Download citation
Download citation
link to html
The geometry of the title compound, 2-methoxy-1-(2,4,6-trihydroxyphenyl)ethanone, C9H10O5·H2O, is determined by the presence of an intramolecular hydrogen bond; the geometry of the benzene ring is distorted by a flanking carbonyl group.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100018485/bj1012sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100018485/bj1012Isup2.hkl
Contains datablock I

CCDC reference: 160009

Comment top

The molecular geometry in the title compound, (I), was determined in order to study the geometric distortions in a tetra- substituted benzene derivative and to investigate the possibilities for inter- and intra-molecular hydrogen bonding in the solid state. Only a few closely analogous structures have been reported. For example cudranone, (II), and the chalcone (III) are both ketones which contain the 2,6-dihydroxybenzene sub-structure, the former being a benzophenone derivative, the latter having an saturated side-chain (Ottersen et al., 1977; Ulrich et al., 1990). Both have methoxy groups in the 4-position of the hydroxylated ring, whereas (I) is a 2,4,6-trihydroxybenzene derivative. \sch

The intramolecular geometry of (I) is dominated by a cyclic hydrogen bond involving the O6—H6 and the oxygen, O11, of the carbonyl group [O6···O11 2.4860 (14) Å and H6···O11 1.66 (2) Å]. The molecular structure, labelling scheme and partial hydrogen bonding is depicted in Figure 1. The O.·O distances in (II) and (III) are 2.501 (3) and 2.406 (3) Å, respectively. Intramolecular hydrogen bonding has little effect on the length of the C—O bond of the participating phenol group of (I), e.g. C6—O6 is 1.3527 (16) and C4—O4 is 1.3537 (16) Å. The bond lengths of the benzene ring of (I) are distorted: those flanking the carbonyl group, C1—C2 and C1—C6, are 1.4190 (18) and 1.4265 (18) Å, respectively, whereas the others lie between 1.380 and 1.390 Å. The longest ring bond is that which is involved in the cyclic hydrogen bond. Similar features are present in the structures of (II) and (III).

The internal bond angles in the benzene ring of (I) range from 116.34 (11) to 122.20 (12)°, the former being at the point of substitution of the acyl group, and the latter at that of the intramolecularly hydrogen-bonded hydroxy group. The bond angles generally agree well with those calculated using the angular substituent parameters described in Domenicano (1992). The largest deviation (1.3°) is found at C1. Once again similar features are apparent in (II) and (III). The geometry about the CO group is very similar in (I) and (II). In (I), the aryl-carbon distance, C1—C11 [1.4499 (17) Å] is substantially shorter than that of the alkyl-carbon distance C11—C12 [1.5096 (18) Å], as expected. In (II), the similarity of the magnitude of these two features is more surprising; however, the longer bond length is that to the mono-hydroxylated ring, which is twisted substantially out of plane, and therefore unable to participate in conjugation.

The entire molecule of (I), including the methoxy group, is planar [mean deviation 0.006 Å from the plane of the ring; maximum deviation 0.201 Å for C14]. This is ascribable to the formation of a bifurcated intermolecular hydrogen bond from H4 of a neighbouring molecule to O11 and O13 (Fig. 1). The interaction shown in Fig 1 extends to form corrugated sheets of molecules which are hydrogen bonded together by molecules of water of crystallization (see Table 3).

Related literature top

For related literature, see: Deng et al. (1997); Domenicano (1992); Ottersen et al. (1977); Ulrich et al. (1990).

Experimental top

Compound (I) was made by Houben-Hoesch reaction of phloroglucinol with methoxyacetonitrile in the presence of anhydrous HCl and ZnCl2 (Deng et al., 1997). Crystals were obtained by recrystallization from water.

Computing details top

Program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. A view of (I) with atom-numbering scheme. Displacement ellipsoids enclose 50% probability surfaces. The symmetry element relating the two molecules is (x, -y, z + 1/2).
'2',4',6'-trihydroxy-1-methoxyacetophenone' top
Crystal data top
C9H10O5·H2ODx = 1.518 Mg m3
Mr = 216.19Melting point = 197–198 K
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 17.3138 (5) ÅCell parameters from 24172 reflections
b = 7.3330 (1) Åθ = 2.7–27.6°
c = 16.8507 (5) ŵ = 0.13 mm1
β = 117.838 (1)°T = 150 K
V = 1891.81 (8) Å3Block, colourless
Z = 80.35 × 0.10 × 0.10 mm
F(000) = 912
Data collection top
Nonius kappa-ccd
diffractometer
2180 independent reflections
Radiation source: fine-focus sealed tube1594 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.076
ωϕ scansθmax = 27.6°, θmin = 2.7°
Absorption correction: multi-scan
(SORTAV; Blessing, 1995, 1997)
h = 2222
Tmin = 0.811, Tmax = 1.000k = 99
24172 measured reflectionsl = 2121
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041All H-atom parameters refined
wR(F2) = 0.109 w = 1/[σ2(Fo2) + (0.0647P)2 + 0.0798P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.003
2180 reflectionsΔρmax = 0.25 e Å3
185 parametersΔρmin = 0.30 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0031 (7)
Crystal data top
C9H10O5·H2OV = 1891.81 (8) Å3
Mr = 216.19Z = 8
Monoclinic, C2/cMo Kα radiation
a = 17.3138 (5) ŵ = 0.13 mm1
b = 7.3330 (1) ÅT = 150 K
c = 16.8507 (5) Å0.35 × 0.10 × 0.10 mm
β = 117.838 (1)°
Data collection top
Nonius kappa-ccd
diffractometer
2180 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995, 1997)
1594 reflections with I > 2σ(I)
Tmin = 0.811, Tmax = 1.000Rint = 0.076
24172 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.109All H-atom parameters refined
S = 1.05Δρmax = 0.25 e Å3
2180 reflectionsΔρmin = 0.30 e Å3
185 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.23569 (8)0.00284 (15)0.00971 (8)0.0180 (3)
C110.25519 (8)0.06309 (16)0.09908 (8)0.0195 (3)
O110.19824 (6)0.05665 (13)0.12456 (6)0.0261 (3)
C120.34383 (9)0.13446 (18)0.16560 (9)0.0208 (3)
H1210.3602 (9)0.239 (2)0.1421 (9)0.024 (4)*
H1220.3880 (9)0.0317 (19)0.1771 (9)0.026 (4)*
O130.34140 (6)0.18287 (13)0.24528 (6)0.0258 (3)
C140.42330 (10)0.2538 (2)0.31023 (10)0.0285 (4)
H1410.4389 (11)0.363 (2)0.2867 (11)0.039 (4)*
H1420.4170 (11)0.280 (2)0.3634 (12)0.043 (5)*
H1430.4686 (11)0.162 (2)0.3287 (10)0.037 (4)*
C20.29487 (8)0.01225 (16)0.02657 (8)0.0187 (3)
O20.37443 (6)0.08560 (13)0.02463 (6)0.0243 (3)
H20.4013 (13)0.096 (3)0.0067 (12)0.052 (6)*
C30.27236 (9)0.05141 (17)0.11188 (9)0.0203 (3)
H30.3131 (9)0.0447 (18)0.1343 (9)0.019 (3)*
C40.19037 (9)0.12680 (16)0.16349 (9)0.0212 (3)
O40.16706 (7)0.19456 (14)0.24634 (6)0.0301 (3)
H40.2034 (14)0.161 (3)0.2648 (13)0.064 (6)*
C50.12936 (9)0.13642 (17)0.13223 (9)0.0215 (3)
H50.0720 (10)0.1879 (18)0.1684 (9)0.021 (4)*
C60.15172 (8)0.07230 (17)0.04718 (9)0.0196 (3)
O60.08997 (6)0.08119 (13)0.01953 (7)0.0260 (3)
H60.1135 (12)0.035 (2)0.0366 (14)0.057 (6)*
O1W0.04638 (7)0.34550 (14)0.07748 (7)0.0282 (3)
H1W0.0019 (13)0.275 (3)0.0575 (13)0.058 (6)*
H2W0.0810 (14)0.297 (3)0.1330 (16)0.064 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0200 (7)0.0173 (7)0.0184 (7)0.0011 (5)0.0104 (6)0.0022 (5)
C110.0220 (7)0.0173 (6)0.0217 (7)0.0015 (5)0.0125 (6)0.0032 (5)
O110.0248 (6)0.0348 (6)0.0246 (5)0.0039 (4)0.0165 (5)0.0045 (4)
C120.0245 (8)0.0220 (7)0.0188 (7)0.0005 (5)0.0124 (6)0.0008 (5)
O130.0254 (6)0.0367 (6)0.0178 (5)0.0048 (4)0.0121 (4)0.0063 (4)
C140.0280 (9)0.0347 (9)0.0206 (8)0.0039 (6)0.0095 (7)0.0041 (6)
C20.0183 (7)0.0170 (6)0.0205 (7)0.0013 (5)0.0088 (6)0.0022 (5)
O20.0188 (5)0.0349 (6)0.0221 (5)0.0048 (4)0.0118 (4)0.0045 (4)
C30.0225 (7)0.0212 (7)0.0219 (7)0.0001 (5)0.0143 (6)0.0012 (5)
C40.0294 (8)0.0182 (7)0.0178 (7)0.0005 (5)0.0125 (6)0.0010 (5)
O40.0367 (7)0.0376 (6)0.0216 (6)0.0122 (5)0.0183 (5)0.0084 (4)
C50.0220 (8)0.0218 (7)0.0199 (7)0.0032 (5)0.0092 (6)0.0012 (5)
C60.0207 (7)0.0184 (7)0.0229 (7)0.0000 (5)0.0128 (6)0.0022 (5)
O60.0225 (6)0.0362 (6)0.0250 (6)0.0074 (4)0.0157 (5)0.0054 (4)
O1W0.0218 (6)0.0355 (6)0.0272 (6)0.0030 (4)0.0115 (5)0.0039 (5)
Geometric parameters (Å, º) top
C1—C21.4190 (18)C2—C31.3831 (18)
C1—C61.4265 (18)O2—H20.86 (2)
C1—C111.4499 (17)C3—C41.3872 (19)
C11—O111.2466 (15)C3—H30.945 (15)
C11—C121.5096 (18)C4—O41.3537 (16)
C12—O131.4084 (16)C4—C51.3849 (19)
C12—H1210.964 (15)O4—H40.86 (2)
C12—H1221.025 (14)C5—C61.3808 (18)
O13—C141.4246 (17)C5—H50.967 (14)
C14—H1410.986 (16)C6—O61.3527 (16)
C14—H1420.972 (19)O6—H60.90 (2)
C14—H1430.967 (16)O1W—H1W0.86 (2)
C2—O21.3495 (15)O1W—H2W0.92 (2)
C2—C1—C6116.34 (11)O2—C2—C3120.47 (12)
C2—C1—C11124.61 (11)O2—C2—C1118.08 (11)
C6—C1—C11119.06 (11)C3—C2—C1121.45 (12)
O11—C11—C1120.54 (12)C2—O2—H2109.2 (12)
O11—C11—C12116.80 (11)C2—C3—C4119.69 (12)
C1—C11—C12122.66 (11)C2—C3—H3119.9 (8)
O13—C12—C11108.82 (10)C4—C3—H3120.4 (8)
O13—C12—H121109.7 (8)O4—C4—C5117.42 (12)
C11—C12—H121111.2 (8)O4—C4—C3121.18 (12)
O13—C12—H122110.9 (8)C5—C4—C3121.39 (12)
C11—C12—H122107.2 (8)C4—O4—H4110.8 (14)
H121—C12—H122109.0 (12)C6—C5—C4118.91 (12)
C12—O13—C14111.25 (10)C6—C5—H5119.6 (9)
O13—C14—H141110.4 (9)C4—C5—H5121.4 (9)
O13—C14—H142106.3 (10)O6—C6—C5117.23 (12)
H141—C14—H142112.2 (14)O6—C6—C1120.57 (11)
O13—C14—H143111.1 (9)C5—C6—C1122.20 (12)
H141—C14—H143111.1 (13)C6—O6—H6107.5 (12)
H142—C14—H143105.4 (14)H1W—O1W—H2W101.7 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1Wi0.85 (2)1.85 (2)2.7017 (16)171 (2)
O4—H4···O11ii0.86 (3)1.98 (2)2.6727 (15)137 (2)
O4—H4···O13ii0.86 (3)2.32 (3)3.0881 (17)149.1 (19)
O6—H6···O110.90 (2)1.66 (2)2.4860 (14)150 (2)
O1W—H1W···O6iii0.86 (2)2.00 (2)2.8514 (16)172 (2)
O1W—H2W···O4iv0.92 (2)2.02 (2)2.9345 (14)175 (2)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x, y, z1/2; (iii) x, y, z; (iv) x, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC9H10O5·H2O
Mr216.19
Crystal system, space groupMonoclinic, C2/c
Temperature (K)150
a, b, c (Å)17.3138 (5), 7.3330 (1), 16.8507 (5)
β (°) 117.838 (1)
V3)1891.81 (8)
Z8
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.35 × 0.10 × 0.10
Data collection
DiffractometerNonius kappa-ccd
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995, 1997)
Tmin, Tmax0.811, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
24172, 2180, 1594
Rint0.076
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.109, 1.05
No. of reflections2180
No. of parameters185
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.25, 0.30

Computer programs: SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1Wi0.85 (2)1.85 (2)2.7017 (16)171 (2)
O4—H4···O11ii0.86 (3)1.98 (2)2.6727 (15)137 (2)
O4—H4···O13ii0.86 (3)2.32 (3)3.0881 (17)149.1 (19)
O6—H6···O110.90 (2)1.66 (2)2.4860 (14)150 (2)
O1W—H1W···O6iii0.86 (2)2.00 (2)2.8514 (16)172 (2)
O1W—H2W···O4iv0.92 (2)2.02 (2)2.9345 (14)175 (2)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x, y, z1/2; (iii) x, y, z; (iv) x, y, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds