Download citation
Download citation
link to html
The successful application of the newly developed image-plate neutron Laue diffractometer (LADI) at the Institut Laue-Langevin (ILL), Grenoble, France, for rapid hydrogen-bonding characterization is reported. The case study concerns the promising non-linear optical material zinc (tris)thiourea sulfate (ZTS), which contains 30 atoms in the asymmetric unit and crystallizes in the orthorhombic space group, Pca21, a = 11.0616 (9), b = 7.7264 (6), c = 15.558 (1) Å [T = 100.0 (1) K]. The results from a 12 h data collection from ZTS on LADI are compared with those obtained over 135 h using the monochromatic four-circle diffractometer D9 at the same reactor source with a crystal 13 times larger in volume. Both studies reveal the extensive hydrogen bonding and other close non-bonded contacts within the material. As expected, the results from D9 are more precise than those obtained from LADI; however, the bond geometry determined from the two experiments is the same within the larger estimated standard deviations. Furthermore, the conclusions drawn from the two studies separately regarding the nature of all supramolecular features are identical. This illustrates that LADI is eminently suitable for rapid characterization of hydrogen-bonded structures by neutron diffraction, with the gain in speed compared with traditional instrumentation being several orders of magnitude.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010876730100349X/bk0089sup1.cif
Contains datablock D9zts(100K)

sft

Structure factor file (SHELXL table format) https://doi.org/10.1107/S010876730100349X/bk0089ladisup2.sft
Supplementary material

sft

Structure factor file (SHELXL table format) https://doi.org/10.1107/S010876730100349X/bk0089d9sup3.sft
Supplementary material

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S010876730100349X/bk0089sup4.pdf
Supplementary material

Computing details top

Data collection: MAD (Barthelemy, 1984); cell refinement: RAFD9 (local program); data reduction: RACER (Wilkinson et al., 1988); program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL93 (Sheldrick, 1993); molecular graphics: SHELXTL-Plus (Sheldrick, 1995); software used to prepare material for publication: SHELXL93 (Sheldrick, 1993).

D9zts(100K) top
Crystal data top
C3H12N6O4S4ZnF(000) = 324
Mr = 389.40Dx = 1.945 Mg m3
Orthorhombic, Pca21Neutrons radiation, λ = 0.8369 Å
a = 11.0616 (9) ŵ = 0.13 mm1
b = 7.7264 (6) ÅT = 100 K
c = 15.558 (1) ÅTruncated square prism, transparent
V = 1329.7 (2) Å34.1 × 2.8 × 2.1 mm
Z = 4
Data collection top
High-flux four-circle
diffractometer, D9
3217 reflections with I > 2σ(I)
Radiation source: D9 at the Institut Laue Langevin reactor, Grenoble, FranceRint = 0.026
Cu(220) crystal monochromatorθmax = 49.2°, θmin = 3.8°
ω–x–θ scansh = 1820
Absorption correction: analytical: DATAP (coppens, 1970)
?
k = 1213
Tmin = 0.712, Tmax = 0.785l = 526
4454 measured reflections1 standard reflections every 50 reflections
3503 independent reflections intensity decay: none
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.035Calculated w = 1/[σ2(Fo2) + (0.P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.069(Δ/σ)max = 0.022
S = 1.56Δρmax = 0.90 e Å3
3493 reflectionsΔρmin = 0.90 e Å3
272 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.0290 (5)
Primary atom site location: none (taken from XRD data)Absolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.00 (999)
Crystal data top
C3H12N6O4S4ZnV = 1329.7 (2) Å3
Mr = 389.40Z = 4
Orthorhombic, Pca21Neutrons radiation, λ = 0.8369 Å
a = 11.0616 (9) ŵ = 0.13 mm1
b = 7.7264 (6) ÅT = 100 K
c = 15.558 (1) Å4.1 × 2.8 × 2.1 mm
Data collection top
High-flux four-circle
diffractometer, D9
3217 reflections with I > 2σ(I)
Absorption correction: analytical: DATAP (coppens, 1970)
?
Rint = 0.026
Tmin = 0.712, Tmax = 0.7851 standard reflections every 50 reflections
4454 measured reflections intensity decay: none
3503 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.035All H-atom parameters refined
wR(F2) = 0.069Δρmax = 0.90 e Å3
S = 1.56Δρmin = 0.90 e Å3
3493 reflectionsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
272 parametersAbsolute structure parameter: 0.00 (999)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement on F2 for ALL reflections except for 10 with very negative F2 or flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating _R_factor_obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.93168 (9)0.65599 (14)0.85133 (7)0.0071 (2)
S10.8714 (2)0.8425 (3)1.02244 (14)0.0057 (3)
S21.0157 (2)0.8317 (3)0.74579 (14)0.0095 (4)
S30.7921 (2)0.4900 (3)0.77555 (14)0.0091 (4)
S41.0799 (2)0.4974 (3)0.92113 (14)0.0082 (3)
O10.84116 (10)0.8128 (2)0.92868 (7)0.0109 (2)
O20.83581 (10)0.6897 (2)1.07213 (8)0.0116 (2)
O30.80168 (9)0.9952 (2)1.04976 (7)0.0095 (2)
O41.00171 (9)0.8759 (2)1.02950 (8)0.0110 (2)
N11.14823 (7)0.95978 (11)0.87592 (5)0.01436 (14)
H1A1.0836 (2)0.9215 (3)0.9182 (2)0.0253 (5)
H1B1.2176 (2)1.0333 (4)0.8991 (2)0.0274 (5)
N21.22082 (7)1.00052 (11)0.73948 (5)0.01465 (14)
H2A1.2967 (2)1.0546 (4)0.7624 (2)0.0341 (6)
H2B1.2128 (2)0.9864 (4)0.67448 (15)0.0261 (5)
N30.99940 (6)0.35715 (11)0.71324 (5)0.01432 (14)
H3A1.0360 (2)0.3830 (4)0.7711 (2)0.0310 (6)
H3B1.0573 (2)0.3256 (4)0.6642 (2)0.0275 (5)
N40.83700 (7)0.35913 (11)0.62231 (5)0.01480 (14)
H4A0.8852 (2)0.2921 (4)0.5774 (2)0.0304 (5)
H4B0.7538 (3)0.4028 (4)0.6085 (2)0.0375 (7)
N50.89341 (6)0.28619 (11)0.96016 (5)0.01469 (14)
H5A0.8493 (2)0.3388 (4)0.9094 (2)0.0309 (6)
H5B0.8549 (2)0.1857 (3)0.9929 (2)0.0257 (5)
N61.06825 (6)0.25250 (10)1.03749 (5)0.01260 (12)
H6A1.0371 (2)0.1396 (3)1.0619 (2)0.0320 (6)
H6B1.1540 (2)0.2911 (3)1.0501 (2)0.0255 (5)
C11.13659 (8)0.93823 (13)0.79195 (7)0.0091 (2)
C20.88499 (8)0.39664 (13)0.69796 (6)0.0091 (2)
C31.00616 (8)0.33375 (13)0.97695 (6)0.0090 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0073 (3)0.0064 (4)0.0077 (4)0.0000 (3)0.0008 (3)0.0001 (3)
S10.0078 (7)0.0043 (8)0.0049 (8)0.0010 (6)0.0017 (6)0.0000 (6)
S20.0099 (7)0.0097 (9)0.0088 (9)0.0031 (7)0.0013 (7)0.0011 (7)
S30.0067 (7)0.0128 (9)0.0076 (9)0.0001 (7)0.0016 (6)0.0028 (8)
S40.0069 (7)0.0088 (8)0.0090 (8)0.0012 (6)0.0015 (7)0.0013 (7)
O10.0130 (4)0.0117 (5)0.0080 (4)0.0041 (4)0.0019 (4)0.0020 (4)
O20.0112 (4)0.0101 (5)0.0134 (5)0.0020 (4)0.0017 (4)0.0042 (4)
O30.0107 (4)0.0089 (4)0.0090 (4)0.0001 (3)0.0009 (4)0.0012 (4)
O40.0075 (3)0.0123 (5)0.0131 (5)0.0008 (3)0.0007 (4)0.0009 (4)
N10.0149 (3)0.0194 (4)0.0089 (3)0.0073 (3)0.0004 (2)0.0010 (3)
H1A0.0261 (10)0.0310 (12)0.0189 (10)0.0093 (9)0.0036 (8)0.0007 (9)
H1B0.0257 (10)0.0341 (13)0.0225 (11)0.0123 (9)0.0047 (9)0.0044 (10)
N20.0131 (3)0.0206 (3)0.0103 (3)0.0079 (3)0.0008 (2)0.0006 (3)
H2A0.0268 (11)0.046 (2)0.0299 (13)0.0210 (11)0.0002 (10)0.0012 (11)
H2B0.0299 (11)0.0337 (13)0.0148 (9)0.0072 (10)0.0034 (8)0.0020 (9)
N30.0100 (2)0.0192 (3)0.0138 (3)0.0024 (3)0.0010 (2)0.0067 (3)
H3A0.0231 (10)0.044 (2)0.0257 (11)0.0078 (10)0.0073 (9)0.0131 (11)
H3B0.0183 (9)0.0347 (13)0.0296 (12)0.0038 (9)0.0044 (8)0.0120 (10)
N40.0131 (3)0.0217 (4)0.0095 (3)0.0005 (3)0.0006 (2)0.0055 (3)
H4A0.0296 (11)0.0392 (14)0.0225 (11)0.0031 (11)0.0041 (9)0.0155 (11)
H4B0.0229 (9)0.061 (2)0.0289 (13)0.0119 (13)0.0086 (10)0.0152 (12)
N50.0100 (3)0.0139 (3)0.0201 (4)0.0026 (2)0.0018 (3)0.0066 (3)
H5A0.0247 (10)0.0309 (13)0.0370 (14)0.0028 (9)0.0091 (10)0.0158 (11)
H5B0.0201 (8)0.0235 (10)0.0335 (13)0.0063 (8)0.0003 (9)0.0086 (10)
N60.0128 (2)0.0120 (3)0.0130 (3)0.0005 (2)0.0006 (2)0.0045 (3)
H6A0.0310 (11)0.0292 (12)0.0358 (13)0.0056 (10)0.0046 (10)0.0164 (11)
H6B0.0208 (8)0.0277 (11)0.0279 (12)0.0003 (9)0.0036 (9)0.0046 (10)
C10.0089 (3)0.0106 (4)0.0078 (4)0.0027 (3)0.0002 (3)0.0003 (3)
C20.0078 (3)0.0099 (4)0.0095 (4)0.0007 (3)0.0013 (3)0.0025 (3)
C30.0086 (3)0.0087 (4)0.0098 (4)0.0003 (3)0.0007 (3)0.0024 (3)
Geometric parameters (Å, º) top
Zn1—O11.980 (2)S4—C31.738 (2)
Zn1—S42.317 (2)S4—N62.622 (2)
Zn1—S22.324 (2)S4—N52.700 (2)
Zn1—S32.328 (2)S4—S3i3.263 (3)
Zn1—S13.099 (2)S4—H3A2.544 (3)
S1—O21.465 (2)N1—C11.323 (1)
S1—O31.473 (2)N1—H1A1.016 (2)
S1—O41.468 (2)N1—H1B1.021 (2)
S1—O11.514 (2)N2—C11.329 (1)
S1—S43.861 (3)N2—H2A1.003 (3)
S2—C11.727 (2)N2—H2B1.021 (2)
S2—N22.619 (2)N3—C21.323 (1)
S2—N12.689 (2)N3—H3A1.006 (3)
S2—S33.647 (3)N3—H3B1.025 (2)
S2—S43.823 (3)N4—C21.323 (1)
S2—S3i3.967 (3)N4—H4A1.020 (3)
S3—C21.742 (2)N4—H4B1.003 (3)
S3—N42.637 (2)N5—C31.326 (1)
S3—N32.693 (2)N5—H5A1.013 (3)
S3—S4ii3.263 (3)N5—H5B1.022 (3)
S3—S43.908 (3)N6—C31.324 (1)
S3—S2ii3.967 (3)N6—H6A1.012 (3)
S3—H5A2.470 (3)N6—H6B1.014 (2)
O1—Zn1—S4113.37 (8)C3—S4—Zn1106.7 (1)
O1—Zn1—S2105.92 (8)C3—S4—N626.69 (5)
S4—Zn1—S2110.91 (9)Zn1—S4—N6132.09 (9)
O1—Zn1—S3108.04 (7)C3—S4—N524.32 (5)
S4—Zn1—S3114.6 (1)Zn1—S4—N583.35 (7)
S2—Zn1—S3103.24 (9)N6—S4—N551.01 (5)
O1—Zn1—S123.74 (5)C3—S4—S3i134.9 (1)
S4—Zn1—S189.73 (7)Zn1—S4—S3i99.67 (8)
S2—Zn1—S1114.92 (8)N6—S4—S3i122.42 (9)
S3—Zn1—S1123.27 (7)N5—S4—S3i136.4 (1)
O2—S1—O3110.6 (2)C3—S4—S2139.6 (1)
O2—S1—O4111.5 (1)Zn1—S4—S234.61 (5)
O3—S1—O4110.6 (2)N6—S4—S2166.17 (8)
O2—S1—O1109.1 (2)N5—S4—S2115.27 (7)
O3—S1—O1106.5 (1)S3i—S4—S267.56 (7)
O4—S1—O1108.4 (1)C3—S4—S191.03 (9)
O2—S1—Zn197.9 (1)Zn1—S4—S153.39 (6)
O3—S1—Zn1137.1 (1)N6—S4—S1100.78 (7)
O4—S1—Zn186.3 (1)N5—S4—S182.48 (6)
O1—S1—Zn131.77 (7)S3i—S4—S1133.82 (9)
O2—S1—S479.6 (1)S2—S4—S173.38 (6)
O3—S1—S4169.7 (1)C3—S4—S384.05 (9)
O4—S1—S464.28 (9)Zn1—S4—S332.81 (6)
O1—S1—S468.56 (9)N6—S4—S3110.45 (8)
Zn1—S1—S436.88 (4)N5—S4—S359.92 (6)
C1—S2—Zn1107.1 (1)S3i—S4—S3100.61 (8)
C1—S2—N226.77 (5)S2—S4—S356.28 (6)
Zn1—S2—N2131.6 (1)S1—S4—S376.12 (6)
C1—S2—N124.36 (5)C3—S4—H3A96.7 (1)
Zn1—S2—N184.32 (8)Zn1—S4—H3A67.56 (8)
N2—S2—N151.13 (5)N6—S4—H3A111.9 (1)
C1—S2—S3144.8 (1)N5—S4—H3A81.4 (1)
Zn1—S2—S338.41 (6)S3i—S4—H3A60.71 (8)
N2—S2—S3162.33 (9)S2—S4—H3A62.89 (9)
N1—S2—S3122.73 (8)S1—S4—H3A120.03 (9)
C1—S2—S483.19 (9)S3—S4—H3A46.14 (7)
Zn1—S2—S434.49 (5)S1—O1—Zn1124.5 (1)
N2—S2—S4101.67 (7)C1—N1—S232.56 (7)
N1—S2—S467.05 (6)C1—N1—H1A122.3 (2)
S3—S2—S463.03 (6)S2—N1—H1A89.8 (2)
C1—S2—S3i69.72 (8)C1—N1—H1B119.5 (2)
Zn1—S2—S3i81.95 (7)S2—N1—H1B151.8 (2)
N2—S2—S3i69.44 (6)H1A—N1—H1B117.5 (2)
N1—S2—S3i73.89 (6)C1—N2—S235.83 (7)
S3—S2—S3i93.12 (5)C1—N2—H2A121.3 (2)
S4—S2—S3i49.49 (5)S2—N2—H2A156.8 (2)
C2—S3—Zn1100.8 (1)C1—N2—H2B120.6 (2)
C2—S3—N426.29 (5)S2—N2—H2B84.7 (2)
Zn1—S3—N4122.98 (9)H2A—N2—H2B118.0 (2)
C2—S3—N324.53 (5)C2—N3—S333.12 (7)
Zn1—S3—N380.07 (7)C2—N3—H3A119.9 (2)
N4—S3—N350.80 (4)S3—N3—H3A86.8 (2)
C2—S3—S4ii156.6 (1)C2—N3—H3B121.2 (2)
Zn1—S3—S4ii96.26 (8)S3—N3—H3B152.9 (2)
N4—S3—S4ii140.76 (9)H3A—N3—H3B117.5 (2)
N3—S3—S4ii150.9 (1)C2—N4—S335.65 (6)
C2—S3—S279.14 (9)C2—N4—H4A120.7 (2)
Zn1—S3—S238.34 (6)S3—N4—H4A155.8 (2)
N4—S3—S292.01 (7)C2—N4—H4B119.0 (2)
N3—S3—S269.68 (6)S3—N4—H4B83.8 (2)
S4ii—S3—S2123.67 (9)H4A—N4—H4B120.2 (2)
C2—S3—S485.82 (9)C3—N5—S432.66 (7)
Zn1—S3—S432.64 (5)C3—N5—H5A119.7 (2)
N4—S3—S4112.10 (7)S4—N5—H5A87.1 (2)
N3—S3—S461.35 (5)C3—N5—H5B120.3 (2)
S4ii—S3—S4100.56 (8)S4—N5—H5B152.9 (2)
S2—S3—S460.68 (6)H5A—N5—H5B119.5 (2)
C2—S3—S2ii96.6 (1)C3—N6—S436.11 (6)
Zn1—S3—S2ii156.26 (9)C3—N6—H6A120.0 (2)
N4—S3—S2ii78.43 (6)S4—N6—H6A153.9 (2)
N3—S3—S2ii112.06 (8)C3—N6—H6B118.9 (2)
S4ii—S3—S2ii62.96 (6)S4—N6—H6B82.9 (2)
S2—S3—S2ii164.00 (9)H6A—N6—H6B119.9 (2)
S4—S3—S2ii134.82 (8)N1—C1—N2119.51 (8)
C2—S3—H5A103.7 (1)N1—C1—S2123.1 (1)
Zn1—S3—H5A70.34 (9)N2—C1—S2117.4 (1)
N4—S3—H5A122.2 (1)N3—C2—N4119.53 (8)
N3—S3—H5A84.6 (1)N3—C2—S3122.4 (1)
S4ii—S3—H5A67.24 (9)N4—C2—S3118.1 (1)
S2—S3—H5A106.0 (1)N6—C3—N5119.77 (8)
S4—S3—H5A46.34 (7)N6—C3—S4117.2 (1)
S2ii—S3—H5A89.98 (9)N5—C3—S4123.0 (1)
Symmetry codes: (i) x+1/2, y+1, z; (ii) x1/2, y+1, z.

Experimental details

Crystal data
Chemical formulaC3H12N6O4S4Zn
Mr389.40
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)100
a, b, c (Å)11.0616 (9), 7.7264 (6), 15.558 (1)
V3)1329.7 (2)
Z4
Radiation typeNeutrons, λ = 0.8369 Å
µ (mm1)0.13
Crystal size (mm)4.1 × 2.8 × 2.1
Data collection
DiffractometerHigh-flux four-circle
diffractometer, D9
Absorption correctionAnalytical: DATAP (Coppens, 1970)
Tmin, Tmax0.712, 0.785
No. of measured, independent and
observed [I > 2σ(I)] reflections
4454, 3503, 3217
Rint0.026
(sin θ/λ)max1)0.904
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.069, 1.56
No. of reflections3493
No. of parameters272
No. of restraints1
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.90, 0.90
Absolute structureFlack H D (1983), Acta Cryst. A39, 876-881
Absolute structure parameter0.00 (999)

Computer programs: MAD (Barthelemy, 1984), RAFD9 (local program), RACER (Wilkinson et al., 1988), SHELXS86 (Sheldrick, 1990), SHELXL93 (Sheldrick, 1993), SHELXTL-Plus (Sheldrick, 1995).

 

Follow Acta Cryst. A
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds