Download citation
Download citation
link to html
The title compound, C13H8Cl4N5O6P3, consists of a non-planar trimeric phosphazene ring and a bulky 2,2′-methylenebis(4-nitrophenoxy) side group which predominantly determines the molecular shape. With respect to the corresponding values in the reference compound N3P3Cl6, the endocyclic angle around one P atom is the same, but the exocyclic angle is increased, while the endocyclic and exocyclic angles about another P atom are both decreased. This situation is different from that in other reported phosphazene derivatives.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270199012986/bm1373sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270199012986/bm1373Isup2.hkl
Contains datablock I

CCDC reference: 140962

Comment top

During the last two decades, the bulky phenoxy derivatives of hexachlorocyclo-2λ5, 4λ5, 6λ5-triphosphazatriene (N3P3Cl6) and octachlorocyclo-2λ5, 4λ5, 6λ5, 8λ5-tetra- phosphazatetraene (N4P4Cl8), have found applications in the synthesis of new, small-molecule organocyclophosphazenes (Allen, 1994) and polymeric phosphazene derivatives with inorganic backbones and aryloxy side groups which may be useful as high refractive index glasses (Olshavsky & Allcock, 1995), ferroelectric and non-linear optical polymers (Allcock et al., 1995), liquid crystalline materials (Allcock & Kim, 1991), biomedical materials (Cohen et al., 1990) and small molecule models for the corresponding linear phosphazene macromolecules. The structures of the organic, inorganic or organometallic side groups are highly effective in determining the specific physical or chemical properties of phosphazene polymers (Allcock et al., 1996). N3P3Cl6 is a standard compound for trimeric phosphazene derivatives. The crystal structures of N3P3Cl6 (Bullen, 1971) and only a few of its derivatives with bulky phenoxy groups, such as [Cl5N3P3(OC6H2-2,6-tBu2-4-Me] (Hökelek et al., 1999), [Cl5N3P3(OC6H2-2, 4, 6-tBu3)] (Kılıç et al., 1996), [N3P3(OC6H4OCH2Ph-4)6] (Allcock et al., 1996), [Cl5N3P3—P3N3Cl4(OC6H3-2,6-tBu2)] (Hökelek et al., 1994), [N3P3Cl4(OC6H3Cl2-o)2] and [N3P3Cl4(OC6H3Me2-o)2] (Allcock et al., 1992), have been reported. We have investigated the reaction of sodium [2,2'-methylenebis(4-nitrophenoxide)] and hexachlorocyclotriphosphazene, N3P3Cl6. The reaction yielded two different products, namely the cis-ansa, (I), and spiro, (II), isomers.

The title compound, (I), was separated from the reaction mixture by column chromatography. The study of the title compound, (I), was undertaken in order to understand the influence of the highly hindered 2,2'-methylenebis(4-nitrophenoxy) side group on the structure of the cyclic trimeric phosphazene ring (Fig. 1).

The structure consists of a non-planar cyclic trimeric phosphazene ring with 2,2'-methylenebis(4-nitrophenoxy) group attached to P2 and P3; the phenyl rings are apparently not strictly planar, but the largest displacements from the least squares planes are only −0.016 (4) Å for C1 and 0.014 (5) Å for C13. The dihedral angle between the phenyl ring planes is 78.5 (1)°. The three N atoms are displaced from the plane through the P atoms as follows: N1 by −0.187 (4), N2 by +0.290 (3) and N3 by −0.088 (3) Å. The P—N—P bond angles range from 119.9 (2) to 120.9 (2)°. In addition, the variation in the N—P—N bond angles, ranging from 117.0 (2) to 118.2 (2)°, is small. The endocyclic N1—P2—N2 angle is the same [118.1 (2)°] and N2—P3—N3 angle is decreased [117.0 (2)°], while the exocyclic O6—P2—Cl4 angle [103.6 (1)°] is increased and O1—P3—Cl3 angle [99.4 (1)°] is decreased with the variations in the electron supply and the repulsion of the substituents with respect to the values [118.3 (2) and 101.2 (1)°, respectively] in N3P3Cl6 (Bullen, 1971). In the title compound, (I), the N1—P2—N2 and N2—P3—N3 angles are larger and the O—P—Cl angles are smaller than the corresponding ones in N3P3Cl5(NPPh3) [114.4 (1) and 107.2 (1)°; Fincham et al., 1986], N3P3Cl4(NPPh3)2 [109.2 (4) and 110.9 (4)°; Fincham et al., 1986), N3P3Cl4Ph(PPh2) [114.5 (2) and 106.7 (1)°; Allcock et al., 1990], [Cl5N3P3(OC6H2-2,6-tBu2-4-Me] [115.1 (1) and 106.79 (9)°; Hökelek et al., 1999] and [Cl5N3P3(OC6H2-2, 4, 6-tBu3)] [115.8 (1) and 104.5 (6)°; Kılıç et al., 1996], which implies less electron donation to the N3P3 ring. The exocyclic O1—P3—Cl3 [99.4 (1)°] angle is smaller, while O6—P2—Cl4 [103.6 (1)°] angle is larger than that of the exocyclic Cl1—P1—Cl2 angle [101.86 (7)°] due to the replacement of the bulky 2,2'-methylenebis(4-nitrophenoxy) group by chlorines, which may be expressed as the steric or the bulky group effect. The P1—N1—P2, P2—N2—P3 and P1—N3—P3 angles [119.9 (2), 120.8 (2) and 120.9 (2)°, respectively] appear to increase slightly with increasing electron supply to the N3P3 ring; they are little different from the corresponding value [121.4 (3)°] in N3P3Cl6 (Bullen, 1971).

In trimeric phosphazenes, the P—N bond lengths may be correlated with the orbital electronegativities of groups of atoms, as in the tetrameric phosphazenes (Bullen & Tucker, 1972). In such structures, the lengths of the P—N bonds depend on the electronegativities of the substituents. In the present structure the Cl atoms and 2,2'-methylenebis(4-nitrophenoxy) group attached to P2 and P3 seem to be slightly electron withdrawing. Thus, the P—Cl and P—O bonds are not seen to change considerably. In a given N3P3R6 structure, the lengths of the P—N bonds are generally equal, provided all the substituents (R) are the same. If R is a difunctional bulky substituent (Kubono et al., 1994) or contains different substituents, the P—N bonds may show significant variations (Fincham et al., 1986; Contractor et al., 1985). When electron-donating groups are present, different P—N distances in the cyclotri(phosphazene) ring could be expected, but there is no clear difference in the present structure between the electronegativities of the atoms attached to the P atoms; the P—N bond distances vary from 1.573 (4) to 1.581 (3) Å. In related compounds, the corresponding mean bond lengths are: 1.58 (1) Å in [Cl5N3P3(OC6H2-2, 4, 6-tBu3)] (Kılıç et al., 1996), 1.572 (3) Å in N3P3Cl4Ph(PPh2) (Allcock et al., 1990), 1.581 (3) Å in N3P3Cl6 (Bullen, 1971), 1.573 (3) Å in [Cl5N3P3(OC6H2-2,6-tBu2-4-Me] (Hökelek et al., 1999) and 1.576 (5) Å in [Cl5N3P3—P3N3Cl4(OC6H3-2,6-tBu2)] (Hökelek et al., 1994). These values for P—N bonds are considerably smaller than the P—N single-bond length of 1.78 (6) Å [cf. Table 4.1.4 in International Tables for X-Ray Crystallography (1968, Vol. III)]. The short bonds in the ring have appreciable double-bond character; this is generally observed for phosphazene derivatives (Wagner & Vos, 1968). The 2,2'-methylenebis(4-nitrophenoxy) group is very effective in determining the shape of the molecule.

Experimental top

2,2'-Methylenebis(4-nitrophenol) (10.00 g, 3.44 mmol) in tetrahydrofuran (THF) (100 ml) was added slowly over a period of 30 min to NaH (1.65 g, 6.88 mmol) in THF (50 ml) with stirring at 298 K, with argon being passed over the reaction mixture. The solvent was removed under reduced pressure and the residue was dried. To this mixture (1.00 g, 2.99 mmol), N3P3Cl6 (0.96 g, 2.76 mmol) in CH3CN (150 ml) was added slowly and the resulting solution allowed to equilibrate to ambient temperature with constant stirring. After the mixture had been vigorously stirred and boiled under reflux for 12 h, the precipitated salt (NaCl) was filtered off and the solvent removed in vacuo. The products cis-ansa, (I), and spiro, (II), were separated by column chromatography. The title compound (I) was crystallized from chloroform-petroleum ether (3:2) [m.p. 515 K, Rf: 1/3, 0.46 g (3%) yield].

Computing details top

Data collection: MolEN (Fair, 1990); cell refinement: MolEN; data reduction: MolEN; program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: MolEN; molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: MolEN.

Figures top
[Figure 1] Fig. 1. An ORTEP (Johnson, 1976) drawing of the title molecule with the atom-numbering scheme. The displacement ellipsoids are drawn at the 30% probability level.
(I) top
Crystal data top
C13H8Cl4N5O6P3Dx = 1.71 Mg m3
Mr = 564.97Cu Kα radiation, λ = 1.54184 Å
Monoclinic, P21/nCell parameters from 25 reflections
a = 16.317 (1) Åθ = 21–42°
b = 8.047 (1) ŵ = 7.39 mm1
c = 16.802 (1) ÅT = 298 K
β = 96.97 (1)°Block, colourless
V = 2189.8 (1) Å30.30 × 0.25 × 0.20 mm
Z = 4
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.013
ω/2θ scansθmax = 74.3°
Absorption correction: ψ scans
MolEN (Fair, 1990)
h = 019
Tmin = 0.156, Tmax = 0.228k = 09
4457 measured reflectionsl = 2020
4457 independent reflections3 standard reflections every 120 min
3072 reflections with F > 3.0σ(F) intensity decay: variation + 1%
Refinement top
Refinement on FH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.045w = 1 / [σ(F)2 + (0.02 F)2 + 1]
wR(F2) = 0.052(Δ/σ)max = 0.01
S = 0.85Δρmax = 0.34 e Å3
3072 reflectionsΔρmin = 0.54 e Å3
280 parameters
Crystal data top
C13H8Cl4N5O6P3V = 2189.8 (1) Å3
Mr = 564.97Z = 4
Monoclinic, P21/nCu Kα radiation
a = 16.317 (1) ŵ = 7.39 mm1
b = 8.047 (1) ÅT = 298 K
c = 16.802 (1) Å0.30 × 0.25 × 0.20 mm
β = 96.97 (1)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
3072 reflections with F > 3.0σ(F)
Absorption correction: ψ scans
MolEN (Fair, 1990)
Rint = 0.013
Tmin = 0.156, Tmax = 0.2283 standard reflections every 120 min
4457 measured reflections intensity decay: variation + 1%
4457 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.045280 parameters
wR(F2) = 0.052H-atom parameters constrained
S = 0.85Δρmax = 0.34 e Å3
3072 reflectionsΔρmin = 0.54 e Å3
Special details top

Refinement. The structure was solved by direct methods.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.53931 (7)0.3755 (2)0.11613 (8)0.0635 (3)
Cl20.35312 (9)0.4172 (2)0.06522 (9)0.0752 (3)
Cl30.31684 (7)0.1721 (1)0.02053 (6)0.0510 (2)
Cl40.27589 (8)0.1507 (2)0.29014 (8)0.0759 (3)
P10.43379 (6)0.2596 (1)0.12199 (6)0.0371 (2)
P20.37851 (6)0.0875 (1)0.24484 (6)0.0402 (2)
P30.39731 (6)0.0722 (1)0.10432 (6)0.0330 (2)
O10.4664 (2)0.2131 (3)0.1108 (1)0.0336 (5)
O20.7419 (2)0.0741 (6)0.3951 (2)0.0837 (1)
O30.7981 (2)0.0327 (6)0.2983 (2)0.0887 (1)
O40.3886 (3)0.6260 (5)0.5130 (2)0.0925 (1)
O50.3525 (3)0.4422 (8)0.5949 (2)0.1444 (1)
O60.4388 (2)0.0297 (4)0.3211 (2)0.0421 (6)
N10.4199 (3)0.2476 (4)0.2129 (2)0.0512 (8)
N20.3570 (2)0.0607 (4)0.1847 (2)0.0383 (6)
N30.4329 (2)0.0941 (4)0.0720 (2)0.0393 (7)
N40.7429 (2)0.0417 (5)0.3245 (2)0.0536 (8)
N50.3770 (3)0.4826 (7)0.5329 (2)0.0761 (1)
C10.5363 (2)0.1766 (5)0.1662 (2)0.0317 (7)
C20.5381 (2)0.2231 (4)0.2457 (2)0.0306 (7)
C30.6077 (2)0.1777 (5)0.2972 (2)0.0340 (7)
C40.6700 (2)0.0912 (5)0.2683 (2)0.0378 (8)
C50.6690 (3)0.0498 (6)0.1885 (2)0.0453 (9)
C60.6011 (2)0.0941 (6)0.1370 (2)0.0409 (8)
C70.4707 (3)0.3255 (5)0.2751 (2)0.0398 (8)
C80.4382 (2)0.2673 (5)0.3510 (2)0.0379 (8)
C90.4215 (3)0.3903 (6)0.4055 (2)0.0505 (9)
C100.3915 (3)0.3474 (7)0.4757 (3)0.0596 (1)
C110.3783 (3)0.1881 (8)0.4960 (3)0.0723 (1)
C120.3935 (3)0.0613 (7)0.4423 (3)0.0634 (1)
C130.4223 (3)0.1046 (6)0.3707 (2)0.0441 (9)
H310.6120.2060.3520.0431
H510.7150.0040.1700.0558
H610.5980.0670.0820.0507
H710.4250.3250.2340.0482
H720.4910.4360.2840.0482
H910.4290.5050.3940.0558
H1110.3580.1650.5450.0773
H1210.3830.0510.4550.0748
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0547 (6)0.0528 (6)0.0853 (8)0.0177 (5)0.0186 (6)0.0071 (6)
Cl20.0760 (8)0.0485 (6)0.0969 (9)0.0165 (6)0.0044 (7)0.0242 (6)
Cl30.0554 (6)0.0458 (5)0.0464 (5)0.0082 (5)0.0145 (4)0.0025 (5)
Cl40.0640 (6)0.0964 (9)0.0738 (7)0.0323 (6)0.0352 (5)0.0059 (7)
P10.0439 (5)0.0268 (4)0.0411 (5)0.0005 (4)0.0071 (4)0.0050 (4)
P20.0465 (5)0.0374 (5)0.0398 (5)0.0055 (5)0.0177 (4)0.0022 (5)
P30.0385 (5)0.0289 (4)0.0307 (4)0.0021 (4)0.0011 (4)0.0038 (4)
O10.040 (1)0.030 (1)0.030 (1)0.003 (1)0.000 (1)0.001 (1)
O20.074 (2)0.120 (3)0.048 (2)0.021 (2)0.021 (2)0.016 (2)
O30.054 (2)0.120 (3)0.087 (2)0.036 (2)0.011 (2)0.025 (2)
O40.079 (2)0.111 (3)0.087 (2)0.005 (2)0.014 (2)0.059 (2)
O50.160 (4)0.179 (5)0.076 (2)0.009 (4)0.065 (2)0.059 (2)
O60.051 (1)0.043 (1)0.035 (1)0.001 (1)0.013 (1)0.000 (1)
N10.084 (2)0.032 (2)0.041 (2)0.004 (2)0.019 (2)0.004 (2)
N20.036 (2)0.038 (2)0.043 (2)0.002 (1)0.014 (1)0.005 (1)
N30.055 (2)0.032 (2)0.031 (1)0.005 (2)0.008 (1)0.005 (1)
N40.043 (2)0.058 (2)0.056 (2)0.002 (2)0.008 (2)0.009 (2)
N50.056 (2)0.115 (3)0.060 (2)0.001 (2)0.019 (2)0.044 (2)
C10.034 (2)0.031 (2)0.029 (2)0.004 (2)0.002 (1)0.001 (2)
C20.034 (2)0.028 (2)0.031 (2)0.004 (2)0.008 (1)0.007 (1)
C30.038 (2)0.037 (2)0.027 (2)0.005 (2)0.006 (1)0.008 (2)
C40.032 (2)0.043 (2)0.037 (2)0.006 (2)0.001 (2)0.004 (2)
C50.040 (2)0.056 (3)0.041 (2)0.002 (2)0.011 (2)0.012 (2)
C60.038 (2)0.053 (2)0.033 (2)0.000 (2)0.009 (2)0.007 (2)
C70.049 (2)0.034 (2)0.037 (2)0.001 (2)0.009 (2)0.012 (2)
C80.035 (2)0.046 (2)0.033 (2)0.003 (2)0.006 (2)0.009 (2)
C90.041 (2)0.065 (3)0.045 (2)0.003 (2)0.009 (2)0.022 (2)
C100.048 (2)0.086 (3)0.047 (2)0.002 (3)0.014 (2)0.028 (2)
C110.066 (3)0.117 (4)0.037 (2)0.008 (3)0.026 (2)0.017 (3)
C120.074 (3)0.079 (3)0.040 (2)0.014 (3)0.020 (2)0.001 (2)
C130.042 (2)0.062 (3)0.029 (2)0.004 (2)0.010 (2)0.007 (2)
Geometric parameters (Å, º) top
Cl1—P11.971 (2)C1—C61.389 (6)
Cl2—P11.987 (2)C2—C31.390 (5)
Cl3—P31.976 (1)C2—C71.505 (5)
Cl4—P21.988 (2)C3—C41.370 (6)
P1—N11.573 (4)C3—H310.950
P1—N31.574 (3)C4—C51.379 (6)
P2—O61.587 (3)C5—C61.368 (5)
P2—N11.578 (4)C5—H510.950
P2—N21.575 (3)C6—H610.950
P3—O11.593 (3)C7—C81.514 (6)
P3—N21.574 (3)C7—H710.950
P3—N31.581 (3)C7—H720.950
O1—C11.413 (4)C8—C91.398 (6)
O2—N41.215 (5)C8—C131.383 (6)
O3—N41.219 (6)C9—C101.374 (6)
O4—N51.223 (7)C9—H910.950
O5—N51.205 (6)C10—C111.350 (8)
O6—C131.411 (5)C11—C121.404 (8)
N4—C41.471 (5)C11—H1110.950
N5—C101.490 (7)C12—C131.389 (6)
C1—C21.384 (5)C12—H1210.950
Cl1—P1—N3109.0 (1)O2—N4—O3123.2 (4)
Cl2—P1—N1109.9 (2)O2—N4—C4118.2 (4)
Cl2—P1—N3108.7 (1)O3—N4—C4118.5 (4)
N1—P1—N3118.2 (2)O4—N5—O5124.8 (5)
Cl4—P2—O6103.6 (1)O4—N5—C10118.1 (4)
Cl4—P2—N1109.7 (2)O5—N5—C10117.1 (5)
Cl4—P2—N2107.9 (1)O1—C1—C2120.0 (3)
O6—P2—N1105.4 (2)O1—C1—C6117.1 (3)
O6—P2—N2111.3 (2)C2—C1—C6122.9 (3)
N1—P2—N2118.1 (2)C1—C2—C3116.7 (3)
Cl3—P3—O199.4 (1)C1—C2—C7122.3 (3)
Cl3—P3—N2108.9 (1)C3—C2—C7120.9 (3)
Cl3—P3—N3109.9 (1)C2—C3—C4119.9 (3)
O1—P3—N2110.4 (2)C2—C3—H31120.3
O1—P3—N3109.9 (2)C4—C3—H31119.9
N2—P3—N3117.0 (2)N4—C4—C3118.6 (3)
P3—O1—C1113.9 (2)N4—C4—C5118.2 (4)
P2—O6—C13123.8 (2)C3—C4—C5123.1 (3)
P1—N1—P2119.9 (2)C4—C5—C6117.7 (4)
P2—N2—P3120.8 (2)C4—C5—H51121.1
C1—C6—C5119.6 (4)C6—C5—H51121.1
C1—C6—H61120.0C10—C9—H91119.0
C5—C6—H61120.0N5—C10—C9118.1 (5)
C2—C7—C8116.8 (3)N5—C10—C11119.1 (4)
C2—C7—H71107.0C9—C10—C11122.7 (5)
C2—C7—H72108.1C10—C11—C12118.7 (5)
C8—C7—H71107.2C10—C11—H111119.4
C8—C7—H72108.1C12—C11—H111121.9
H71—C7—H72109.5C11—C12—C13118.6 (5)
C7—C8—C9116.7 (4)C11—C12—H121119.9
C7—C8—C13126.1 (4)C13—C12—H121121.4
C9—C8—C13117.2 (4)O6—C13—C8122.0 (3)
C8—C9—C10120.2 (5)O6—C13—C12115.4 (4)
C8—C9—H91120.8C8—C13—C12122.5 (4)
P1—N3—P3120.9 (2)
Cl1—P1—N1—P2143.4 (2)O4—N5—C10—C11179.3 (5)
Cl2—P1—N1—P2106.3 (3)O5—N5—C10—C9178.3 (5)
N3—P1—N1—P219.3 (4)O5—N5—C10—C111.2 (7)
Cl1—P1—N3—P3138.8 (2)O1—C1—C2—C3177.8 (3)
Cl2—P1—N3—P3111.0 (2)O1—C1—C2—C75.5 (5)
N1—P1—N3—P315.2 (3)C6—C1—C2—C32.3 (6)
Cl4—P2—O6—C1361.0 (3)C6—C1—C2—C7174.5 (4)
N1—P2—O6—C13176.2 (3)O1—C1—C6—C5177.5 (4)
N2—P2—O6—C1354.7 (3)C2—C1—C6—C52.6 (6)
Cl4—P2—N1—P1120.6 (2)C1—C2—C3—C40.1 (6)
O6—P2—N1—P1128.5 (3)C7—C2—C3—C4176.9 (4)
N2—P2—N1—P13.5 (4)C1—C2—C7—C8133.6 (4)
Cl4—P2—N2—P3142.1 (2)C3—C2—C7—C849.7 (5)
O6—P2—N2—P3104.9 (2)C2—C3—C4—N4178.7 (4)
N1—P2—N2—P317.1 (3)C2—C3—C4—C52.2 (6)
Cl3—P3—O1—C1178.4 (2)N4—C4—C5—C6178.9 (4)
N2—P3—O1—C167.3 (3)C3—C4—C5—C61.9 (7)
N3—P3—O1—C163.2 (3)C4—C5—C6—C10.5 (6)
Cl3—P3—N2—P2146.3 (2)C2—C7—C8—C9139.8 (4)
O1—P3—N2—P2105.6 (2)C2—C7—C8—C1341.5 (6)
N3—P3—N2—P221.0 (3)C7—C8—C9—C10179.7 (4)
Cl3—P3—N3—P1129.4 (2)C13—C8—C9—C100.8 (6)
O1—P3—N3—P1122.2 (2)C7—C8—C13—O62.9 (6)
N2—P3—N3—P14.6 (3)C7—C8—C13—C12179.1 (4)
P3—O1—C1—C289.1 (4)C9—C8—C13—O6178.4 (4)
P3—O1—C1—C691.0 (4)C9—C8—C13—C122.1 (6)
P2—O6—C13—C882.4 (4)C8—C9—C10—N5178.2 (4)
P2—O6—C13—C12101.1 (4)C8—C9—C10—C111.2 (7)
O2—N4—C4—C32.8 (6)N5—C10—C11—C12178.9 (4)
O2—N4—C4—C5178.0 (4)C9—C10—C11—C121.9 (7)
O3—N4—C4—C3178.7 (4)C10—C11—C12—C130.6 (7)
O3—N4—C4—C50.5 (6)C11—C12—C13—O6177.9 (4)
O4—N5—C10—C93.6 (6)C11—C12—C13—C81.4 (7)

Experimental details

Crystal data
Chemical formulaC13H8Cl4N5O6P3
Mr564.97
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)16.317 (1), 8.047 (1), 16.802 (1)
β (°) 96.97 (1)
V3)2189.8 (1)
Z4
Radiation typeCu Kα
µ (mm1)7.39
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correctionψ scans
MolEN (Fair, 1990)
Tmin, Tmax0.156, 0.228
No. of measured, independent and
observed [F > 3.0σ(F)] reflections
4457, 4457, 3072
Rint0.013
(sin θ/λ)max1)0.624
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.052, 0.85
No. of reflections3072
No. of parameters280
No. of restraints?
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.54

Computer programs: MolEN (Fair, 1990), MolEN, SHELXS86 (Sheldrick, 1990), ORTEPII (Johnson, 1976).

Selected geometric parameters (Å, º) top
Cl1—P11.971 (2)P2—O61.587 (3)
Cl2—P11.987 (2)P2—N11.578 (4)
Cl3—P31.976 (1)P2—N21.575 (3)
Cl4—P21.988 (2)P3—O11.593 (3)
P1—N11.573 (4)P3—N21.574 (3)
P1—N31.574 (3)P3—N31.581 (3)
Cl1—P1—N3109.0 (1)Cl3—P3—N2108.9 (1)
Cl2—P1—N1109.9 (2)Cl3—P3—N3109.9 (1)
Cl2—P1—N3108.7 (1)O1—P3—N2110.4 (2)
N1—P1—N3118.2 (2)O1—P3—N3109.9 (2)
Cl4—P2—O6103.6 (1)N2—P3—N3117.0 (2)
Cl4—P2—N1109.7 (2)P3—O1—C1113.9 (2)
Cl4—P2—N2107.9 (1)P2—O6—C13123.8 (2)
O6—P2—N1105.4 (2)P1—N1—P2119.9 (2)
O6—P2—N2111.3 (2)P2—N2—P3120.8 (2)
N1—P2—N2118.1 (2)C2—C7—C8116.8 (3)
Cl3—P3—O199.4 (1)P1—N3—P3120.9 (2)
N3—P1—N1—P219.3 (4)N3—P3—N2—P221.0 (3)
N1—P1—N3—P315.2 (3)N2—P3—N3—P14.6 (3)
N2—P2—N1—P13.5 (4)C1—C2—C7—C8133.6 (4)
N1—P2—N2—P317.1 (3)C3—C2—C7—C849.7 (5)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds