Download citation
Download citation
link to html
The X-ray crystal structures of P,P'-imino­bis­(di­phenyl­seleno­phosphine) tetra­hydro­furan solvate, C24H21NP2Se2·C4H8O, (I), and bis­(tetra­hydro­furan) solvate, C24H21NP2Se2·2C4H8O, (II), have been determined; (I) has twofold crystallographic symmetry. In each compound, the O atom of one mol­ecule of tetra­hydro­furan is hydrogen bonded to the amide-H atom of HN(SePPh2)2. The conformation of the Se-P-N-P-Se chains in (I), (II), and the crystal structure of the unsolvated HN(SePPh2)2 are different.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010827019901584X/bk1508sup1.cif
Contains datablocks default, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827019901584X/bk1508Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827019901584X/bk1508IIsup3.hkl
Contains datablock sad

CCDC references: 143267; 143268

Comment top

As part of our work on soluble rare-earth chalcogenide species (Pernin & Ibers, 1997, 1999a or b) we have investigated rare-earth complexes of the imidodiphosphinochalcogenido ligand [N(QPPh2)2]- (Q = S, Se) (Pernin & Ibers, 1999a or b). In addition to η2-coordination through the two chalcogen atoms, the ligand adopts η3-coordination through the two chalcogen atoms and the N atom to the rare-earth atoms. This is in contrast to the previously reported transition- and main group-metal complexes containing the ligand (Bhattacharyya, Novosad et al., 1995; Garcia-Montalvo, Slawin et al., 1997) that typically adopt η2– coordination. In this paper we show that the conformation of the Se—P—N—P—Se chain is sensitive to solvation. \sch

Figs. 1 and 2 show displacement ellipsoid diagrams with atom numbering of compounds (I) and (II). The molecules in (I) have an imposed crystallographic 2 axis. Tables 1, 2 and 3 contain selected bond distances and angles. In (I) and (II), P—Se [2.094 (1) Å for (I); 2.097 (1) Å and 2.099 (1) Å for (II)] and P—N [1.676 (1) Å for (I); 1.690 (2) Å and 1.680 (2) Å for (II)]. Bonding distances are similar to each other and to the P—Se distances of 2.085 (1) Å and 2.101 (1) Å and the P—N distances of 1.678 (4) Å and 1.686 (3) Å in unsolvated HN(SePPh2)2. The conformations of the Se—P—N—P—Se chains in the three compounds differ markedly, the Se—P···P—Se 'torsion angles' being 81.75 (3), 179.19 (3) and 154°, respectively. Both (II) and the unsolvated species are approximately anti with respect to that torsion angle whereas (I) is approximately gauche. The S—P···P—S 'torsion angle' is 156° in the unsolvated sulfur analogue, HN(SPPh2)2 (Husebye & Maartmann, 1983).

In the structure of the unsolvated species, HN(SePPh2)2 molecules are linked by N—H···Se hydrogen bonds to form dimer pairs. In the structure of HN(SPPh2)2 there are similar dimers. In each of the present structures, the HN(SePPh2)2 molecule is linked to a THF molecule through a N1—H1A···O1 hydrogen bond (Table 2). The N1···O1 distances [2.771 (3) Å for (I) and 2.815 (3) Å for (II)] are similar to the distances in other thf—amide hydrogen-bonded interactions (Etter et al., 1990; Bonamico et al., 1991). The dihedral angle between the hydrogen-bonded thf molecules and the P—N—P plane is 79.3 (1) in (I) and 25.3 (3)° in (II). Some atoms of the thf molecules show large displacement ellipsoids for data collected at 153 K. This may be due to conformational changes between the twist and envelope forms of the five- membered rings (Cremer & Pople, 1975; Luo et al., 1990; Westerhausen et al.,1998). Nonetheless, C—O and C—C bonds are normal in (I) and exhibit some unreasonable distances in (II) (for example C25—C26= 1.330 (6) Å, see Tables 1 and 3 for additional distances and angles). This apparent disorder in the hydrogen-bonded thf molecule in (II) could not be modeled adequately with the superposition of more than one molecule of thf of differing conformation.

P—C bond distances for (I) [1.814 (2) and 1.815 (2) Å] and (II) [1.815 (3), 1.820 (2), 1.812 (3), 1.818 (2) Å] are normal as are the average C—C distances, 1.381 (9) and 1.386 (8) Å.

Experimental top

Unsolvated HN(SePPh2)2 was prepared by a literature method (Bhattacharya, Slawin et al., 1995). The reaction of more than one equivalent of HN(SePPh2)2 with Cp3Y (Cp = cyclopentadienyl) in thf produces Cp2Y[N(SePPh2)2] in addition to leaving unreacted HN(SePPh2)2 in solution (Pernin & Ibers, 1999a or b). Upon dilution of the thf solution with pentane, crystals of HN(SePPh2)2 containing one, (I), and two, (II), molecules of thf were cyrstallized at 258 K.

Refinement top

Data collections were performed on crystals coated in immersion oil and frozen at 153 K in Nylon loops. Both structures were solved by standard Patterson methods and refined by full-matrix least-squares methods (Sheldrick, 1997). Anisotropic displacement parameters were used for all non-hydrogen atoms. H atoms were placed at calculated positions (0.88 Å for amide protons; 0.95 Å for aliphatic protons; 0.99 Å for aromatic protons) and refined with a riding model. The Uiso value for a given H atom was assigned as 1.2 times the Uiso of the atom to which it is attached.

Computing details top

For both compounds, data collection: SMART (Bruker, 1999); cell refinement: SMART; data reduction: SAINT-Plus (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL97 (Sheldrick, 1997); software used to prepare material for publication: SHELXTL97.

Figures top
[Figure 1] Fig. 1. Structure of (I) showing 50% probability displacement ellipsoids and H atoms, in idealized positions, as small circles.
[Figure 2] Fig. 2. Structure of (II) showing 50% probability displacement ellipsoids and H atoms, in idealized positions, as small circles.
(I) 'N-(diphenylphosphinoselenoyl)-P,P-diphenyl- tetrahydrofuran solvate' top
Crystal data top
C24H21NP2Se2·C4H8ODx = 1.528 Mg m3
Mr = 615.38Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P41212Cell parameters from 8192 reflections
a = 10.121 (3) Åθ = 2.2–28.5°
c = 26.118 (10) ŵ = 2.91 mm1
V = 2675.5 (14) Å3T = 153 K
Z = 4Block, colourless
F(000) = 12400.30 × 0.20 × 0.10 mm
Data collection top
Bruker Smart 1000 CCD
diffractometer
3237 independent reflections
Radiation source: standard-focus sealed tube2891 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ω scansθmax = 28.5°, θmin = 2.2°
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
h = 136
Tmin = 0.776, Tmax = 1.000k = 1212
17047 measured reflectionsl = 3133
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.022H-atom parameters constrained
wR(F2) = 0.059 w = 1/[σ2(Fo2) + (0.04Fo2)2]
S = 0.97(Δ/σ)max = 0.003
3237 reflectionsΔρmax = 0.25 e Å3
155 parametersΔρmin = 0.25 e Å3
0 restraintsAbsolute structure: Flack (1983)
Primary atom site location: PattersonAbsolute structure parameter: 0.022 (8)
Crystal data top
C24H21NP2Se2·C4H8OZ = 4
Mr = 615.38Mo Kα radiation
Tetragonal, P41212µ = 2.91 mm1
a = 10.121 (3) ÅT = 153 K
c = 26.118 (10) Å0.30 × 0.20 × 0.10 mm
V = 2675.5 (14) Å3
Data collection top
Bruker Smart 1000 CCD
diffractometer
3237 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
2891 reflections with I > 2σ(I)
Tmin = 0.776, Tmax = 1.000Rint = 0.035
17047 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.022H-atom parameters constrained
wR(F2) = 0.059Δρmax = 0.25 e Å3
S = 0.97Δρmin = 0.25 e Å3
3237 reflectionsAbsolute structure: Flack (1983)
155 parametersAbsolute structure parameter: 0.022 (8)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Se11.29704 (2)0.00007 (2)0.990431 (7)0.03009 (7)
P11.10989 (5)0.03353 (5)0.958782 (18)0.02294 (11)
N10.98426 (16)0.01574 (16)1.00000.0239 (5)
H1A0.92280.07721.00000.029*
C11.0855 (2)0.2004 (2)0.93526 (7)0.0258 (4)
C21.1748 (2)0.2984 (2)0.94727 (8)0.0344 (5)
H2A1.24990.27850.96770.041*
C31.1550 (3)0.4265 (2)0.92948 (9)0.0439 (6)
H3A1.21570.49430.93840.053*
C41.0486 (3)0.4551 (2)0.89910 (9)0.0454 (7)
H4A1.03580.54260.88690.054*
C50.9605 (3)0.3581 (3)0.88625 (9)0.0463 (6)
H5A0.88680.37820.86510.056*
C60.9788 (2)0.2302 (2)0.90406 (9)0.0363 (5)
H6A0.91790.16280.89480.044*
C71.0746 (2)0.06911 (19)0.90346 (7)0.0249 (4)
C80.9471 (2)0.1036 (2)0.88988 (8)0.0308 (5)
H8A0.87510.07860.91110.037*
C90.9243 (2)0.1747 (2)0.84521 (8)0.0329 (5)
H9A0.83660.19740.83570.039*
C101.0286 (2)0.2121 (2)0.81494 (9)0.0383 (5)
H10A1.01280.26150.78460.046*
C111.1554 (2)0.1790 (2)0.82807 (9)0.0384 (6)
H11A1.22710.20590.80710.046*
C121.1788 (2)0.1058 (2)0.87223 (7)0.0305 (4)
H12A1.26650.08090.88100.037*
C130.8046 (3)0.3390 (3)1.02040 (14)0.0625 (8)
H13A0.84080.33511.05560.075*
H13B0.86550.39180.99890.075*
C140.6718 (3)0.3994 (3)1.02078 (12)0.0613 (8)
H14A0.62780.38601.05420.074*
H14B0.67670.49531.01350.074*
O10.79066 (16)0.20934 (16)1.00000.0472 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Se10.02299 (11)0.03843 (13)0.02885 (10)0.00390 (8)0.00195 (7)0.00069 (9)
P10.0228 (2)0.0249 (3)0.0211 (2)0.00223 (19)0.00053 (19)0.00132 (18)
N10.0236 (7)0.0236 (7)0.0245 (11)0.0064 (10)0.0035 (6)0.0035 (6)
C10.0319 (11)0.0250 (10)0.0204 (8)0.0002 (8)0.0022 (8)0.0025 (8)
C20.0437 (14)0.0319 (11)0.0276 (10)0.0047 (10)0.0021 (9)0.0019 (9)
C30.0620 (17)0.0327 (13)0.0371 (12)0.0131 (12)0.0024 (11)0.0036 (10)
C40.0734 (19)0.0282 (12)0.0346 (12)0.0069 (11)0.0022 (12)0.0080 (9)
C50.0629 (18)0.0357 (13)0.0403 (13)0.0111 (12)0.0140 (12)0.0033 (10)
C60.0436 (14)0.0284 (11)0.0369 (12)0.0034 (10)0.0097 (10)0.0003 (9)
C70.0286 (11)0.0234 (10)0.0228 (9)0.0017 (8)0.0007 (8)0.0032 (8)
C80.0296 (11)0.0323 (12)0.0305 (11)0.0007 (9)0.0001 (8)0.0010 (9)
C90.0338 (12)0.0313 (12)0.0334 (11)0.0041 (9)0.0067 (9)0.0000 (9)
C100.0507 (15)0.0369 (12)0.0273 (10)0.0022 (11)0.0004 (10)0.0057 (9)
C110.0411 (13)0.0407 (14)0.0334 (11)0.0009 (11)0.0075 (10)0.0079 (10)
C120.0288 (12)0.0324 (12)0.0302 (10)0.0008 (9)0.0041 (8)0.0026 (9)
C130.0526 (17)0.0487 (17)0.086 (2)0.0050 (13)0.0058 (17)0.0228 (15)
C140.0650 (19)0.0547 (17)0.0643 (18)0.0260 (15)0.0044 (14)0.0119 (15)
O10.0368 (8)0.0368 (8)0.0678 (17)0.0131 (11)0.0062 (9)0.0062 (9)
Geometric parameters (Å, º) top
Se1—P12.0942 (7)C5—C61.387 (3)
P1—N11.6757 (12)C7—C81.383 (3)
P1—C11.814 (2)C7—C121.384 (3)
P1—C71.815 (2)C8—C91.391 (3)
N1—P1i1.6757 (12)C9—C101.372 (3)
N1—O12.771 (3)C10—C111.369 (3)
C1—C21.378 (3)C11—C121.391 (3)
C1—C61.386 (3)C13—O11.424 (3)
C2—C31.392 (3)C13—C141.477 (4)
C3—C41.369 (4)C14—C14i1.490 (6)
C4—C51.368 (4)O1—C13i1.424 (3)
N1—P1—C1102.38 (10)C4—C5—C6120.0 (2)
N1—P1—C7107.50 (7)C1—C6—C5120.2 (2)
C1—P1—C7103.69 (9)C8—C7—C12119.49 (19)
N1—P1—Se1114.54 (6)C8—C7—P1122.13 (16)
C1—P1—Se1114.03 (7)C12—C7—P1118.23 (16)
C7—P1—Se1113.54 (7)C7—C8—C9120.1 (2)
P1i—N1—P1125.15 (14)C10—C9—C8119.9 (2)
P1i—N1—O1117.42 (7)C11—C10—C9120.6 (2)
P1—N1—O1117.42 (7)C10—C11—C12119.9 (2)
C2—C1—C6119.3 (2)C7—C12—C11120.1 (2)
C2—C1—P1120.24 (17)O1—C13—C14107.1 (2)
C6—C1—P1120.49 (17)C13—C14—C14i103.61 (17)
C1—C2—C3120.0 (2)C13i—O1—C13108.9 (3)
C4—C3—C2120.3 (2)C13i—O1—N1125.57 (14)
C5—C4—C3120.2 (2)C13—O1—N1125.57 (14)
C1—P1—N1—P1i169.78 (7)C1—P1—C7—C882.68 (19)
C7—P1—N1—P1i81.36 (7)Se1—P1—C7—C8153.04 (16)
Se1—P1—N1—P1i45.83 (3)N1—P1—C7—C12159.26 (17)
C1—P1—N1—O110.22 (7)C1—P1—C7—C1292.79 (18)
C7—P1—N1—O198.64 (7)Se1—P1—C7—C1231.49 (19)
Se1—P1—N1—O1134.17 (3)C12—C7—C8—C90.1 (3)
N1—P1—C1—C2112.36 (16)P1—C7—C8—C9175.56 (16)
C7—P1—C1—C2135.90 (17)C7—C8—C9—C100.8 (3)
Se1—P1—C1—C211.93 (19)C8—C9—C10—C110.6 (4)
N1—P1—C1—C669.19 (18)C9—C10—C11—C120.5 (4)
C7—P1—C1—C642.56 (19)C8—C7—C12—C111.3 (3)
Se1—P1—C1—C6166.52 (15)P1—C7—C12—C11176.87 (18)
C6—C1—C2—C32.1 (3)C10—C11—C12—C71.5 (4)
P1—C1—C2—C3179.46 (17)O1—C13—C14—C14i25.8 (4)
C1—C2—C3—C41.4 (4)C14—C13—O1—C13i10.10 (17)
C2—C3—C4—C50.3 (4)C14—C13—O1—N1169.90 (17)
C3—C4—C5—C60.1 (4)P1i—N1—O1—C13i73.75 (19)
C2—C1—C6—C51.6 (3)P1—N1—O1—C13i106.25 (19)
P1—C1—C6—C5179.90 (19)P1i—N1—O1—C13106.25 (19)
C4—C5—C6—C10.5 (4)P1—N1—O1—C1373.75 (19)
N1—P1—C7—C825.3 (2)Se1—P1—P1i—Se1i81.75 (3)
Symmetry code: (i) y+1, x1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.881.892.771 (3)180
(II) 'N-(diphenylphosphinoselenoyl)-P,P-diphenyl- tetrahydrofuran solvate' top
Crystal data top
C24H21NP2Se2·2C4H8OZ = 2
Mr = 687.49F(000) = 700
Triclinic, P1Dx = 1.471 Mg m3
a = 8.796 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 13.248 (3) ÅCell parameters from 7641 reflections
c = 13.864 (3) Åθ = 1.5–28.3°
α = 97.832 (4)°µ = 2.52 mm1
β = 102.673 (4)°T = 153 K
γ = 94.545 (4)°Block, colourless
V = 1551.6 (6) Å30.40 × 0.20 × 0.10 mm
Data collection top
Bruker Smart 1000 CCD
diffractometer
7046 independent reflections
Radiation source: standard-focus sealed tube5578 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ω scansθmax = 28.3°, θmin = 1.5°
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.741, Tmax = 1.000k = 1717
14636 measured reflectionsl = 1817
Refinement top
Refinement on F2Primary atom site location: Patterson
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H-atom parameters constrained
S = 1.24 w = 1/[σ2(Fo2) + (0.04Fo2)2]
7046 reflections(Δ/σ)max = 0.010
352 parametersΔρmax = 1.11 e Å3
0 restraintsΔρmin = 1.17 e Å3
Crystal data top
C24H21NP2Se2·2C4H8Oγ = 94.545 (4)°
Mr = 687.49V = 1551.6 (6) Å3
Triclinic, P1Z = 2
a = 8.796 (2) ÅMo Kα radiation
b = 13.248 (3) ŵ = 2.52 mm1
c = 13.864 (3) ÅT = 153 K
α = 97.832 (4)°0.40 × 0.20 × 0.10 mm
β = 102.673 (4)°
Data collection top
Bruker Smart 1000 CCD
diffractometer
7046 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
5578 reflections with I > 2σ(I)
Tmin = 0.741, Tmax = 1.000Rint = 0.024
14636 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.089H-atom parameters constrained
S = 1.24Δρmax = 1.11 e Å3
7046 reflectionsΔρmin = 1.17 e Å3
352 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Se10.97690 (3)0.73537 (2)0.028395 (19)0.03124 (8)
Se20.79351 (3)0.74032 (2)0.432007 (19)0.03581 (9)
P10.83080 (7)0.67341 (5)0.11638 (4)0.02149 (13)
P20.90042 (7)0.76748 (5)0.31108 (4)0.02327 (14)
N10.7895 (2)0.73987 (15)0.20496 (14)0.0236 (4)
H1A0.69040.76500.19320.028*
C10.9082 (3)0.54645 (19)0.18486 (17)0.0249 (5)
C21.0282 (3)0.4902 (2)0.15798 (19)0.0319 (6)
H2A1.06510.51650.10120.038*
C31.0943 (3)0.3955 (2)0.2139 (2)0.0412 (7)
H3A1.17700.35760.19560.049*
C41.0401 (4)0.3567 (2)0.2958 (2)0.0446 (8)
H4A1.08650.29250.33460.054*
C50.9192 (4)0.4105 (2)0.3213 (2)0.0413 (7)
H5A0.88100.38250.37700.050*
C60.8517 (3)0.5052 (2)0.26686 (18)0.0314 (6)
H6A0.76780.54190.28510.038*
C70.6344 (3)0.66554 (19)0.04324 (17)0.0250 (5)
C80.5264 (3)0.6161 (2)0.0863 (2)0.0346 (6)
H8A0.55480.58540.15470.042*
C90.3770 (3)0.6114 (2)0.0295 (3)0.0463 (8)
H9A0.30350.57750.05920.056*
C100.3347 (3)0.6555 (3)0.0693 (2)0.0473 (8)
H10A0.23220.65170.10760.057*
C110.4399 (3)0.7052 (3)0.1134 (2)0.0496 (8)
H11A0.40970.73640.18160.060*
C120.5915 (3)0.7094 (2)0.05715 (19)0.0382 (7)
H12A0.66520.74230.08760.046*
C131.0922 (3)0.69482 (19)0.33269 (17)0.0262 (5)
C141.1278 (3)0.6028 (2)0.39839 (18)0.0315 (6)
H14A1.05180.57790.43210.038*
C151.2738 (3)0.5468 (2)0.4151 (2)0.0426 (7)
H15A1.29670.48290.45860.051*
C161.3853 (3)0.5842 (3)0.3686 (2)0.0471 (8)
H16A1.48550.54590.38070.057*
C171.3536 (3)0.6768 (3)0.3044 (2)0.0438 (7)
H17A1.43200.70270.27360.053*
C181.2047 (3)0.7322 (2)0.28525 (19)0.0323 (6)
H18A1.18080.79500.24000.039*
C190.9308 (3)0.90087 (19)0.28247 (18)0.0271 (5)
C200.9827 (3)0.9556 (2)0.3600 (2)0.0392 (7)
H20A0.99900.92340.42760.047*
C211.0106 (4)1.0570 (2)0.3389 (2)0.0529 (9)
H21A1.04911.09350.39190.064*
C220.9823 (4)1.1049 (2)0.2406 (2)0.0542 (9)
H22A0.99831.17490.22620.065*
C230.9308 (4)1.0513 (2)0.1635 (2)0.0497 (8)
H23A0.91211.08430.09610.060*
C240.9061 (3)0.9493 (2)0.18416 (19)0.0380 (6)
H24A0.87210.91240.13070.046*
C250.5005 (5)0.9567 (4)0.2162 (3)0.1024 (19)
H25A0.51890.92920.28830.123*
H25B0.58251.00170.20700.123*
C260.3596 (7)1.0102 (3)0.1846 (3)0.117 (2)
H26A0.36741.08390.18720.141*
H26B0.28860.98580.22690.141*
C270.2985 (5)0.9933 (3)0.0777 (3)0.0803 (14)
H27A0.18310.99350.06160.096*
H27B0.32741.04640.02950.096*
C280.3789 (3)0.8899 (3)0.0767 (2)0.0458 (7)
H28A0.30740.83660.08300.055*
H28B0.41380.88850.01360.055*
C291.6615 (5)0.2240 (3)0.4237 (3)0.0775 (13)
H29A1.71950.25350.48080.093*
H29B1.72530.22220.37320.093*
C301.5043 (5)0.2843 (3)0.3789 (3)0.0711 (11)
H30A1.46320.31520.43050.085*
H30B1.51130.33960.32490.085*
C311.6218 (5)0.1181 (4)0.4579 (4)0.1060 (18)
H31A1.68410.06510.43440.127*
H31B1.64240.10350.53190.127*
C321.4515 (4)0.1209 (3)0.4119 (3)0.0597 (9)
H32A1.43180.05970.37920.072*
H32B1.39030.12140.46390.072*
O10.5089 (3)0.8730 (2)0.15946 (18)0.0759 (9)
O21.4060 (3)0.2116 (2)0.3400 (2)0.0729 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Se10.03099 (14)0.03448 (16)0.02975 (14)0.00822 (11)0.01185 (10)0.00015 (11)
Se20.04014 (16)0.04474 (18)0.02508 (13)0.00840 (13)0.01300 (11)0.00342 (12)
P10.0222 (3)0.0213 (3)0.0209 (3)0.0035 (2)0.0052 (2)0.0019 (2)
P20.0260 (3)0.0226 (3)0.0201 (3)0.0032 (3)0.0040 (2)0.0015 (3)
N10.0213 (9)0.0259 (11)0.0232 (9)0.0014 (8)0.0038 (8)0.0056 (9)
C10.0285 (12)0.0201 (12)0.0239 (11)0.0060 (10)0.0000 (9)0.0034 (10)
C20.0361 (14)0.0271 (14)0.0303 (13)0.0023 (11)0.0016 (11)0.0067 (11)
C30.0482 (17)0.0288 (15)0.0400 (15)0.0067 (13)0.0041 (13)0.0123 (13)
C40.067 (2)0.0203 (14)0.0343 (15)0.0016 (14)0.0115 (14)0.0047 (12)
C50.066 (2)0.0281 (15)0.0265 (13)0.0193 (14)0.0019 (13)0.0004 (12)
C60.0395 (14)0.0263 (14)0.0278 (12)0.0113 (12)0.0046 (11)0.0036 (11)
C70.0233 (11)0.0248 (13)0.0280 (12)0.0025 (10)0.0050 (9)0.0097 (11)
C80.0274 (13)0.0361 (16)0.0402 (15)0.0046 (12)0.0080 (11)0.0048 (13)
C90.0293 (14)0.0415 (18)0.069 (2)0.0093 (13)0.0080 (14)0.0145 (17)
C100.0288 (14)0.054 (2)0.0584 (19)0.0025 (14)0.0038 (14)0.0304 (17)
C110.0404 (16)0.071 (2)0.0298 (14)0.0061 (16)0.0064 (12)0.0129 (15)
C120.0327 (14)0.0519 (19)0.0291 (13)0.0033 (13)0.0052 (11)0.0078 (13)
C130.0273 (12)0.0263 (13)0.0227 (11)0.0040 (10)0.0006 (9)0.0046 (10)
C140.0362 (14)0.0265 (14)0.0274 (12)0.0045 (11)0.0022 (11)0.0036 (11)
C150.0458 (17)0.0310 (16)0.0396 (15)0.0063 (13)0.0096 (13)0.0041 (13)
C160.0333 (15)0.051 (2)0.0488 (17)0.0114 (14)0.0059 (13)0.0133 (16)
C170.0269 (13)0.060 (2)0.0431 (16)0.0041 (14)0.0048 (12)0.0097 (16)
C180.0300 (13)0.0350 (15)0.0294 (13)0.0054 (11)0.0038 (11)0.0007 (12)
C190.0303 (12)0.0234 (13)0.0269 (12)0.0041 (10)0.0035 (10)0.0056 (11)
C200.0541 (17)0.0354 (16)0.0279 (13)0.0105 (14)0.0051 (12)0.0086 (12)
C210.086 (2)0.0343 (17)0.0415 (16)0.0198 (17)0.0089 (16)0.0167 (15)
C220.084 (2)0.0257 (16)0.0518 (19)0.0169 (16)0.0092 (17)0.0083 (15)
C230.080 (2)0.0306 (16)0.0328 (15)0.0181 (16)0.0017 (15)0.0043 (13)
C240.0564 (18)0.0275 (15)0.0278 (13)0.0135 (13)0.0016 (12)0.0050 (12)
C250.081 (3)0.115 (4)0.093 (3)0.053 (3)0.037 (2)0.084 (3)
C260.181 (5)0.068 (3)0.062 (3)0.064 (3)0.046 (3)0.032 (2)
C270.110 (3)0.062 (3)0.0447 (19)0.040 (2)0.023 (2)0.0176 (19)
C280.0414 (16)0.052 (2)0.0389 (15)0.0047 (14)0.0020 (13)0.0135 (15)
C290.084 (3)0.083 (3)0.065 (2)0.045 (3)0.002 (2)0.013 (2)
C300.103 (3)0.043 (2)0.076 (3)0.012 (2)0.031 (2)0.019 (2)
C310.076 (3)0.086 (3)0.129 (4)0.032 (3)0.017 (3)0.029 (3)
C320.066 (2)0.054 (2)0.065 (2)0.0075 (18)0.0208 (18)0.0176 (19)
O10.0602 (14)0.0791 (18)0.0706 (16)0.0410 (13)0.0293 (12)0.0512 (15)
O20.0687 (17)0.0558 (16)0.0827 (19)0.0001 (13)0.0040 (14)0.0105 (15)
Geometric parameters (Å, º) top
Se1—P12.0967 (7)C17—C181.401 (4)
Se2—P22.0990 (7)C17—H17A0.9500
P1—N11.6896 (19)C18—H18A0.9500
P1—C11.815 (3)C19—C241.388 (3)
P1—C71.820 (2)C19—C201.392 (3)
P2—N11.6804 (19)C20—C211.389 (4)
P2—C191.812 (3)C20—H20A0.9500
P2—C131.818 (2)C21—C221.382 (4)
N1—O12.815 (3)C21—H21A0.9500
N1—H1A0.8800C22—C231.377 (4)
C1—C21.390 (4)C22—H22A0.9500
C1—C61.400 (3)C23—C241.386 (4)
C2—C31.390 (4)C23—H23A0.9500
C2—H2A0.9500C24—H24A0.9500
C3—C41.379 (4)C25—C261.330 (6)
C3—H3A0.9500C25—O11.451 (4)
C4—C51.370 (4)C25—H25A0.9900
C4—H4A0.9500C25—H25B0.9900
C5—C61.387 (4)C26—C271.515 (4)
C5—H5A0.9500C26—H26A0.9900
C6—H6A0.9500C26—H26B0.9900
C7—C121.390 (3)C27—C281.494 (4)
C7—C81.389 (3)C27—H27A0.9900
C8—C91.387 (4)C27—H27B0.9900
C8—H8A0.9500C28—O11.410 (3)
C9—C101.370 (4)C28—H28A0.9900
C9—H9A0.9500C28—H28B0.9900
C10—C111.378 (4)C29—C301.500 (6)
C10—H10A0.9500C29—C311.511 (6)
C11—C121.399 (4)C29—H29A0.9900
C11—H11A0.9500C29—H29B0.9900
C12—H12A0.9500C30—O21.426 (4)
C13—C141.388 (4)C30—H30A0.9900
C13—C181.390 (3)C30—H30B0.9900
C14—C151.387 (4)C31—C321.489 (5)
C14—H14A0.9500C31—H31A0.9900
C15—C161.375 (4)C31—H31B0.9900
C15—H15A0.9500C32—O21.422 (4)
C16—C171.384 (4)C32—H32A0.9900
C16—H16A0.9500C32—H32B0.9900
N1—P1—C1104.00 (10)C17—C18—H18A120.1
N1—P1—C7100.91 (10)C24—C19—C20119.1 (2)
C1—P1—C7107.79 (11)C24—C19—P2121.09 (18)
N1—P1—Se1117.36 (7)C20—C19—P2119.8 (2)
C1—P1—Se1113.05 (8)C21—C20—C19120.2 (3)
C7—P1—Se1112.56 (8)C21—C20—H20A119.9
N1—P2—C19105.26 (11)C19—C20—H20A119.9
N1—P2—C13107.57 (10)C22—C21—C20119.9 (3)
C19—P2—C13105.86 (11)C22—C21—H21A120.0
N1—P2—Se2111.96 (7)C20—C21—H21A120.0
C19—P2—Se2112.39 (8)C23—C22—C21120.1 (3)
C13—P2—Se2113.26 (8)C23—C22—H22A119.9
P2—N1—P1132.67 (12)C21—C22—H22A119.9
P2—N1—O1106.87 (10)C22—C23—C24120.2 (3)
P1—N1—O1118.72 (10)C22—C23—H23A119.9
P2—N1—H1A113.7C24—C23—H23A119.9
P1—N1—H1A113.7C23—C24—C19120.4 (2)
O1—N1—H1A16.3C23—C24—H24A119.8
C2—C1—C6119.2 (2)C19—C24—H24A119.8
C2—C1—P1120.04 (19)C26—C25—O1109.3 (3)
C6—C1—P1120.72 (19)C26—C25—H25A109.8
C3—C2—C1120.3 (3)O1—C25—H25A109.8
C3—C2—H2A119.9C26—C25—H25B109.8
C1—C2—H2A119.9O1—C25—H25B109.8
C4—C3—C2120.0 (3)H25A—C25—H25B108.3
C4—C3—H3A120.0C25—C26—C27106.3 (4)
C2—C3—H3A120.0C25—C26—H26A110.5
C5—C4—C3120.1 (3)C27—C26—H26A110.5
C5—C4—H4A120.0C25—C26—H26B110.5
C3—C4—H4A120.0C27—C26—H26B110.5
C4—C5—C6120.9 (3)H26A—C26—H26B108.7
C4—C5—H5A119.5C28—C27—C26102.7 (3)
C6—C5—H5A119.5C28—C27—H27A111.2
C5—C6—C1119.5 (3)C26—C27—H27A111.2
C5—C6—H6A120.3C28—C27—H27B111.2
C1—C6—H6A120.3C26—C27—H27B111.2
C12—C7—C8119.3 (2)H27A—C27—H27B109.1
C12—C7—P1119.74 (19)O1—C28—C27105.9 (2)
C8—C7—P1120.91 (19)O1—C28—H28A110.6
C9—C8—C7120.0 (3)C27—C28—H28A110.6
C9—C8—H8A120.0O1—C28—H28B110.6
C7—C8—H8A120.0C27—C28—H28B110.6
C10—C9—C8120.4 (3)H28A—C28—H28B108.7
C10—C9—H9A119.8C30—C29—C31103.6 (3)
C8—C9—H9A119.8C30—C29—H29A111.0
C9—C10—C11120.5 (3)C31—C29—H29A111.0
C9—C10—H10A119.8C30—C29—H29B111.0
C11—C10—H10A119.8C31—C29—H29B111.0
C10—C11—C12119.7 (3)H29A—C29—H29B109.0
C10—C11—H11A120.2O2—C30—C29105.0 (3)
C12—C11—H11A120.2O2—C30—H30A110.7
C7—C12—C11120.1 (3)C29—C30—H30A110.7
C7—C12—H12A120.0O2—C30—H30B110.7
C11—C12—H12A120.0C29—C30—H30B110.7
C14—C13—C18119.7 (2)H30A—C30—H30B108.8
C14—C13—P2120.02 (19)C32—C31—C29104.5 (4)
C18—C13—P2120.23 (19)C32—C31—H31A110.8
C15—C14—C13120.3 (3)C29—C31—H31A110.8
C15—C14—H14A119.8C32—C31—H31B110.8
C13—C14—H14A119.8C29—C31—H31B110.8
C16—C15—C14119.8 (3)H31A—C31—H31B108.9
C16—C15—H15A120.1O2—C32—C31107.7 (3)
C14—C15—H15A120.1O2—C32—H32A110.2
C15—C16—C17120.9 (3)C31—C32—H32A110.2
C15—C16—H16A119.6O2—C32—H32B110.2
C17—C16—H16A119.6C31—C32—H32B110.2
C16—C17—C18119.4 (3)H32A—C32—H32B108.5
C16—C17—H17A120.3C28—O1—C25108.2 (2)
C18—C17—H17A120.3C28—O1—N1132.18 (17)
C13—C18—C17119.8 (3)C25—O1—N1118.12 (18)
C13—C18—H18A120.1C32—O2—C30104.8 (3)
C19—P2—N1—P1104.35 (18)N1—P2—C13—C1883.4 (2)
C13—P2—N1—P18.2 (2)C19—P2—C13—C1828.7 (2)
Se2—P2—N1—P1133.26 (14)Se2—P2—C13—C18152.33 (17)
C19—P2—N1—O159.89 (13)C18—C13—C14—C151.5 (4)
C13—P2—N1—O1172.44 (12)P2—C13—C14—C15179.90 (19)
Se2—P2—N1—O162.51 (11)C13—C14—C15—C161.9 (4)
C1—P1—N1—P258.93 (18)C14—C15—C16—C170.5 (4)
C7—P1—N1—P2170.57 (17)C15—C16—C17—C181.2 (4)
Se1—P1—N1—P266.77 (18)C14—C13—C18—C170.3 (4)
C1—P1—N1—O1138.32 (13)P2—C13—C18—C17178.37 (19)
C7—P1—N1—O126.68 (15)C16—C17—C18—C131.6 (4)
Se1—P1—N1—O195.99 (12)N1—P2—C19—C2417.9 (2)
N1—P1—C1—C2144.27 (19)C13—P2—C19—C2495.8 (2)
C7—P1—C1—C2109.2 (2)Se2—P2—C19—C24140.0 (2)
Se1—P1—C1—C215.9 (2)N1—P2—C19—C20163.3 (2)
N1—P1—C1—C633.8 (2)C13—P2—C19—C2082.9 (2)
C7—P1—C1—C672.7 (2)Se2—P2—C19—C2041.2 (2)
Se1—P1—C1—C6162.22 (16)C24—C19—C20—C210.6 (4)
C6—C1—C2—C32.0 (4)P2—C19—C20—C21178.2 (2)
P1—C1—C2—C3176.14 (19)C19—C20—C21—C222.0 (5)
C1—C2—C3—C40.6 (4)C20—C21—C22—C231.9 (6)
C2—C3—C4—C51.1 (4)C21—C22—C23—C240.4 (6)
C3—C4—C5—C61.3 (4)C22—C23—C24—C190.9 (5)
C4—C5—C6—C10.1 (4)C20—C19—C24—C230.8 (4)
C2—C1—C6—C51.8 (3)P2—C19—C24—C23179.6 (3)
P1—C1—C6—C5176.35 (18)O1—C25—C26—C2725.2 (7)
N1—P1—C7—C12118.7 (2)C25—C26—C27—C2827.9 (6)
C1—P1—C7—C12132.6 (2)C26—C27—C28—O119.8 (5)
Se1—P1—C7—C127.2 (2)C31—C29—C30—O230.7 (5)
N1—P1—C7—C861.4 (2)C30—C29—C31—C3211.3 (5)
C1—P1—C7—C847.3 (2)C29—C31—C32—O211.9 (5)
Se1—P1—C7—C8172.69 (17)C27—C28—O1—C256.0 (4)
C12—C7—C8—C90.5 (4)C27—C28—O1—N1159.5 (3)
P1—C7—C8—C9179.6 (2)C26—C25—O1—C2812.5 (6)
C7—C8—C9—C100.0 (4)C26—C25—O1—N1179.6 (4)
C8—C9—C10—C110.2 (5)P2—N1—O1—C28174.7 (3)
C9—C10—C11—C120.9 (5)P1—N1—O1—C287.8 (4)
C8—C7—C12—C111.2 (4)P2—N1—O1—C2510.3 (4)
P1—C7—C12—C11178.9 (2)P1—N1—O1—C25156.6 (3)
C10—C11—C12—C71.4 (4)C31—C32—O2—C3031.8 (4)
N1—P2—C13—C1498.0 (2)C29—C30—O2—C3238.9 (4)
C19—P2—C13—C14149.87 (19)Se1—P1—P2—Se2179.19 (3)
Se2—P2—C13—C1426.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.881.992.815 (3)157

Experimental details

(I)(II)
Crystal data
Chemical formulaC24H21NP2Se2·C4H8OC24H21NP2Se2·2C4H8O
Mr615.38687.49
Crystal system, space groupTetragonal, P41212Triclinic, P1
Temperature (K)153153
a, b, c (Å)10.121 (3), 10.121 (3), 26.118 (10)8.796 (2), 13.248 (3), 13.864 (3)
α, β, γ (°)90, 90, 9097.832 (4), 102.673 (4), 94.545 (4)
V3)2675.5 (14)1551.6 (6)
Z42
Radiation typeMo KαMo Kα
µ (mm1)2.912.52
Crystal size (mm)0.30 × 0.20 × 0.100.40 × 0.20 × 0.10
Data collection
DiffractometerBruker Smart 1000 CCD
diffractometer
Bruker Smart 1000 CCD
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
Empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.776, 1.0000.741, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
17047, 3237, 2891 14636, 7046, 5578
Rint0.0350.024
(sin θ/λ)max1)0.6720.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.059, 0.97 0.035, 0.089, 1.24
No. of reflections32377046
No. of parameters155352
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.251.11, 1.17
Absolute structureFlack (1983)?
Absolute structure parameter0.022 (8)?

Computer programs: SMART (Bruker, 1999), SMART, SAINT-Plus (Bruker, 1999), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), SHELXTL97 (Sheldrick, 1997), SHELXTL97.

Selected geometric parameters (Å, º) for (I) top
Se1—P12.0942 (7)N1—O12.771 (3)
P1—N11.6757 (12)C13—O11.424 (3)
P1—C11.814 (2)C13—C141.477 (4)
P1—C71.815 (2)C14—C14i1.490 (6)
N1—P1i1.6757 (12)O1—C13i1.424 (3)
N1—P1—C1102.38 (10)C7—P1—Se1113.54 (7)
N1—P1—C7107.50 (7)P1i—N1—P1125.15 (14)
C1—P1—C7103.69 (9)O1—C13—C14107.1 (2)
N1—P1—Se1114.54 (6)C13—C14—C14i103.61 (17)
C1—P1—Se1114.03 (7)C13i—O1—C13108.9 (3)
C1—P1—N1—P1i169.78 (7)Se1—P1—N1—P1i45.83 (3)
C7—P1—N1—P1i81.36 (7)Se1—P1—P1i—Se1i81.75 (3)
Symmetry code: (i) y+1, x1, z+2.
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.8801.8912.771 (3)180
Selected geometric parameters (Å, º) for (II) top
Se1—P12.0967 (7)C25—O11.451 (4)
Se2—P22.0990 (7)C26—C271.515 (4)
P1—N11.6896 (19)C27—C281.494 (4)
P1—C11.815 (3)C28—O11.410 (3)
P1—C71.820 (2)C29—C301.500 (6)
P2—N11.6804 (19)C29—C311.511 (6)
P2—C191.812 (3)C30—O21.426 (4)
P2—C131.818 (2)C31—C321.489 (5)
N1—O12.815 (3)C32—O21.422 (4)
C25—C261.330 (6)
N1—P1—C1104.00 (10)P2—N1—O1106.87 (10)
N1—P1—C7100.91 (10)P1—N1—O1118.72 (10)
C1—P1—C7107.79 (11)C26—C25—O1109.3 (3)
N1—P1—Se1117.36 (7)C25—C26—C27106.3 (4)
C1—P1—Se1113.05 (8)C28—C27—C26102.7 (3)
C7—P1—Se1112.56 (8)O1—C28—C27105.9 (2)
N1—P2—C19105.26 (11)C30—C29—C31103.6 (3)
N1—P2—C13107.57 (10)O2—C30—C29105.0 (3)
C19—P2—C13105.86 (11)C32—C31—C29104.5 (4)
N1—P2—Se2111.96 (7)O2—C32—C31107.7 (3)
C19—P2—Se2112.39 (8)C28—O1—C25108.2 (2)
C13—P2—Se2113.26 (8)C32—O2—C30104.8 (3)
P2—N1—P1132.67 (12)
C19—P2—N1—P1104.35 (18)Se2—P2—N1—O162.51 (11)
C13—P2—N1—P18.2 (2)C1—P1—N1—P258.93 (18)
Se2—P2—N1—P1133.26 (14)C7—P1—N1—P2170.57 (17)
C19—P2—N1—O159.89 (13)Se1—P1—N1—P266.77 (18)
C13—P2—N1—O1172.44 (12)Se1—P1—P2—Se2179.19 (3)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds