Download citation
Download citation
link to html
The title compound, [(PPh3)(p-MeC6H4COO)2RuB10H8], contains an 11-vertex closo-type RuB10 cluster fused to two symmetric exo­poly­hedral Ru—O—C—O—B five-membered rings. Principal distances include Ru—B 2.010 (5)–2.392 (4) Å and Ru—O 2.218 (5) and 2.222 (2) Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100001207/bk1512sup1.cif
Contains datablocks rupme1a, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100001207/bk1512Isup2.hkl
Contains datablock I

CCDC reference: 145519

Comment top

Since the first two ruthenaboranes with exopolyhedral metal-to-cluster acetate bridges were prepared by the reaction of [RuCl2(PPh3)3] and closo-[B10H10]2- in MeCOOH/tetrahydrofuran solution (Fontaine et al., 1987), a series of such carboxylato- or thiocarboxylato-bridged ruthenaborane compounds, all with one or two Ru—O(or S)—C—O—B five-membered exocycles, have been isolated by our group from the same reactions with PhCOOH, o-PhNHC6H4COOH or PhCOSH (Zheng et al., 1999; Nie et al., 1999). We have also demonstrated that, in [(PPh3)(MeCOS)2RuB10H8], (II) (Nie et al., 1999), derived from the same reaction with MeCOSH, the existence of the two symmetric Ru—S—C(Me)—O—B cycles slightly strengthens the Ru—B bonding at the cyclized sites compared with the non-cyclized compound. To make a comparative study of the two different types of exo-cyclization, we report here the p-toluato-bridged title compound, (I), as an additional member of this class of ruthenaborane complexes. \scheme

Compound (I) (Fig. 1) displays the expected closo molecular architecture, with the Ru centre ligating to one P atom of the PPh3 ligand, six B atoms of the borane and two O atoms of the p-toluato moieties. The Ru—B2 and Ru—B3 bond lengths of 2.010 (5) and 2.027 (4) Å, respectively, are essentially the same as the corresponding distances found in [(PPh3)(PhCOO)2RuB10H8], (III) [2.014 (7) and 2.019 (7) Å; Zheng, P.-J., unpublished results], [(PPh3)Ru(µ-MeCOO)3(µ-H)2RuB10H7], (IV) [2.047 (6) Å] and [(PPh3)(MeCOO)2RuB10H7(OH)], (V) [2.044 (5) Å; (Fontaine et al., 1987], and [(PPh3)2(PhCOO)RuB10H8Cl], (VI) [2.03 (1) Å; Yao et al., 1995], but slightly shorter than those of 2.052 (6) and 2.067 (5) Å for [(PPh3)(PhCOS)2RuB10H8] (Yao et al., 1998), and 2.037 (8) and 2.062 (8) Å for (II). All these bonds are again shorter than those [2.092 (7) and 2.103 (7) Å, respectively] in the non-cyclized compound [1-(pcym)-isocloso-1-RuB10H10] (where pcym is p-cymene, 1-Me-4-PriC6H4; Bown et al., 1990). This indicates that, despite the limited data for comparison, the formation of the two types of five-membered rings in such ruthenaboranes, i.e. Ru—O—C—O—B and Ru—S—C—O—B rings, slightly strengthens the Ru—B bonding at the cyclized sites compared with the non-cyclized cage. However, the former has a relatively stronger effect than the latter, presumably due to the different electronegativity of O and S. Interestingly, it has also been found that, in both cases, the substituent effect of (thio)carboxylate moieties upon the relative shortening of the two Ru—B bond lengths is different. When the groups of cyclization are thiocarboxylates, an alkyl group (i.e. Me) has a stronger effect than an aryl group (i.e. Ph; Nie et al., 1999), while in the cases of carboxylates (with Me versus Ph or p-tolyl), the effect is found to be contrary. This may arise from the combination of the different electronic and steric natures that the two different types of substituents impart to the system.

In the present structure, the bond lengths of 1.245 (5) and 1.244 (4) Å for C1—O1 and C2—O3, respectively, are rather similar to the value expected for a double bond (ca 1.22 Å), while the distances of 1.324 (4) and 1.332 (4) Å for C1—O2 and C2—O4, respectively, are between the values expected for a single bond (ca 1.43 Å) and a double bond, suggesting a partial but unequal electron delocalization over the O—C—O system. Similar situations have also been observed in compounds (III)-(VI).

Experimental top

The synthesis of the title compound was effected by the reaction of [RuCl2(PPh3)3] (0.38 g, 0.4 mmol) and [NEt4]2B10H10 (0.16 g, 0.4 mmol) with p-toluic acid (0.11 g, 0.8 mmol) in refluxing dichloromethane for 118 h under an atmosphere of dry nitrogen. The resulting solution was reduced in volume and chromatographed using dichloromethane/light petroleum (b.p. 333–363 K; 2:1) as the eluting medium, to give red (I) at Rf = 0.88. Crystals suitable for X-ray study were grown from n-pentane/dichloromethane (2:1) solution.

Refinement top

The cage H atoms were located using Fourier methods and refined isotropically, with B—H distances in the range 1.03 (4)–1.16 (4) Å. Other H atoms were treated as riding.

Computing details top

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1994); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 1985); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1996); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. ORTEP-3 (Farrugia, 1996) drawing of (I), showing 30% probability displacement ellipsoids. H atoms have been omitted for clarity.
1,2:1,3-Bis(µ-p-toluato-O:O')-1-(triphenylphosphine-P)- 1-ruthena-closo-undecaborane top
Crystal data top
[Ru(C16H22B10O4)(C18H15P)]Z = 2
Mr = 749.78F(000) = 764
Triclinic, P1Dx = 1.365 Mg m3
a = 11.368 (2) ÅMo Kα radiation, λ = 0.71069 Å
b = 16.922 (3) ÅCell parameters from 20 reflections
c = 11.092 (2) Åθ = 9.3–10.8°
α = 103.26 (2)°µ = 0.51 mm1
β = 117.80 (1)°T = 296 K
γ = 89.64 (2)°Block, red
V = 1824.6 (7) Å30.5 × 0.4 × 0.3 mm
Data collection top
Rigaku AFC-5R
diffractometer
6051 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.000
Graphite monochromatorθmax = 26°, θmin = 2.0°
ω/2θ scansh = 014
Absorption correction: ψ-scan
(North et al., 1968)
k = 2020
Tmin = 0.78, Tmax = 0.86l = 1311
7172 measured reflections3 standard reflections every 300 reflections
7172 independent reflections intensity decay: 2.6%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H atoms treated by a mixture of independent and constrained refinement
S = 1.02Calculated w = 1/[σ2(Fo2) + (0.0628P)2 + 0.8346P]
where P = (Fo2 + 2Fc2)/3
7172 reflections(Δ/σ)max = 0.004
483 parametersΔρmax = 1.00 (1.02Å from Ru1) e Å3
0 restraintsΔρmin = 0.87 (1.00Å from Ru1) e Å3
Crystal data top
[Ru(C16H22B10O4)(C18H15P)]γ = 89.64 (2)°
Mr = 749.78V = 1824.6 (7) Å3
Triclinic, P1Z = 2
a = 11.368 (2) ÅMo Kα radiation
b = 16.922 (3) ŵ = 0.51 mm1
c = 11.092 (2) ÅT = 296 K
α = 103.26 (2)°0.5 × 0.4 × 0.3 mm
β = 117.80 (1)°
Data collection top
Rigaku AFC-5R
diffractometer
6051 reflections with I > 2σ(I)
Absorption correction: ψ-scan
(North et al., 1968)
Rint = 0.000
Tmin = 0.78, Tmax = 0.863 standard reflections every 300 reflections
7172 measured reflections intensity decay: 2.6%
7172 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.123H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 1.00 (1.02Å from Ru1) e Å3
7172 reflectionsΔρmin = 0.87 (1.00Å from Ru1) e Å3
483 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ru10.51847 (2)0.719914 (15)0.90961 (2)0.04047 (10)
P10.76549 (8)0.72704 (5)1.01619 (9)0.04374 (19)
O10.5712 (2)0.76244 (13)1.1356 (2)0.0457 (5)
O20.5236 (3)0.88244 (14)1.0854 (3)0.0545 (6)
O30.5397 (2)0.59192 (13)0.9262 (2)0.0463 (5)
O40.4411 (3)0.56079 (15)0.6919 (2)0.0575 (6)
C10.5693 (3)0.83710 (19)1.1771 (4)0.0459 (7)
C20.5113 (3)0.5408 (2)0.8135 (3)0.0467 (7)
C110.6142 (3)0.87824 (19)1.3254 (4)0.0468 (7)
C120.6566 (4)0.8331 (2)1.4242 (4)0.0580 (9)
H120.65780.77701.39630.070*
C130.6972 (4)0.8704 (2)1.5643 (4)0.0619 (9)
H130.72540.83911.62960.074*
C140.6965 (4)0.9544 (2)1.6089 (4)0.0559 (8)
C150.6530 (4)0.9985 (2)1.5082 (4)0.0599 (9)
H150.65161.05451.53600.072*
C160.6119 (4)0.9624 (2)1.3686 (4)0.0546 (8)
H160.58280.99371.30330.065*
C170.7445 (5)0.9955 (3)1.7616 (4)0.0750 (11)
H17A0.76970.95531.81520.112*
H17B0.67401.02261.77180.112*
H17C0.82051.03491.79540.112*
C210.5586 (3)0.46038 (19)0.8054 (3)0.0467 (7)
C220.6465 (4)0.4400 (2)0.9295 (3)0.0522 (8)
H220.66750.47551.01620.063*
C230.7020 (4)0.3681 (2)0.9243 (4)0.0557 (8)
H230.76040.35541.00810.067*
C240.6732 (4)0.3140 (2)0.7971 (4)0.0519 (8)
C250.5840 (4)0.3341 (2)0.6744 (4)0.0636 (10)
H250.56200.29790.58800.076*
C260.5276 (4)0.4054 (2)0.6764 (4)0.0616 (9)
H260.46860.41740.59230.074*
C270.7361 (5)0.2357 (3)0.7908 (5)0.0728 (11)
H27A0.70420.20660.69410.109*
H27B0.71260.20260.83770.109*
H27C0.83170.24800.83660.109*
C310.8590 (3)0.8218 (2)1.1484 (4)0.0499 (7)
C320.8282 (4)0.8965 (2)1.1163 (5)0.0656 (10)
H320.75890.89821.02870.079*
C330.9011 (4)0.9687 (2)1.2152 (6)0.0753 (12)
H330.87991.01841.19280.090*
C341.0037 (4)0.9679 (3)1.3452 (5)0.0746 (12)
H341.05251.01651.41010.090*
C351.0332 (5)0.8949 (3)1.3785 (5)0.0740 (11)
H351.10170.89411.46710.089*
C360.9619 (4)0.8217 (2)1.2810 (4)0.0588 (9)
H360.98340.77241.30490.071*
C410.8365 (3)0.6494 (2)1.1139 (3)0.0493 (7)
C420.7891 (4)0.6341 (2)1.2025 (4)0.0555 (8)
H420.71890.66071.20690.067*
C430.8454 (4)0.5800 (2)1.2835 (4)0.0671 (10)
H430.81350.57041.34300.080*
C440.9484 (5)0.5400 (3)1.2769 (5)0.0784 (13)
H440.98540.50281.33070.094*
C450.9969 (5)0.5550 (3)1.1908 (5)0.0772 (12)
H451.06790.52861.18800.093*
C460.9408 (4)0.6094 (2)1.1076 (4)0.0626 (9)
H460.97310.61881.04840.075*
C510.8277 (3)0.7122 (2)0.8885 (4)0.0512 (8)
C520.9146 (4)0.7696 (3)0.8900 (4)0.0635 (9)
H520.94630.81850.96010.076*
C530.9546 (4)0.7544 (4)0.7867 (5)0.0802 (13)
H531.01260.79350.78800.096*
C540.9102 (5)0.6832 (4)0.6839 (5)0.0837 (14)
H540.93820.67370.61590.100*
C550.8243 (4)0.6255 (3)0.6804 (5)0.0754 (12)
H550.79380.57680.60990.090*
C560.7827 (4)0.6393 (3)0.7818 (4)0.0657 (10)
H560.72430.59980.77890.079*
B20.4682 (4)0.8340 (2)0.9416 (4)0.0495 (8)
B30.4171 (4)0.6447 (3)0.7129 (4)0.0533 (9)
B40.5094 (4)0.8241 (3)0.8083 (4)0.0535 (9)
B50.4845 (4)0.7280 (3)0.6938 (4)0.0531 (9)
B60.2858 (4)0.6799 (3)0.7471 (4)0.0546 (9)
B70.3122 (4)0.7726 (3)0.8588 (5)0.0543 (9)
B80.3468 (5)0.8539 (3)0.7899 (5)0.0624 (11)
B90.3022 (4)0.6922 (3)0.5943 (5)0.0585 (10)
B100.3606 (4)0.7974 (3)0.6414 (5)0.0592 (10)
B110.2317 (4)0.7662 (3)0.6745 (5)0.0610 (11)
H40.593 (3)0.868 (2)0.836 (4)0.049 (9)*
H50.556 (4)0.707 (2)0.650 (4)0.066 (11)*
H60.219 (4)0.624 (2)0.735 (4)0.054 (10)*
H70.277 (4)0.785 (3)0.932 (4)0.072 (12)*
H80.311 (4)0.912 (2)0.794 (4)0.057 (10)*
H90.245 (4)0.659 (2)0.491 (4)0.068 (12)*
H100.343 (3)0.8243 (19)0.560 (3)0.039 (8)*
H110.127 (4)0.776 (2)0.615 (4)0.060 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.04063 (14)0.04307 (15)0.04107 (15)0.00759 (10)0.02028 (11)0.01517 (10)
P10.0407 (4)0.0440 (4)0.0460 (4)0.0070 (3)0.0198 (3)0.0126 (3)
O10.0558 (12)0.0384 (11)0.0458 (11)0.0111 (9)0.0257 (10)0.0126 (9)
O20.0730 (15)0.0401 (12)0.0584 (14)0.0160 (11)0.0353 (12)0.0186 (11)
O30.0563 (12)0.0419 (11)0.0390 (11)0.0035 (9)0.0222 (10)0.0085 (9)
O40.0660 (15)0.0550 (14)0.0391 (12)0.0091 (11)0.0163 (11)0.0090 (10)
C10.0476 (16)0.0434 (17)0.0529 (18)0.0086 (13)0.0269 (14)0.0171 (14)
C20.0492 (16)0.0474 (17)0.0404 (16)0.0002 (13)0.0202 (13)0.0086 (13)
C110.0510 (17)0.0399 (16)0.0516 (18)0.0054 (13)0.0270 (14)0.0098 (13)
C120.074 (2)0.0382 (17)0.057 (2)0.0082 (16)0.0288 (18)0.0107 (15)
C130.079 (2)0.053 (2)0.053 (2)0.0113 (18)0.0289 (19)0.0201 (17)
C140.0595 (19)0.0455 (18)0.056 (2)0.0045 (15)0.0256 (16)0.0041 (15)
C150.079 (2)0.0334 (16)0.065 (2)0.0018 (16)0.035 (2)0.0061 (15)
C160.066 (2)0.0385 (16)0.060 (2)0.0050 (15)0.0293 (17)0.0152 (15)
C170.093 (3)0.066 (3)0.061 (2)0.006 (2)0.038 (2)0.005 (2)
C210.0542 (17)0.0436 (16)0.0424 (16)0.0009 (13)0.0249 (14)0.0067 (13)
C220.074 (2)0.0444 (17)0.0374 (16)0.0007 (15)0.0273 (15)0.0072 (13)
C230.080 (2)0.0450 (18)0.0394 (16)0.0070 (16)0.0258 (16)0.0129 (14)
C240.065 (2)0.0444 (17)0.0484 (18)0.0048 (15)0.0308 (16)0.0073 (14)
C250.084 (3)0.060 (2)0.0394 (17)0.0113 (19)0.0301 (18)0.0013 (16)
C260.069 (2)0.065 (2)0.0374 (17)0.0089 (18)0.0170 (16)0.0065 (16)
C270.097 (3)0.058 (2)0.070 (3)0.023 (2)0.048 (2)0.0112 (19)
C310.0460 (16)0.0464 (17)0.0569 (19)0.0045 (13)0.0260 (15)0.0094 (15)
C320.054 (2)0.052 (2)0.079 (3)0.0050 (16)0.0223 (19)0.0164 (19)
C330.073 (3)0.044 (2)0.111 (4)0.0068 (18)0.047 (3)0.014 (2)
C340.071 (3)0.059 (2)0.084 (3)0.0050 (19)0.040 (2)0.006 (2)
C350.076 (3)0.068 (3)0.061 (2)0.004 (2)0.026 (2)0.000 (2)
C360.059 (2)0.056 (2)0.055 (2)0.0027 (16)0.0234 (17)0.0103 (16)
C410.0476 (16)0.0414 (16)0.0463 (17)0.0077 (13)0.0129 (14)0.0097 (14)
C420.0603 (19)0.0519 (19)0.0460 (18)0.0131 (16)0.0196 (15)0.0105 (15)
C430.084 (3)0.060 (2)0.0466 (19)0.011 (2)0.0205 (19)0.0186 (17)
C440.085 (3)0.065 (3)0.069 (3)0.025 (2)0.018 (2)0.029 (2)
C450.070 (2)0.070 (3)0.080 (3)0.033 (2)0.025 (2)0.023 (2)
C460.055 (2)0.058 (2)0.066 (2)0.0154 (16)0.0222 (17)0.0154 (18)
C510.0442 (16)0.062 (2)0.0491 (18)0.0143 (14)0.0230 (14)0.0164 (16)
C520.0502 (19)0.084 (3)0.062 (2)0.0110 (18)0.0273 (17)0.026 (2)
C530.062 (2)0.117 (4)0.084 (3)0.019 (2)0.045 (2)0.044 (3)
C540.073 (3)0.128 (4)0.069 (3)0.036 (3)0.047 (2)0.031 (3)
C550.064 (2)0.093 (3)0.064 (2)0.026 (2)0.032 (2)0.008 (2)
C560.055 (2)0.076 (3)0.064 (2)0.0133 (18)0.0304 (18)0.009 (2)
B20.055 (2)0.048 (2)0.056 (2)0.0159 (16)0.0309 (18)0.0240 (17)
B30.0485 (19)0.067 (2)0.0408 (19)0.0086 (17)0.0164 (16)0.0180 (17)
B40.053 (2)0.061 (2)0.056 (2)0.0098 (18)0.0284 (18)0.0274 (19)
B50.0482 (19)0.071 (3)0.046 (2)0.0125 (18)0.0238 (16)0.0228 (19)
B60.0398 (18)0.066 (3)0.052 (2)0.0035 (17)0.0141 (16)0.0203 (19)
B70.0457 (19)0.071 (3)0.060 (2)0.0173 (18)0.0298 (18)0.032 (2)
B80.067 (3)0.071 (3)0.070 (3)0.029 (2)0.039 (2)0.041 (2)
B90.053 (2)0.072 (3)0.045 (2)0.0118 (19)0.0161 (17)0.023 (2)
B100.059 (2)0.076 (3)0.057 (2)0.020 (2)0.0303 (19)0.037 (2)
B110.050 (2)0.083 (3)0.059 (2)0.020 (2)0.0254 (19)0.035 (2)
Geometric parameters (Å, º) top
Ru1—B22.010 (5)C34—H340.9300
Ru1—B32.027 (4)C35—C361.394 (6)
Ru1—O32.218 (5)C35—H350.9300
Ru1—O12.222 (2)C36—H360.9300
Ru1—B42.276 (5)C41—C461.383 (5)
Ru1—B52.277 (4)C41—C421.391 (5)
Ru1—B72.362 (4)C42—C431.375 (5)
Ru1—B62.392 (4)C42—H420.9300
Ru1—P12.4779 (10)C43—C441.372 (6)
P1—C311.827 (4)C43—H430.9300
P1—C511.827 (3)C44—C451.373 (7)
P1—C411.838 (4)C44—H440.9300
O1—C11.245 (5)C45—C461.393 (6)
O2—C11.324 (4)C45—H450.9300
O2—B21.443 (5)C46—H460.9300
O3—C21.244 (4)C51—C521.382 (6)
O4—C21.332 (4)C51—C561.400 (6)
O4—B31.430 (6)C52—C531.391 (6)
C1—C111.466 (5)C52—H520.9300
C2—C211.459 (5)C53—C541.359 (8)
C11—C121.380 (5)C53—H530.9300
C11—C161.399 (5)C54—C551.367 (7)
C12—C131.382 (5)C54—H540.9300
C12—H120.9300C55—C561.384 (6)
C13—C141.396 (6)C55—H550.9300
C13—H130.9300C56—H560.9300
C14—C151.383 (5)B2—B81.714 (6)
C14—C171.500 (5)B2—B41.722 (6)
C15—C161.372 (5)B2—B71.771 (6)
C15—H150.9300B3—B51.710 (7)
C16—H160.9300B3—B91.718 (6)
C17—H17A0.9600B3—B61.772 (6)
C17—H17B0.9600B4—B51.749 (7)
C17—H17C0.9600B4—B101.788 (6)
C21—C261.400 (5)B4—B81.843 (6)
C21—C221.394 (5)B4—H41.08 (4)
C22—C231.369 (5)B5—B101.797 (6)
C22—H220.9300B5—B91.859 (6)
C23—C241.385 (5)B5—H51.14 (4)
C23—H230.9300B6—B71.689 (7)
C24—C251.384 (5)B6—B111.796 (7)
C24—C271.504 (5)B6—B91.845 (6)
C25—C261.363 (6)B6—H61.16 (4)
C25—H250.9300B7—B111.785 (6)
C26—H260.9300B7—B81.846 (6)
C27—H27A0.9600B7—H71.05 (4)
C27—H27B0.9600B8—B111.774 (8)
C27—H27C0.9600B8—B101.780 (7)
C31—C361.388 (5)B8—H81.06 (4)
C31—C321.391 (6)B9—B101.775 (8)
C32—C331.389 (6)B9—B111.772 (7)
C32—H320.9300B9—H91.03 (4)
C33—C341.371 (7)B10—B111.778 (6)
C33—H330.9300B10—H101.04 (3)
C34—C351.364 (7)B11—H111.10 (4)
B2—Ru1—B3117.85 (18)C55—C54—H54120.0
B2—Ru1—O3158.23 (13)C54—C55—C56120.1 (5)
B3—Ru1—O371.76 (16)C54—C55—H55120.0
B2—Ru1—O172.54 (13)C56—C55—H55120.0
B3—Ru1—O1153.68 (14)C55—C56—C51120.6 (4)
O3—Ru1—O190.91 (9)C55—C56—H56119.7
B2—Ru1—B446.86 (17)C51—C56—H56119.7
B3—Ru1—B488.0 (2)O2—B2—B8129.4 (3)
O3—Ru1—B4154.17 (14)O2—B2—B4135.6 (3)
O1—Ru1—B4113.28 (16)B8—B2—B464.9 (2)
B2—Ru1—B588.65 (16)O2—B2—B7120.7 (3)
B3—Ru1—B546.36 (18)B8—B2—B763.9 (3)
O3—Ru1—B5109.89 (13)B4—B2—B7103.5 (3)
O1—Ru1—B5158.18 (14)O2—B2—Ru1117.5 (2)
B4—Ru1—B545.17 (17)B8—B2—Ru1112.6 (3)
B2—Ru1—B746.94 (16)B4—B2—Ru174.7 (2)
B3—Ru1—B785.19 (17)B7—B2—Ru177.0 (2)
O3—Ru1—B7119.97 (13)O4—B3—B5131.9 (3)
O1—Ru1—B786.76 (12)O4—B3—B9128.8 (3)
B4—Ru1—B772.47 (15)B5—B3—B965.7 (3)
B5—Ru1—B788.29 (14)O4—B3—B6123.0 (3)
B2—Ru1—B685.89 (17)B5—B3—B6104.7 (3)
B3—Ru1—B646.39 (16)B9—B3—B663.8 (2)
O3—Ru1—B688.96 (13)O4—B3—Ru1118.5 (2)
O1—Ru1—B6115.92 (12)B5—B3—Ru174.5 (2)
B4—Ru1—B688.35 (16)B9—B3—Ru1112.6 (3)
B5—Ru1—B672.35 (15)B6—B3—Ru177.7 (2)
B7—Ru1—B641.62 (17)B2—B4—B5119.8 (3)
B2—Ru1—P1108.75 (13)B2—B4—B10109.6 (3)
B3—Ru1—P1114.63 (12)B5—B4—B1061.1 (3)
O3—Ru1—P181.60 (7)B2—B4—B857.3 (2)
O1—Ru1—P180.93 (6)B5—B4—B8109.4 (3)
B4—Ru1—P192.97 (11)B10—B4—B858.7 (3)
B5—Ru1—P195.28 (10)B2—B4—Ru158.43 (18)
B7—Ru1—P1155.45 (13)B5—B4—Ru167.4 (2)
B6—Ru1—P1160.95 (12)B10—B4—Ru1105.6 (3)
C31—P1—C51105.62 (17)B8—B4—Ru197.2 (2)
C31—P1—C41102.1 (2)B2—B4—H4112.8 (19)
C51—P1—C41104.33 (16)B5—B4—H4119.5 (18)
C31—P1—Ru1115.64 (12)B10—B4—H4124.8 (18)
C51—P1—Ru1114.11 (11)B8—B4—H4123.3 (18)
C41—P1—Ru1113.68 (12)Ru1—B4—H4126.1 (18)
C1—O1—Ru1114.5 (2)B3—B5—B4120.0 (3)
C1—O2—B2112.3 (3)B3—B5—B10109.2 (3)
C2—O3—Ru1114.7 (2)B4—B5—B1060.6 (3)
C2—O4—B3112.0 (3)B3—B5—B957.4 (2)
O1—C1—O2120.0 (3)B4—B5—B9108.6 (3)
O1—C1—C11122.7 (3)B10—B5—B958.1 (3)
O2—C1—C11117.3 (3)B3—B5—Ru159.10 (18)
O3—C2—O4119.5 (3)B4—B5—Ru167.4 (2)
O3—C2—C21123.8 (3)B10—B5—Ru1105.3 (2)
O4—C2—C21116.6 (3)B9—B5—Ru197.4 (2)
C12—C11—C16119.2 (3)B3—B5—H5109 (2)
C12—C11—C1119.6 (3)B4—B5—H5123 (2)
C16—C11—C1121.2 (3)B10—B5—H5128.7 (19)
C11—C12—C13120.6 (3)B9—B5—H5122 (2)
C11—C12—H12119.7Ru1—B5—H5124 (2)
C13—C12—H12119.7B7—B6—B3118.9 (3)
C12—C13—C14120.8 (3)B7—B6—B1161.5 (3)
C12—C13—H13119.6B3—B6—B11108.3 (3)
C14—C13—H13119.6B7—B6—B9109.4 (3)
C15—C14—C13117.7 (4)B3—B6—B956.7 (2)
C15—C14—C17121.3 (4)B11—B6—B958.2 (2)
C13—C14—C17121.0 (4)B7—B6—Ru168.26 (19)
C16—C15—C14122.3 (3)B3—B6—Ru155.91 (17)
C16—C15—H15118.9B11—B6—Ru1103.9 (3)
C14—C15—H15118.9B9—B6—Ru194.0 (2)
C15—C16—C11119.5 (3)B7—B6—H6124.6 (18)
C15—C16—H16120.3B3—B6—H6108.8 (18)
C11—C16—H16120.3B11—B6—H6127.7 (18)
C14—C17—H17A109.5B9—B6—H6120.0 (18)
C14—C17—H17B109.5Ru1—B6—H6127.3 (18)
H17A—C17—H17B109.5B6—B7—B2121.0 (3)
C14—C17—H17C109.5B6—B7—B1162.2 (3)
H17A—C17—H17C109.5B2—B7—B11108.9 (3)
H17B—C17—H17C109.5B6—B7—B8110.7 (3)
C26—C21—C22118.5 (3)B2—B7—B856.5 (2)
C26—C21—C2122.1 (3)B11—B7—B858.5 (3)
C22—C21—C2119.2 (3)B6—B7—Ru170.1 (2)
C23—C22—C21120.3 (3)B2—B7—Ru156.03 (19)
C23—C22—H22119.8B11—B7—Ru1105.5 (2)
C21—C22—H22119.8B8—B7—Ru194.2 (2)
C22—C23—C24121.4 (3)B6—B7—H7124 (2)
C22—C23—H23119.3B2—B7—H7105 (2)
C24—C23—H23119.3B11—B7—H7132 (2)
C23—C24—C25117.8 (3)B8—B7—H7122 (2)
C23—C24—C27121.6 (3)Ru1—B7—H7122 (2)
C25—C24—C27120.5 (3)B2—B8—B11112.1 (3)
C26—C25—C24122.0 (3)B2—B8—B10110.4 (3)
C26—C25—H25119.0B11—B8—B1060.0 (3)
C24—C25—H25119.0B2—B8—B759.5 (2)
C25—C26—C21119.9 (3)B11—B8—B759.1 (3)
C25—C26—H26120.0B10—B8—B7102.5 (3)
C21—C26—H26120.0B2—B8—B457.8 (2)
C24—C27—H27A109.5B11—B8—B4104.1 (3)
C24—C27—H27B109.5B10—B8—B459.1 (2)
H27A—C27—H27B109.5B7—B8—B496.1 (3)
C24—C27—H27C109.5B2—B8—H8119 (2)
H27A—C27—H27C109.5B11—B8—H8118 (2)
H27B—C27—H27C109.5B10—B8—H8123 (2)
C36—C31—C32118.4 (3)B7—B8—H8126 (2)
C36—C31—P1121.9 (3)B4—B8—H8131 (2)
C32—C31—P1119.7 (3)B3—B9—B10109.8 (3)
C33—C32—C31120.0 (4)B3—B9—B11111.9 (3)
C33—C32—H32120.0B10—B9—B1160.2 (3)
C31—C32—H32120.0B3—B9—B659.5 (2)
C34—C33—C32121.2 (4)B10—B9—B6103.4 (3)
C34—C33—H33119.4B11—B9—B659.5 (3)
C32—C33—H33119.4B3—B9—B556.9 (2)
C35—C34—C33119.3 (4)B10—B9—B559.2 (2)
C35—C34—H34120.4B11—B9—B5104.0 (3)
C33—C34—H34120.4B6—B9—B596.2 (3)
C34—C35—C36120.7 (4)B3—B9—H9119 (2)
C34—C35—H35119.7B10—B9—H9123 (2)
C36—C35—H35119.7B11—B9—H9120 (2)
C31—C36—C35120.5 (4)B6—B9—H9126 (2)
C31—C36—H36119.8B5—B9—H9130 (2)
C35—C36—H36119.8B9—B10—B1159.8 (3)
C46—C41—C42119.4 (3)B9—B10—B8112.4 (3)
C46—C41—P1121.6 (3)B11—B10—B859.8 (3)
C42—C41—P1118.9 (3)B9—B10—B4110.7 (3)
C43—C42—C41120.5 (4)B11—B10—B4106.2 (3)
C43—C42—H42119.8B8—B10—B462.2 (3)
C41—C42—H42119.8B9—B10—B562.7 (3)
C44—C43—C42120.2 (4)B11—B10—B5106.3 (3)
C44—C43—H43119.9B8—B10—B5110.1 (3)
C42—C43—H43119.9B4—B10—B558.4 (2)
C43—C44—C45119.9 (4)B9—B10—H10117.3 (18)
C43—C44—H44120.0B11—B10—H10123.1 (17)
C45—C44—H44120.0B8—B10—H10119.4 (18)
C44—C45—C46120.7 (4)B4—B10—H10123.2 (18)
C44—C45—H45119.7B5—B10—H10122.1 (17)
C46—C45—H45119.7B8—B11—B9112.8 (3)
C41—C46—C45119.3 (4)B8—B11—B1060.1 (3)
C41—C46—H46120.4B9—B11—B1060.0 (3)
C45—C46—H46120.4B8—B11—B762.5 (3)
C52—C51—C56118.3 (4)B9—B11—B7108.4 (3)
C52—C51—P1123.6 (3)B10—B11—B7105.1 (3)
C56—C51—P1118.1 (3)B8—B11—B6109.1 (3)
C51—C52—C53120.0 (4)B9—B11—B662.3 (3)
C51—C52—H52120.0B10—B11—B6105.3 (3)
C53—C52—H52120.0B7—B11—B656.3 (2)
C54—C53—C52121.0 (5)B8—B11—H11117 (2)
C54—C53—H53119.5B9—B11—H11120 (2)
C52—C53—H53119.5B10—B11—H11123.6 (19)
C53—C54—C55120.0 (4)B7—B11—H11123.1 (19)
C53—C54—H54120.0B6—B11—H11124 (2)

Experimental details

Crystal data
Chemical formula[Ru(C16H22B10O4)(C18H15P)]
Mr749.78
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)11.368 (2), 16.922 (3), 11.092 (2)
α, β, γ (°)103.26 (2), 117.80 (1), 89.64 (2)
V3)1824.6 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.51
Crystal size (mm)0.5 × 0.4 × 0.3
Data collection
DiffractometerRigaku AFC-5R
diffractometer
Absorption correctionψ-scan
(North et al., 1968)
Tmin, Tmax0.78, 0.86
No. of measured, independent and
observed [I > 2σ(I)] reflections
7172, 7172, 6051
Rint0.000
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.123, 1.02
No. of reflections7172
No. of parameters483
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.00 (1.02Å from Ru1), 0.87 (1.00Å from Ru1)

Computer programs: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1994), MSC/AFC Diffractometer Control Software, TEXSAN (Molecular Structure Corporation, 1985), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1996), SHELXL97.

Selected geometric parameters (Å, º) top
Ru1—B22.010 (5)Ru1—P12.4779 (10)
Ru1—B32.027 (4)O1—C11.245 (5)
Ru1—O32.218 (5)O2—C11.324 (4)
Ru1—O12.222 (2)O2—B21.443 (5)
Ru1—B42.276 (5)O3—C21.244 (4)
Ru1—B52.277 (4)O4—C21.332 (4)
Ru1—B72.362 (4)O4—B31.430 (6)
Ru1—B62.392 (4)
B2—Ru1—O3158.23 (13)B2—Ru1—B685.89 (17)
B3—Ru1—O371.76 (16)O3—Ru1—B688.96 (13)
B2—Ru1—O172.54 (13)O1—Ru1—B6115.92 (12)
B3—Ru1—O1153.68 (14)B2—Ru1—P1108.75 (13)
O3—Ru1—O190.91 (9)B3—Ru1—P1114.63 (12)
O3—Ru1—B4154.17 (14)O3—Ru1—P181.60 (7)
O1—Ru1—B4113.28 (16)O1—Ru1—P180.93 (6)
O3—Ru1—B5109.89 (13)B4—Ru1—P192.97 (11)
O1—Ru1—B5158.18 (14)B5—Ru1—P195.28 (10)
O3—Ru1—B7119.97 (13)B7—Ru1—P1155.45 (13)
O1—Ru1—B786.76 (12)B6—Ru1—P1160.95 (12)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds