S = 1.01Calculated w = 1/[σ2(Fo2) + (0.0901P)2]
where P = (Fo2 + 2Fc2)/3
2503 reflections(Δ/σ)max < 0.001
173 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C12H17N3O3γ = 86.99°
Mr = 251.29V = 636.2 (5) Å3
Triclinic, P1Z = 2
a = 4.874 (2) ÅMo Kα radiation
b = 11.002 (5) ŵ = 0.10 mm1
c = 12.335 (7) ÅT = 193 K
α = 76.14°0.5 × 0.4 × 0.3 mm
β = 82.27°
Data collection top
Syntex P21/PC
diffractometer
Rint = 0.060
2900 measured reflections2 standard reflections every 98 reflections
2569 independent reflections intensity decay: 4.1%
1391 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0680 restraints
wR(F2) = 0.141H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.25 e Å3
2503 reflectionsΔρmin = 0.30 e Å3
173 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement on F2 for ALL reflections except for 66 with very negative F2 or flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating R factor obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.0347 (6)0.6295 (2)0.2835 (2)0.0274 (6)
H10.195 (8)0.600 (3)0.284 (3)0.042 (10)*
N20.3423 (5)0.8540 (2)0.2790 (2)0.0295 (7)
H20.360 (7)0.805 (3)0.234 (3)0.034 (9)*
N30.3315 (5)0.6793 (2)0.6190 (2)0.0290 (6)
O10.4166 (4)0.6469 (2)0.2084 (2)0.0315 (6)
O20.3298 (5)0.7367 (2)0.6937 (2)0.0423 (7)
O30.4865 (5)0.5883 (2)0.6140 (2)0.0394 (6)
C10.0243 (6)0.6980 (3)0.3682 (2)0.0250 (7)
C20.1940 (6)0.8071 (3)0.3661 (2)0.0253 (7)
C30.1912 (6)0.8669 (3)0.4549 (2)0.0275 (7)
H30.3051 (6)0.9369 (3)0.4574 (2)0.033*
C40.0241 (6)0.8242 (3)0.5380 (3)0.0269 (7)
H40.0270 (6)0.8641 (3)0.5966 (3)0.032*
C50.1480 (6)0.7215 (3)0.5336 (2)0.0265 (7)
C60.1445 (6)0.6567 (3)0.4503 (2)0.0254 (7)
H60.2562 (6)0.5856 (3)0.4502 (2)0.031*
C70.1883 (6)0.6034 (3)0.2145 (2)0.0255 (7)
C80.1358 (7)0.5140 (3)0.1444 (3)0.0371 (8)
H8A0.0598 (8)0.5098 (17)0.1429 (16)0.056*
H8B0.208 (4)0.4323 (6)0.1767 (12)0.056*
H8C0.226 (4)0.5430 (12)0.0691 (6)0.056*
C90.5226 (6)0.9636 (3)0.2737 (3)0.0281 (7)
H9A0.4242 (6)1.0302 (3)0.2900 (3)0.034*
H9B0.6820 (6)0.9438 (3)0.3306 (3)0.034*
C100.6200 (7)1.0082 (3)0.1590 (3)0.0336 (8)
H10A0.7209 (7)0.9419 (3)0.1435 (3)0.040*
H10B0.4601 (7)1.0262 (3)0.1022 (3)0.040*
C110.8049 (8)1.1246 (3)0.1510 (3)0.0406 (9)
H11A0.9711 (8)1.1041 (3)0.2041 (3)0.049*
H11C0.7090 (8)1.1880 (3)0.1733 (3)0.049*
C120.8886 (9)1.1791 (4)0.0353 (3)0.0557 (11)
H12A0.969 (5)1.1150 (8)0.0093 (10)0.084*
H12B0.7284 (14)1.211 (2)0.0159 (6)0.084*
H12C1.022 (5)1.2458 (18)0.0388 (6)0.084*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0175 (14)0.0285 (14)0.040 (2)0.0037 (12)0.0037 (12)0.0152 (12)
N20.0260 (15)0.0284 (15)0.037 (2)0.0009 (12)0.0038 (13)0.0136 (13)
N30.0235 (15)0.0307 (14)0.0325 (15)0.0070 (12)0.0010 (12)0.0071 (12)
O10.0202 (12)0.0377 (13)0.0396 (13)0.0078 (10)0.0014 (10)0.0143 (10)
O20.041 (2)0.054 (2)0.0396 (14)0.0026 (12)0.0116 (11)0.0239 (12)
O30.0376 (15)0.0344 (13)0.0486 (15)0.0066 (12)0.0131 (12)0.0120 (11)
C10.022 (2)0.0235 (15)0.031 (2)0.0059 (13)0.0000 (14)0.0108 (13)
C20.019 (2)0.026 (2)0.030 (2)0.0064 (13)0.0023 (13)0.0071 (13)
C30.023 (2)0.0234 (15)0.035 (2)0.0000 (13)0.0031 (14)0.0094 (13)
C40.025 (2)0.027 (2)0.030 (2)0.0087 (14)0.0000 (14)0.0101 (13)
C50.022 (2)0.028 (2)0.027 (2)0.0062 (13)0.0007 (13)0.0019 (13)
C60.019 (2)0.0205 (14)0.036 (2)0.0046 (12)0.0029 (14)0.0086 (13)
C70.023 (2)0.024 (2)0.030 (2)0.0012 (13)0.0053 (13)0.0068 (13)
C80.037 (2)0.040 (2)0.040 (2)0.001 (2)0.007 (2)0.020 (2)
C90.024 (2)0.025 (2)0.034 (2)0.0032 (14)0.0003 (14)0.0072 (13)
C100.029 (2)0.039 (2)0.032 (2)0.001 (2)0.0023 (15)0.0085 (15)
C110.040 (2)0.041 (2)0.040 (2)0.007 (2)0.008 (2)0.008 (2)
C120.059 (3)0.056 (2)0.047 (2)0.014 (2)0.012 (2)0.004 (2)
Geometric parameters (Å, º) top
N1—C71.351 (4)C1—C21.418 (4)
N1—C11.434 (4)C2—C31.408 (4)
N2—C21.359 (4)C3—C41.374 (4)
N2—C91.448 (4)C4—C51.379 (4)
N3—O31.231 (3)C5—C61.386 (4)
N3—O21.234 (3)C7—C81.507 (4)
N3—C51.449 (4)C9—C101.514 (4)
O1—C71.221 (4)C10—C111.518 (5)
C1—C61.369 (4)C11—C121.512 (5)
C7—N1—C1124.2 (3)C3—C4—C5119.3 (3)
C2—N2—C9123.1 (3)C4—C5—C6121.1 (3)
O3—N3—O2122.1 (3)C4—C5—N3119.3 (3)
O3—N3—C5118.9 (3)C6—C5—N3119.6 (3)
O2—N3—C5119.0 (3)C1—C6—C5119.7 (3)
C6—C1—C2121.0 (3)O1—C7—N1123.7 (3)
C6—C1—N1120.0 (3)O1—C7—C8121.6 (3)
C2—C1—N1119.0 (3)N1—C7—C8114.7 (3)
N2—C2—C3122.0 (3)N2—C9—C10111.5 (2)
N2—C2—C1120.8 (3)C9—C10—C11112.3 (3)
C3—C2—C1117.2 (3)C12—C11—C10114.4 (3)
C4—C3—C2121.6 (3)
C7—N1—C1—C657.1 (4)O3—N3—C5—C4179.3 (3)
C7—N1—C1—C2123.8 (3)O2—N3—C5—C40.2 (4)
C9—N2—C2—C34.2 (4)O3—N3—C5—C61.9 (4)
C9—N2—C2—C1178.8 (3)O2—N3—C5—C6178.9 (3)
C6—C1—C2—N2174.1 (3)C2—C1—C6—C50.7 (4)
N1—C1—C2—N26.9 (4)N1—C1—C6—C5178.3 (3)
C6—C1—C2—C33.1 (4)C4—C5—C6—C12.6 (4)
N1—C1—C2—C3176.0 (3)N3—C5—C6—C1178.6 (3)
N2—C2—C3—C4174.9 (3)C1—N1—C7—O18.4 (5)
C1—C2—C3—C42.2 (4)C1—N1—C7—C8171.1 (3)
C2—C3—C4—C51.0 (4)C2—N2—C9—C10169.7 (3)
C3—C4—C5—C63.5 (4)N2—C9—C10—C11178.9 (3)
C3—C4—C5—N3177.8 (3)C9—C10—C11—C12175.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.86 (4)2.21 (4)2.928 (4)142 (3)
N1—H1···O3ii0.86 (4)2.55 (4)3.247 (4)139 (3)
N2—H2···O1i0.87 (3)2.21 (4)2.973 (4)146 (3)
Symmetry codes: (i) x1, y, z; (ii) x, y+1, z+1.
(III) N-[2-(dimethylamino)-5-nitrophenyl]acetamide top
Crystal data top
C10H13N3O3F(000) = 236
Mr = 223.23Dx = 1.366 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 4.786 (1) ÅCell parameters from 24 reflections
b = 13.030 (3) Åθ = 10–11°
c = 8.727 (2) ŵ = 0.10 mm1
β = 94.38 (3)°T = 293 K
V = 542.6 (2) Å3Needles, yellow
Z = 20.4 × 0.1 × 0.1 mm
Data collection top
Siemens P3
diffractometer
Rint = 0.033
Radiation source: fine-focus sealed tubeθmax = 25.1°, θmin = 2.3°
Graphite monochromatorh = 05
θ/2θ scansk = 1515
2053 measured reflectionsl = 1010
1817 independent reflections2 standard reflections every 98 reflections
1486 reflections with I > 2σ(I) intensity decay: 4.8%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034All H-atom parameters refined
wR(F2) = 0.085Calculated w = 1/[σ2(Fo2) + (0.0645P)2 + 0.0191P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.012
1754 reflectionsΔρmax = 0.11 e Å3
193 parametersΔρmin = 0.12 e Å3
1 restraintAbsolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: not reliably determined
Crystal data top
C10H13N3O3V = 542.6 (2) Å3
Mr = 223.23Z = 2
Monoclinic, P21Mo Kα radiation
a = 4.786 (1) ŵ = 0.10 mm1
b = 13.030 (3) ÅT = 293 K
c = 8.727 (2) Å0.4 × 0.1 × 0.1 mm
β = 94.38 (3)°
Data collection top
Siemens P3
diffractometer
Rint = 0.033
2053 measured reflections2 standard reflections every 98 reflections
1817 independent reflections intensity decay: 4.8%
1486 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.034All H-atom parameters refined
wR(F2) = 0.085Δρmax = 0.11 e Å3
S = 1.04Δρmin = 0.12 e Å3
1754 reflectionsAbsolute structure: Flack (1983)
193 parametersAbsolute structure parameter: not reliably determined
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement on F2 for ALL reflections except for 63 with very negative F2 or flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating R factor obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.2912 (4)0.54479 (12)0.3017 (2)0.0407 (4)
H10.46210.549380.27830.049*
N20.5269 (3)0.34733 (13)0.3217 (2)0.0454 (4)
N30.1198 (4)0.4893 (2)0.7870 (2)0.0555 (5)
O10.1482 (3)0.60305 (14)0.2415 (2)0.0596 (5)
O20.1281 (5)0.4387 (2)0.9037 (2)0.0823 (6)
O30.2532 (5)0.5688 (2)0.7653 (2)0.0778 (6)
C10.2389 (4)0.48048 (14)0.4263 (2)0.0358 (4)
C20.3801 (4)0.38400 (14)0.4391 (2)0.0383 (5)
C30.3663 (5)0.3309 (2)0.5785 (2)0.0466 (5)
H30.466 (5)0.270 (2)0.587 (3)0.047 (6)*
C40.2093 (5)0.3650 (2)0.6919 (2)0.0487 (5)
H40.202 (5)0.3304 (19)0.786 (3)0.057 (7)*
C50.0549 (4)0.45426 (15)0.6696 (2)0.0426 (5)
C60.0735 (4)0.5128 (2)0.5380 (2)0.0401 (5)
H60.013 (5)0.580 (2)0.533 (2)0.047 (6)*
C70.0984 (4)0.59990 (15)0.2154 (2)0.0392 (4)
C80.2085 (5)0.6595 (2)0.0866 (3)0.0515 (6)
H8A0.242 (8)0.723 (4)0.121 (4)0.107 (13)*
H8B0.075 (6)0.659 (2)0.003 (3)0.068 (7)*
H8C0.328 (7)0.626 (3)0.049 (3)0.078 (10)*
C90.7156 (6)0.2615 (2)0.3529 (4)0.0611 (6)
H9A0.634 (7)0.202 (3)0.361 (3)0.074 (8)*
H9B0.834 (7)0.254 (2)0.270 (4)0.074 (8)*
H9C0.824 (6)0.272 (2)0.448 (3)0.063 (7)*
C100.4021 (7)0.3476 (3)0.1648 (3)0.0623 (6)
H10A0.253 (6)0.384 (2)0.149 (3)0.062 (8)*
H10B0.378 (8)0.281 (3)0.132 (4)0.099 (11)*
H10C0.486 (9)0.387 (3)0.105 (5)0.100 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0228 (8)0.0462 (9)0.0544 (9)0.0014 (7)0.0099 (6)0.0119 (8)
N20.0346 (10)0.0441 (9)0.0579 (10)0.0028 (7)0.0055 (7)0.0006 (8)
N30.0509 (12)0.0704 (13)0.0462 (10)0.0069 (10)0.0097 (8)0.0036 (10)
O10.0222 (9)0.0820 (10)0.0750 (10)0.0048 (7)0.0074 (6)0.0234 (9)
O20.0970 (15)0.1035 (14)0.0497 (10)0.0010 (12)0.0266 (9)0.0111 (10)
O30.0786 (14)0.0907 (14)0.0671 (11)0.0254 (11)0.0237 (9)0.0013 (9)
C10.0269 (9)0.0383 (9)0.0421 (10)0.0052 (8)0.0009 (7)0.0045 (8)
C20.0251 (10)0.0390 (10)0.0500 (11)0.0060 (7)0.0020 (8)0.0025 (8)
C30.0387 (12)0.0453 (11)0.0544 (12)0.0012 (9)0.0052 (9)0.0087 (9)
C40.0454 (13)0.0573 (13)0.0427 (11)0.0056 (10)0.0017 (9)0.0100 (10)
C50.0347 (11)0.0528 (12)0.0398 (11)0.0091 (8)0.0000 (8)0.0007 (8)
C60.0308 (11)0.0411 (10)0.0483 (11)0.0038 (8)0.0015 (8)0.0008 (8)
C70.0291 (12)0.0393 (9)0.0489 (10)0.0012 (8)0.0022 (7)0.0035 (8)
C80.0423 (14)0.0601 (15)0.0529 (13)0.0035 (11)0.0083 (11)0.0146 (11)
C90.0433 (15)0.0532 (14)0.086 (2)0.0066 (11)0.0003 (13)0.0095 (12)
C100.060 (2)0.073 (2)0.0544 (14)0.003 (2)0.0082 (11)0.0004 (13)
Geometric parameters (Å, º) top
N1—C71.352 (3)O1—C71.219 (3)
N1—C11.410 (2)C1—C61.368 (3)
N2—C21.372 (3)C1—C21.428 (3)
N2—C91.450 (3)C2—C31.405 (3)
N2—C101.451 (3)C3—C41.362 (3)
N3—O21.217 (3)C4—C51.383 (3)
N3—O31.224 (3)C5—C61.387 (3)
N3—C51.445 (3)C7—C81.495 (3)
C7—N1—C1126.2 (2)N2—C2—C1120.9 (2)
C2—N2—C9118.4 (2)C3—C2—C1116.6 (2)
C2—N2—C10120.5 (2)C4—C3—C2122.2 (2)
C9—N2—C10112.6 (2)C3—C4—C5119.4 (2)
O2—N3—O3122.6 (2)C4—C5—C6120.7 (2)
O2—N3—C5118.7 (2)C4—C5—N3119.9 (2)
O3—N3—C5118.8 (2)C6—C5—N3119.4 (2)
C6—C1—N1120.9 (2)C1—C6—C5119.9 (2)
C6—C1—C2120.7 (2)O1—C7—N1122.9 (2)
N1—C1—C2118.2 (2)O1—C7—C8121.6 (2)
N2—C2—C3122.4 (2)N1—C7—C8115.5 (2)
C7—N1—C1—C646.4 (3)C3—C4—C5—C64.5 (3)
C7—N1—C1—C2138.3 (2)C3—C4—C5—N3177.9 (2)
C9—N2—C2—C311.8 (3)O2—N3—C5—C40.4 (3)
C10—N2—C2—C3133.7 (2)O3—N3—C5—C4179.5 (2)
C9—N2—C2—C1166.5 (2)O2—N3—C5—C6178.0 (2)
C10—N2—C2—C148.0 (3)O3—N3—C5—C61.9 (3)
C6—C1—C2—N2174.5 (2)N1—C1—C6—C5171.4 (2)
N1—C1—C2—N210.2 (3)C2—C1—C6—C53.8 (3)
C6—C1—C2—C37.2 (3)C4—C5—C6—C12.2 (3)
N1—C1—C2—C3168.1 (2)N3—C5—C6—C1179.8 (2)
N2—C2—C3—C4176.7 (2)C1—N1—C7—O13.2 (3)
C1—C2—C3—C44.9 (3)C1—N1—C7—C8178.1 (2)
C2—C3—C4—C50.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.042.875 (2)163
Symmetry code: (i) x+1, y, z.

Experimental details

(I)(II)(III)
Crystal data
Chemical formulaC11H15N3O3C12H17N3O3C10H13N3O3
Mr237.26251.29223.23
Crystal system, space groupMonoclinic, P21/nTriclinic, P1Monoclinic, P21
Temperature (K)293193293
a, b, c (Å)13.408 (7), 13.277 (4), 13.577 (6)4.874 (2), 11.002 (5), 12.335 (7)4.786 (1), 13.030 (3), 8.727 (2)
α, β, γ (°)90, 103.07 (4), 9076.14, 82.27, 86.9990, 94.38 (3), 90
V3)2354.3 (18)636.2 (5)542.6 (2)
Z822
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.100.100.10
Crystal size (mm)0.4 × 0.3 × 0.30.5 × 0.4 × 0.30.4 × 0.1 × 0.1
Data collection
DiffractometerSyntex P21/PC
diffractometer
Syntex P21/PC
diffractometer
Siemens P3
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4351, 4164, 2976 2900, 2569, 1391 2053, 1817, 1486
Rint0.0390.0600.033
(sin θ/λ)max1)0.5960.6400.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.110, 1.03 0.068, 0.141, 1.01 0.034, 0.085, 1.04
No. of reflections410625031754
No. of parameters427173193
No. of restraints001
H-atom treatmentAll H-atom parameters refinedH atoms treated by a mixture of independent and constrained refinementAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.20, 0.270.25, 0.300.11, 0.12
Absolute structure??Flack (1983)
Absolute structure parameter??not reliably determined

Computer programs: P3 (Siemens, 1989), P3, XDISK (Siemens, 1991), SHELXTL/PC (Sheldrick, 1994), SHELXTL/PC.

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1'i0.86 (2)1.99 (3)2.806 (3)159 (2)
N2—H2···O1'i0.92 (3)2.25 (3)3.054 (3)147 (2)
N1'—H1'···O10.85 (2)2.00 (2)2.834 (3)168 (2)
N2'—H2'···O10.85 (3)2.19 (3)3.014 (3)162 (2)
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.86 (4)2.21 (4)2.928 (4)142 (3)
N1—H1···O3ii0.86 (4)2.55 (4)3.247 (4)139 (3)
N2—H2···O1i0.87 (3)2.21 (4)2.973 (4)146 (3)
Symmetry codes: (i) x1, y, z; (ii) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.042.875 (2)163
Symmetry code: (i) x+1, y, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds