Download citation
Download citation
link to html
A crystal engineering approach is used to stabilize a radical anion in the crystalline state and to modulate the separation distance within π-stacks of anion radicals. Alkali metal salts of 2,3-dicyano-5,6-dichlorosemiquinone (C8Cl2N2O2, DDQ^{\bullet -}) radical anions were prepared and their crystal structures determined: LiDDQ·2H2O·(CH3)2CO, RbDDQ·2H2O and CsDDQ·2H2O. In these structures, stacked dimers of radical anions are formed within π-stacked columns. Within the stacked dimers, interplanar separation distances are significantly shorter than the sum of the van der Waals radii for two C atoms; the shortest is 2.812 Å for the Li salt and the longest is 2.925 Å for the Cs salt. Diamagnetic character, observed by electron paramagnetic resonance spectroscopy, indicates spin-coupling of the unpaired electrons within the radical anion dimer. The electron-rich cyano substituents on DDQ^{\bullet -} influence the electron redistribution within the ring skeleton. The crystalline compounds are also characterized by IR spectroscopy, complemented by quantum-chemical calculations based on both isolated and periodic models.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2052520613027170/bi5007sup1.cif
Contains datablocks LiDDQx2H2OxMe2O, RbDDQx2H2O_293K, RbDDQx2H2O_120K, CsDDQx2H2O_293K, CsDDQx2H2O_120K

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520613027170/bi5007LiDDQx2H2OxMe2Osup2.hkl
Contains datablock LiDDQx2H2OxMe2O

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520613027170/bi5007RbDDQx2H2O_293Ksup3.hkl
Contains datablock RbDDQx2H2O_293K

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520613027170/bi5007RbDDQx2H2O_120Ksup4.hkl
Contains datablock RbDDQx2H2O_120K

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520613027170/bi5007CsDDQx2H2O_293Ksup5.hkl
Contains datablock CsDDQx2H2O_293K

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520613027170/bi5007CsDDQx2H2O_120Ksup6.hkl
Contains datablock CsDDQx2H2O_120K

txt

Text file https://doi.org/10.1107/S2052520613027170/bi5007sup7.txt
DFT optimized structures in CIF format

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2052520613027170/bi5007sup8.pdf
ORTEP plots, IR spectra, geometries of fragments used for calculation of vibrations, refinement details for inversion twins

CCDC references: 964468; 964469; 964470; 964471; 964472

Computing details top

For all compounds, data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008). Molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) & Mercury (Macrae et al., 2006) for LiDDQx2H2OxMe2O, RbDDQx2H2O_293K, RbDDQx2H2O_120K, CsDDQx2H2O_293K. Software used to prepare material for publication: WinGX (Farrugia, 2012) & PLATON (Spek, 2003) for LiDDQx2H2OxMe2O, RbDDQx2H2O_293K, RbDDQx2H2O_120K, CsDDQx2H2O_293K; SHELXL97 for CsDDQx2H2O_120K.

Figures top
[Figure 1]
[Figure 2]
[Figure 3]
[Figure 4]
[Figure 5]
[Figure 6]
[Figure 7]
[Figure 8]
[Figure 9]
(LiDDQx2H2OxMe2O) top
Crystal data top
C11H10Cl2LiN2O5Z = 2
Mr = 328.06F(000) = 334
Triclinic, P1Dx = 1.461 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.5418 Å
a = 6.667 (5) ÅCell parameters from 2953 reflections
b = 10.495 (5) Åθ = 4.1–76.7°
c = 11.977 (5) ŵ = 4.11 mm1
α = 110.773 (5)°T = 120 K
β = 99.693 (5)°Prism, dark green
γ = 100.335 (5)°0.18 × 0.07 × 0.06 mm
V = 745.9 (7) Å3
Data collection top
Oxford Diffraction Xcalibur CCD, Ruby, Nova
diffractometer
2981 independent reflections
Radiation source: fine-focus sealed tube2204 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.071
ω scansθmax = 76.9°, θmin = 4.1°
Absorption correction: multi-scan
CrysAlis PRO (Agilent, 2012)
h = 68
Tmin = 0.621, Tmax = 1.000k = 1013
5368 measured reflectionsl = 1514
Refinement top
Refinement on F291 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.1 w = 1/[σ2(Fo2) + (0.1271P)2 + 4.0961P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.310(Δ/σ)max = 0.001
S = 1.08Δρmax = 0.63 e Å3
2981 reflectionsΔρmin = 0.88 e Å3
257 parameters
Crystal data top
C11H10Cl2LiN2O5γ = 100.335 (5)°
Mr = 328.06V = 745.9 (7) Å3
Triclinic, P1Z = 2
a = 6.667 (5) ÅCu Kα radiation
b = 10.495 (5) ŵ = 4.11 mm1
c = 11.977 (5) ÅT = 120 K
α = 110.773 (5)°0.18 × 0.07 × 0.06 mm
β = 99.693 (5)°
Data collection top
Oxford Diffraction Xcalibur CCD, Ruby, Nova
diffractometer
2981 independent reflections
Absorption correction: multi-scan
CrysAlis PRO (Agilent, 2012)
2204 reflections with I > 2σ(I)
Tmin = 0.621, Tmax = 1.000Rint = 0.071
5368 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.191 restraints
wR(F2) = 0.310H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.63 e Å3
2981 reflectionsΔρmin = 0.88 e Å3
257 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Li10.3160 (18)0.5055 (10)0.4330 (10)0.036 (2)
O10.2407 (8)0.6714 (5)0.4572 (6)0.0506 (14)
O20.1574 (7)1.1817 (4)0.4743 (4)0.0354 (11)
C10.2200 (10)0.7887 (6)0.4601 (7)0.0383 (16)
C20.3097 (9)0.9166 (7)0.5719 (6)0.0358 (15)
C30.2919 (9)1.0460 (6)0.5758 (6)0.0337 (14)
C40.1828 (9)1.0649 (6)0.4698 (6)0.0311 (13)
C50.1042 (10)0.9372 (6)0.3558 (6)0.0354 (14)
C60.1266 (9)0.8076 (6)0.3521 (6)0.0360 (14)
Cl1B0.4113 (9)1.2027 (4)0.7133 (3)0.0369 (9)0.658 (6)
Cl2B0.4507 (9)0.9014 (7)0.7054 (4)0.0453 (10)0.658 (6)
N2B0.0562 (19)0.9755 (12)0.1665 (11)0.046 (2)0.658 (6)
N1B0.006 (2)0.5903 (15)0.1503 (13)0.061 (3)0.658 (6)
C7B0.039 (5)0.678 (2)0.2418 (17)0.047 (4)0.658 (6)
C8B0.009 (4)0.959 (3)0.2501 (16)0.044 (3)0.658 (6)
Cl1A0.0042 (15)0.9544 (10)0.2118 (7)0.0422 (19)0.342 (6)
Cl2A0.0395 (18)0.6581 (11)0.2036 (8)0.046 (2)0.342 (6)
C7A0.419 (9)0.890 (7)0.674 (4)0.048 (3)0.342 (6)
C8A0.395 (8)1.174 (3)0.682 (3)0.036 (3)0.342 (6)
N1A0.510 (3)0.879 (2)0.7566 (16)0.049 (2)0.342 (6)
N2A0.444 (3)1.278 (2)0.7637 (18)0.043 (3)0.342 (6)
O40.1132 (8)0.3356 (5)0.3135 (5)0.0438 (12)
H4A0.012 (6)0.365 (6)0.302 (6)0.03*
H4B0.072 (9)0.252 (4)0.328 (6)0.03*
O50.3900 (7)0.4638 (4)0.5826 (4)0.0327 (10)
H5A0.325 (10)0.370 (3)0.569 (5)0.03*
H5B0.395 (10)0.519 (5)0.665 (3)0.03*
O30.7187 (8)0.3656 (5)0.2188 (4)0.0405 (11)
C90.6198 (13)0.3127 (7)0.1136 (7)0.0449 (17)
C100.6981 (19)0.2124 (12)0.0172 (8)0.082 (3)
H10A0.82970.20210.05510.123*
H10B0.71810.24870.04400.123*
H10C0.59670.12220.02000.123*
C110.4134 (19)0.3420 (13)0.0739 (10)0.089 (4)
H11A0.38180.40670.14430.133*
H11B0.30410.25540.03810.133*
H11C0.42240.38260.0140.133*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Li10.049 (6)0.024 (5)0.046 (6)0.017 (4)0.021 (5)0.021 (4)
O10.055 (3)0.035 (2)0.096 (4)0.030 (2)0.045 (3)0.046 (3)
O20.042 (2)0.0254 (19)0.062 (3)0.0181 (18)0.030 (2)0.031 (2)
C10.036 (3)0.031 (3)0.080 (5)0.026 (3)0.040 (3)0.038 (3)
C20.034 (3)0.041 (3)0.065 (4)0.025 (3)0.032 (3)0.042 (3)
C30.034 (3)0.027 (3)0.059 (4)0.015 (2)0.029 (3)0.028 (3)
C40.030 (3)0.023 (3)0.059 (4)0.016 (2)0.028 (3)0.026 (3)
C50.038 (3)0.027 (3)0.064 (4)0.019 (2)0.031 (3)0.030 (3)
C60.031 (3)0.024 (3)0.065 (4)0.013 (2)0.025 (3)0.022 (3)
Cl1B0.0443 (17)0.035 (2)0.051 (3)0.0192 (18)0.029 (2)0.0279 (16)
Cl2B0.048 (3)0.0472 (17)0.072 (3)0.0258 (18)0.034 (2)0.044 (2)
N2B0.047 (4)0.037 (3)0.066 (6)0.015 (3)0.035 (4)0.023 (4)
N1B0.064 (6)0.054 (6)0.076 (8)0.018 (6)0.036 (6)0.027 (5)
C8B0.045 (4)0.033 (3)0.068 (7)0.011 (3)0.043 (5)0.023 (5)
C7B0.051 (5)0.053 (7)0.071 (10)0.024 (5)0.048 (7)0.044 (6)
Cl1A0.048 (3)0.034 (2)0.062 (6)0.0202 (18)0.035 (4)0.025 (4)
Cl2A0.047 (3)0.046 (4)0.070 (7)0.027 (3)0.037 (5)0.033 (4)
C8A0.041 (4)0.035 (5)0.055 (5)0.023 (4)0.032 (5)0.029 (4)
C7A0.044 (5)0.049 (4)0.076 (5)0.019 (4)0.034 (5)0.043 (5)
N2A0.047 (4)0.038 (5)0.057 (5)0.019 (4)0.027 (4)0.024 (4)
N1A0.045 (5)0.051 (4)0.076 (5)0.020 (4)0.027 (4)0.044 (4)
O30.054 (3)0.039 (2)0.041 (3)0.022 (2)0.024 (2)0.020 (2)
C90.071 (5)0.039 (3)0.038 (4)0.024 (3)0.025 (4)0.019 (3)
C100.107 (8)0.102 (8)0.034 (4)0.063 (7)0.013 (5)0.009 (5)
C110.088 (8)0.110 (9)0.062 (6)0.062 (7)0.006 (6)0.016 (6)
O40.052 (3)0.030 (2)0.061 (3)0.016 (2)0.018 (2)0.026 (2)
O50.044 (2)0.0241 (19)0.042 (2)0.0146 (18)0.022 (2)0.0189 (18)
Geometric parameters (Å, º) top
Li1—O11.837 (10)C6—C7B1.457 (16)
Li1—O41.931 (12)C6—Cl2A1.819 (10)
Li1—O5i1.980 (12)N2B—C8B1.108 (15)
Li1—O51.994 (11)N1B—C7B1.100 (16)
Li1—Li1i2.74 (2)C8A—N2A1.125 (17)
Li1—H4A2.34 (5)C7A—N1A1.128 (16)
O1—C11.251 (7)O3—C91.194 (9)
O2—C41.252 (6)C9—C111.499 (12)
C1—C61.435 (10)C9—C101.500 (10)
C1—C21.456 (10)C10—H10A0.96
C2—C31.369 (8)C10—H10B0.96
C2—C7A1.453 (16)C10—H10C0.96
C2—Cl2B1.788 (7)C11—H11A0.96
C3—C8A1.435 (18)C11—H11B0.96
C3—C41.449 (9)C11—H11C0.96
C3—Cl1B1.793 (7)O4—H4A0.94 (2)
C4—C51.464 (9)O4—H4B0.95 (2)
C5—C61.381 (7)O5—Li1i1.980 (12)
C5—C8B1.429 (15)O5—H5A0.95 (2)
C5—Cl1A1.824 (10)O5—H5B0.95 (2)
O1—Li1—O4116.2 (6)C6—C5—Cl1A119.1 (6)
O1—Li1—O5i107.4 (5)C4—C5—Cl1A118.7 (5)
O4—Li1—O5i117.7 (5)C5—C6—C1122.2 (6)
O1—Li1—O5116.2 (6)C5—C6—C7B122.8 (14)
O4—Li1—O5104.5 (5)C1—C6—C7B114.7 (13)
O5i—Li1—O592.8 (5)C5—C6—Cl2A118.1 (7)
O1—Li1—Li1i122.5 (7)C1—C6—Cl2A119.6 (6)
O4—Li1—Li1i121.2 (6)N2B—C8B—C5177 (2)
O5i—Li1—Li1i46.6 (4)N1B—C7B—C6168 (2)
O5—Li1—Li1i46.2 (3)N2A—C8A—C3169 (5)
O1—Li1—H4A93.8 (11)N1A—C7A—C2176 (6)
O4—Li1—H4A23.1 (10)O3—C9—C11121.4 (7)
O5i—Li1—H4A135.2 (15)O3—C9—C10120.4 (8)
O5—Li1—H4A112.8 (15)C11—C9—C10118.1 (8)
Li1i—Li1—H4A142.6 (11)C9—C10—H10A109.5
C1—O1—Li1166.9 (5)C9—C10—H10B109.5
O1—C1—C6122.4 (7)H10A—C10—H10B109.5
O1—C1—C2121.3 (7)C9—C10—H10C109.5
C6—C1—C2116.0 (5)H10A—C10—H10C109.5
C3—C2—C7A125 (3)H10B—C10—H10C109.5
C3—C2—C1121.9 (6)C9—C11—H11A109.5
C7A—C2—C1113 (3)C9—C11—H11B109.5
C3—C2—Cl2B120.1 (6)H11A—C11—H11B109.5
C1—C2—Cl2B118.0 (4)C9—C11—H11C109.5
C2—C3—C8A122 (2)H11A—C11—H11C109.5
C2—C3—C4122.5 (6)H11B—C11—H11C109.5
C8A—C3—C4115 (2)Li1—O4—H4A103 (4)
C2—C3—Cl1B120.9 (6)Li1—O4—H4B124 (4)
C4—C3—Cl1B116.6 (4)H4A—O4—H4B104 (4)
O2—C4—C3122.8 (6)Li1i—O5—Li187.2 (5)
O2—C4—C5121.8 (6)Li1i—O5—H5A114 (4)
C3—C4—C5115.3 (5)Li1—O5—H5A112 (4)
C6—C5—C8B123.4 (12)Li1i—O5—H5B107 (4)
C6—C5—C4121.7 (6)Li1—O5—H5B129 (4)
C8B—C5—C4114.8 (11)H5A—O5—H5B106 (4)
O4—Li1—O1—C1107 (3)C8A—C3—C4—C5171 (2)
O5i—Li1—O1—C127 (3)Cl1B—C3—C4—C5174.4 (4)
O5—Li1—O1—C1130 (3)O2—C4—C5—C6177.9 (5)
Li1i—Li1—O1—C177 (3)C3—C4—C5—C62.4 (8)
Li1—O1—C1—C669 (3)O2—C4—C5—C8B3.5 (12)
Li1—O1—C1—C2104 (3)C3—C4—C5—C8B176.2 (10)
O1—C1—C2—C3178.7 (5)O2—C4—C5—Cl1A9.8 (8)
C6—C1—C2—C34.7 (8)C3—C4—C5—Cl1A169.9 (5)
O1—C1—C2—C7A0 (3)C8B—C5—C6—C1179.0 (11)
C6—C1—C2—C7A174 (3)C4—C5—C6—C12.6 (9)
O1—C1—C2—Cl2B0.1 (8)Cl1A—C5—C6—C1174.8 (5)
C6—C1—C2—Cl2B174.0 (5)C8B—C5—C6—C7B5.3 (18)
C7A—C2—C3—C8A4 (4)C4—C5—C6—C7B176.2 (13)
C1—C2—C3—C8A175 (2)C4—C5—C6—Cl2A175.9 (6)
Cl2B—C2—C3—C8A4 (3)Cl1A—C5—C6—Cl2A3.6 (8)
C7A—C2—C3—C4179 (3)O1—C1—C6—C5179.9 (6)
C1—C2—C3—C40.1 (8)C2—C1—C6—C56.0 (8)
Cl2B—C2—C3—C4178.9 (5)O1—C1—C6—C7B5.9 (14)
C1—C2—C3—Cl1B177.9 (4)C2—C1—C6—C7B179.8 (12)
Cl2B—C2—C3—Cl1B0.8 (7)O1—C1—C6—Cl2A1.5 (9)
C2—C3—C4—O2176.6 (5)C2—C1—C6—Cl2A172.4 (5)
C8A—C3—C4—O28 (2)O1—Li1—O5—Li1i111.0 (8)
Cl1B—C3—C4—O25.3 (7)O4—Li1—O5—Li1i119.6 (6)
C2—C3—C4—C53.7 (8)
Symmetry code: (i) x+1, y+1, z+1.
(RbDDQx2H2O_293K) top
Crystal data top
C8H4Cl2N2O4RbF(000) = 676
Mr = 348.50Dx = 2.034 Mg m3
Orthorhombic, P21212Cu Kα radiation, λ = 1.5418 Å
Hall symbol: P 2 2abCell parameters from 2206 reflections
a = 6.5088 (2) Åθ = 4.6–75.7°
b = 18.1788 (6) ŵ = 10.39 mm1
c = 9.6194 (2) ÅT = 293 K
V = 1138.19 (6) Å3Prism, dark red
Z = 40.36 × 0.04 × 0.02 mm
Data collection top
Oxford Diffraction Xcalibur CCD
diffractometer
2060 independent reflections
Radiation source: fine-focus sealed tube1948 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω scansθmax = 75.9°, θmin = 4.6°
Absorption correction: multi-scan
CrysAlis PRO (Agilent, 2012)
h = 85
Tmin = 0.182, Tmax = 1.000k = 1822
3524 measured reflectionsl = 1112
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.119 w = 1/[σ2(Fo2) + (0.0671P)2 + 0.9965P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
2060 reflectionsΔρmax = 0.61 e Å3
155 parametersΔρmin = 0.82 e Å3
0 restraintsAbsolute structure: Refined as an inversion twin (TWIN + BASF)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.46 (4)
Crystal data top
C8H4Cl2N2O4RbV = 1138.19 (6) Å3
Mr = 348.50Z = 4
Orthorhombic, P21212Cu Kα radiation
a = 6.5088 (2) ŵ = 10.39 mm1
b = 18.1788 (6) ÅT = 293 K
c = 9.6194 (2) Å0.36 × 0.04 × 0.02 mm
Data collection top
Oxford Diffraction Xcalibur CCD
diffractometer
2060 independent reflections
Absorption correction: multi-scan
CrysAlis PRO (Agilent, 2012)
1948 reflections with I > 2σ(I)
Tmin = 0.182, Tmax = 1.000Rint = 0.031
3524 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.119Δρmax = 0.61 e Å3
S = 1.03Δρmin = 0.82 e Å3
2060 reflectionsAbsolute structure: Refined as an inversion twin (TWIN + BASF)
155 parametersAbsolute structure parameter: 0.46 (4)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Rb10.39937 (8)0.64811 (3)0.51784 (6)0.04939 (19)
Cl10.1652 (3)0.70121 (8)0.13979 (17)0.0498 (4)
Cl20.1622 (3)0.69914 (8)0.18398 (17)0.0491 (4)
O10.2032 (7)0.5514 (2)0.3006 (4)0.0435 (9)
O20.2005 (7)0.5540 (2)0.2614 (4)0.0421 (9)
O30.7605 (9)0.5530 (3)0.5164 (5)0.0641 (13)
H3A0.80390.52000.58720.096*
H3B0.79790.52990.43150.096*
O40.4394 (9)0.8067 (3)0.4727 (8)0.0864 (18)
H4A0.37840.85410.47720.130*
H4B0.47890.80150.37820.130*
N10.3281 (9)0.3700 (3)0.2316 (5)0.0481 (13)
N20.3264 (10)0.3730 (3)0.2019 (6)0.0492 (13)
C10.2031 (8)0.5511 (3)0.1718 (5)0.0317 (11)
C20.2332 (8)0.4851 (3)0.0894 (5)0.0300 (10)
C30.2338 (7)0.4864 (3)0.0541 (5)0.0298 (10)
C40.2017 (9)0.5533 (3)0.1344 (6)0.0349 (11)
C50.1805 (8)0.6207 (3)0.0492 (6)0.0358 (11)
C60.1815 (9)0.6198 (3)0.0900 (6)0.0359 (11)
C70.2843 (9)0.4192 (3)0.1671 (5)0.0342 (11)
C80.2821 (9)0.4215 (3)0.1343 (5)0.0355 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rb10.0537 (3)0.0511 (3)0.0433 (3)0.0016 (2)0.0018 (3)0.0026 (2)
Cl10.0606 (9)0.0349 (7)0.0537 (8)0.0018 (7)0.0011 (7)0.0115 (6)
Cl20.0578 (9)0.0355 (7)0.0540 (8)0.0002 (7)0.0040 (7)0.0105 (6)
O10.055 (2)0.044 (2)0.0321 (18)0.004 (2)0.0067 (18)0.0050 (17)
O20.055 (2)0.046 (2)0.0254 (17)0.007 (2)0.0021 (17)0.0077 (16)
O30.108 (4)0.051 (2)0.0330 (19)0.016 (2)0.000 (3)0.004 (2)
O40.085 (3)0.056 (3)0.118 (5)0.007 (3)0.002 (4)0.006 (4)
N10.057 (3)0.043 (3)0.044 (3)0.009 (3)0.003 (2)0.001 (2)
N20.063 (3)0.043 (3)0.041 (3)0.004 (3)0.007 (2)0.005 (2)
C10.032 (3)0.033 (3)0.031 (2)0.001 (2)0.000 (2)0.002 (2)
C20.031 (2)0.032 (3)0.027 (2)0.000 (2)0.0003 (17)0.0000 (18)
C30.027 (2)0.026 (3)0.035 (2)0.0015 (18)0.0001 (17)0.0014 (18)
C40.031 (3)0.035 (3)0.039 (3)0.004 (2)0.002 (2)0.002 (2)
C50.034 (2)0.035 (3)0.038 (3)0.004 (2)0.001 (2)0.000 (2)
C60.033 (2)0.030 (2)0.044 (3)0.001 (2)0.003 (2)0.000 (2)
C70.038 (3)0.032 (3)0.032 (2)0.002 (2)0.000 (2)0.004 (2)
C80.034 (3)0.042 (3)0.030 (2)0.000 (3)0.0006 (19)0.002 (2)
Geometric parameters (Å, º) top
Rb1—O32.919 (5)O3—H3A0.9500
Rb1—O42.926 (6)O3—H3B0.9500
Rb1—O13.015 (4)O4—Rb1v3.106 (6)
Rb1—O2i3.018 (4)O4—Rb1ii3.611 (6)
Rb1—O4ii3.106 (6)O4—H4A0.9500
Rb1—N2iii3.256 (5)O4—H4B0.9500
Rb1—N1iv3.292 (5)N1—C71.125 (8)
Rb1—O4v3.611 (6)N1—Rb1iv3.292 (5)
Rb1—Cl23.6818 (17)N2—C81.133 (8)
Rb1—Cl1i3.7551 (18)N2—Rb1vii3.256 (5)
Rb1—Rb1ii4.9427 (9)C1—C21.452 (7)
Rb1—Rb1v4.9427 (9)C1—C61.482 (7)
Rb1—H4B3.1382C2—C31.381 (6)
Cl1—C51.706 (6)C2—C71.450 (7)
Cl1—Rb1vi3.7550 (18)C3—C81.444 (7)
Cl2—C61.707 (6)C3—C41.456 (7)
O1—C11.239 (7)C4—C51.481 (8)
O2—C41.221 (7)C5—C61.340 (8)
O2—Rb1vi3.018 (4)
O3—Rb1—O4120.76 (16)O4ii—Rb1—Rb1v116.00 (11)
O3—Rb1—O189.55 (13)N2iii—Rb1—Rb1v77.58 (10)
O4—Rb1—O1120.63 (17)N1iv—Rb1—Rb1v70.24 (10)
O3—Rb1—O2i90.74 (14)O4v—Rb1—Rb1v35.92 (9)
O4—Rb1—O2i134.47 (17)Cl2—Rb1—Rb1v91.53 (3)
O1—Rb1—O2i88.60 (11)Cl1i—Rb1—Rb1v97.79 (3)
O3—Rb1—O4ii158.96 (15)Rb1ii—Rb1—Rb1v82.359 (18)
O4—Rb1—O4ii80.18 (13)O3—Rb1—H4B113.1
O1—Rb1—O4ii76.49 (16)O4—Rb1—H4B17.6
O2i—Rb1—O4ii73.51 (15)O1—Rb1—H4B106.9
O3—Rb1—N2iii59.50 (14)O2i—Rb1—H4B151.1
O4—Rb1—N2iii100.96 (17)O4ii—Rb1—H4B86.4
O1—Rb1—N2iii137.50 (12)N2iii—Rb1—H4B111.6
O2i—Rb1—N2iii65.52 (14)N1iv—Rb1—H4B69.0
O4ii—Rb1—N2iii122.37 (19)O4v—Rb1—H4B69.4
O3—Rb1—N1iv60.19 (13)Cl2—Rb1—H4B58.1
O4—Rb1—N1iv85.78 (18)Cl1i—Rb1—H4B102.4
O1—Rb1—N1iv65.81 (14)Rb1ii—Rb1—H4B54.1
O2i—Rb1—N1iv139.73 (12)Rb1v—Rb1—H4B36.5
O4ii—Rb1—N1iv124.77 (18)C5—Cl1—Rb1vi101.7 (2)
N2iii—Rb1—N1iv112.67 (13)C6—Cl2—Rb1102.6 (2)
O3—Rb1—O4v49.54 (14)C1—O1—Rb1134.1 (4)
O4—Rb1—O4v72.11 (14)C4—O2—Rb1vi135.0 (4)
O1—Rb1—O4v124.22 (15)Rb1—O3—H3A127.6
O2i—Rb1—O4v121.92 (14)Rb1—O3—H3B118.1
O4ii—Rb1—O4v151.32 (19)H3A—O3—H3B105.2
N2iii—Rb1—O4v58.16 (16)Rb1—O4—Rb1v110.00 (18)
N1iv—Rb1—O4v61.26 (16)Rb1—O4—Rb1ii97.70 (16)
O3—Rb1—Cl2118.87 (9)Rb1v—O4—Rb1ii151.32 (19)
O4—Rb1—Cl270.11 (15)Rb1—O4—H4A148.2
O1—Rb1—Cl250.57 (9)Rb1v—O4—H4A99.3
O2i—Rb1—Cl2125.22 (9)Rb1ii—O4—H4A52.1
O4ii—Rb1—Cl263.56 (15)Rb1—O4—H4B93.9
N2iii—Rb1—Cl2169.03 (11)Rb1v—O4—H4B78.1
N1iv—Rb1—Cl261.41 (10)Rb1ii—O4—H4B108.1
O4v—Rb1—Cl2111.87 (12)H4A—O4—H4B104.3
O3—Rb1—Cl1i118.90 (9)C7—N1—Rb1iv132.6 (4)
O4—Rb1—Cl1i85.01 (15)C8—N2—Rb1vii134.9 (5)
O1—Rb1—Cl1i125.87 (9)O1—C1—C2123.3 (5)
O2i—Rb1—Cl1i49.79 (9)O1—C1—C6121.9 (5)
O4ii—Rb1—Cl1i61.00 (15)C2—C1—C6114.8 (4)
N2iii—Rb1—Cl1i61.74 (12)C3—C2—C7121.9 (5)
N1iv—Rb1—Cl1i167.95 (11)C3—C2—C1122.1 (5)
O4v—Rb1—Cl1i108.33 (13)C7—C2—C1115.7 (4)
Cl2—Rb1—Cl1i122.01 (3)C2—C3—C8121.4 (5)
O3—Rb1—Rb1ii166.95 (11)C2—C3—C4123.0 (5)
O4—Rb1—Rb1ii46.38 (12)C8—C3—C4115.4 (5)
O1—Rb1—Rb1ii96.33 (9)O2—C4—C3122.8 (6)
O2i—Rb1—Rb1ii101.02 (9)O2—C4—C5122.9 (6)
O4ii—Rb1—Rb1ii33.80 (10)C3—C4—C5114.2 (5)
N2iii—Rb1—Rb1ii120.45 (10)C6—C5—C4122.9 (6)
N1iv—Rb1—Rb1ii111.82 (10)C6—C5—Cl1121.4 (5)
O4v—Rb1—Rb1ii118.17 (9)C4—C5—Cl1115.6 (4)
Cl2—Rb1—Rb1ii58.31 (3)C5—C6—C1122.8 (5)
Cl1i—Rb1—Rb1ii66.49 (3)C5—C6—Cl2121.2 (5)
O3—Rb1—Rb1v85.04 (11)C1—C6—Cl2116.0 (4)
O4—Rb1—Rb1v36.19 (12)N1—C7—C2176.9 (6)
O1—Rb1—Rb1v131.90 (9)N2—C8—C3176.2 (6)
O2i—Rb1—Rb1v139.09 (8)
O3—Rb1—Cl2—C638.6 (2)N1iv—Rb1—O4—Rb1ii125.80 (19)
O4—Rb1—Cl2—C6153.5 (3)O4v—Rb1—O4—Rb1ii173.1 (3)
O1—Rb1—Cl2—C623.7 (2)Cl2—Rb1—O4—Rb1ii64.72 (13)
O2i—Rb1—Cl2—C675.4 (2)Cl1i—Rb1—O4—Rb1ii61.97 (14)
O4ii—Rb1—Cl2—C6117.8 (2)Rb1v—Rb1—O4—Rb1ii172.4 (4)
N2iii—Rb1—Cl2—C6117.0 (6)Rb1—O1—C1—C2134.6 (5)
N1iv—Rb1—Cl2—C657.3 (2)Rb1—O1—C1—C642.4 (8)
O4v—Rb1—Cl2—C693.4 (2)O1—C1—C2—C3179.5 (6)
Cl1i—Rb1—Cl2—C6136.1 (2)C6—C1—C2—C32.3 (8)
Rb1ii—Rb1—Cl2—C6156.2 (2)O1—C1—C2—C75.9 (8)
Rb1v—Rb1—Cl2—C6123.8 (2)C6—C1—C2—C7171.4 (5)
O3—Rb1—O1—C189.9 (6)C7—C2—C3—C81.2 (9)
O4—Rb1—O1—C136.2 (6)C1—C2—C3—C8174.4 (4)
O2i—Rb1—O1—C1179.3 (6)C7—C2—C3—C4174.2 (4)
O4ii—Rb1—O1—C1105.9 (6)C1—C2—C3—C41.0 (9)
N2iii—Rb1—O1—C1130.5 (5)Rb1vi—O2—C4—C3132.6 (5)
N1iv—Rb1—O1—C132.7 (5)Rb1vi—O2—C4—C544.4 (9)
O4v—Rb1—O1—C152.1 (6)C2—C3—C4—O2179.3 (6)
Cl2—Rb1—O1—C139.2 (5)C8—C3—C4—O25.1 (8)
Cl1i—Rb1—O1—C1143.9 (5)C2—C3—C4—C53.5 (8)
Rb1ii—Rb1—O1—C178.4 (5)C8—C3—C4—C5172.1 (4)
Rb1v—Rb1—O1—C17.0 (6)O2—C4—C5—C6179.9 (6)
O3—Rb1—O4—Rb1v10.4 (3)C3—C4—C5—C62.9 (9)
O1—Rb1—O4—Rb1v120.3 (2)O2—C4—C5—Cl12.7 (8)
O2i—Rb1—O4—Rb1v116.9 (2)C3—C4—C5—Cl1174.5 (4)
O4ii—Rb1—O4—Rb1v171.9 (4)Rb1vi—Cl1—C5—C6156.4 (5)
N2iii—Rb1—O4—Rb1v50.5 (3)Rb1vi—Cl1—C5—C421.0 (4)
N1iv—Rb1—O4—Rb1v61.8 (2)C4—C5—C6—C10.2 (11)
O4v—Rb1—O4—Rb1v0.6 (2)Cl1—C5—C6—C1177.5 (4)
Cl2—Rb1—O4—Rb1v122.8 (2)C4—C5—C6—Cl2178.6 (4)
Cl1i—Rb1—O4—Rb1v110.5 (2)Cl1—C5—C6—Cl21.3 (9)
Rb1ii—Rb1—O4—Rb1v172.4 (4)O1—C1—C6—C5179.9 (6)
O3—Rb1—O4—Rb1ii177.20 (12)C2—C1—C6—C52.9 (9)
O1—Rb1—O4—Rb1ii67.2 (2)O1—C1—C6—Cl21.3 (8)
O2i—Rb1—O4—Rb1ii55.6 (3)C2—C1—C6—Cl2176.0 (4)
O4ii—Rb1—O4—Rb1ii0.6 (2)Rb1—Cl2—C6—C5156.3 (5)
N2iii—Rb1—O4—Rb1ii121.90 (18)Rb1—Cl2—C6—C122.6 (5)
Symmetry codes: (i) x, y, z+1; (ii) x1/2, y+3/2, z+1; (iii) x+1, y+1, z+1; (iv) x+1, y+1, z; (v) x+1/2, y+3/2, z+1; (vi) x, y, z1; (vii) x+1, y+1, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3B···O1iv0.951.942.822 (6)153
O3—H3A···O2iii0.951.982.901 (6)162
O4—H4A···O3ii0.951.862.807 (8)179
O4—H4B···Cl1viii0.952.593.527 (8)167
O4—H4B···N2ix0.952.923.352 (9)109
Symmetry codes: (ii) x1/2, y+3/2, z+1; (iii) x+1, y+1, z+1; (iv) x+1, y+1, z; (viii) x+1/2, y+3/2, z; (ix) x+1/2, y+1/2, z.
(RbDDQx2H2O_120K) top
Crystal data top
C8H4Cl2N2O4RbF(000) = 676
Mr = 348.50Dx = 2.088 Mg m3
Orthorhombic, P21212Cu Kα radiation, λ = 1.54180 Å
Hall symbol: P 2 2abCell parameters from 3496 reflections
a = 6.4217 (2) Åθ = 4.6–75.9°
b = 18.0295 (6) ŵ = 10.67 mm1
c = 9.5740 (2) ÅT = 120 K
V = 1108.48 (6) Å3Prism, dark red
Z = 40.28 × 0.04 × 0.02 mm
Data collection top
Oxford Diffraction Xcalibur CCD
diffractometer
2194 independent reflections
Radiation source: fine-focus sealed tube2103 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
ω scansθmax = 76.1°, θmin = 4.6°
Absorption correction: multi-scan
CrysAlis PRO (Agilent, 2012)
h = 58
Tmin = 0.651, Tmax = 1.000k = 2222
5137 measured reflectionsl = 1111
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.118 w = 1/[σ2(Fo2) + (0.0777P)2 + 0.3657P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max = 0.001
2194 reflectionsΔρmax = 0.72 e Å3
155 parametersΔρmin = 0.72 e Å3
0 restraintsAbsolute structure: Refined as an inversion twin (TWIN + BASF) The refined BASF value indicates that this model represents the *minor* component. However, this model is retained since it has the same handedness as all other structures in this paper (it can be overlaid directly with the other structures and the DFT-optimized structures.
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.64 (4)
Crystal data top
C8H4Cl2N2O4RbV = 1108.48 (6) Å3
Mr = 348.50Z = 4
Orthorhombic, P21212Cu Kα radiation
a = 6.4217 (2) ŵ = 10.67 mm1
b = 18.0295 (6) ÅT = 120 K
c = 9.5740 (2) Å0.28 × 0.04 × 0.02 mm
Data collection top
Oxford Diffraction Xcalibur CCD
diffractometer
2194 independent reflections
Absorption correction: multi-scan
CrysAlis PRO (Agilent, 2012)
2103 reflections with I > 2σ(I)
Tmin = 0.651, Tmax = 1.000Rint = 0.043
5137 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.118Δρmax = 0.72 e Å3
S = 1.12Δρmin = 0.72 e Å3
2194 reflectionsAbsolute structure: Refined as an inversion twin (TWIN + BASF) The refined BASF value indicates that this model represents the *minor* component. However, this model is retained since it has the same handedness as all other structures in this paper (it can be overlaid directly with the other structures and the DFT-optimized structures.
155 parametersAbsolute structure parameter: 0.64 (4)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Rb10.39798 (7)0.65151 (3)0.53116 (5)0.02556 (17)
Cl10.1626 (2)0.70374 (7)0.12323 (12)0.0258 (3)
Cl20.1563 (2)0.69946 (7)0.20293 (12)0.0258 (3)
O10.2022 (6)0.5507 (2)0.3174 (4)0.0251 (8)
O20.2000 (7)0.5552 (2)0.2499 (4)0.0233 (8)
O30.7606 (7)0.5536 (2)0.5294 (4)0.0305 (8)
H3A0.80430.52040.60070.046*
H3B0.79820.53040.44400.046*
O40.4395 (7)0.8062 (2)0.4472 (4)0.0324 (9)
H4A0.37790.85410.45170.049*
H4B0.47920.80100.35210.049*
N10.3357 (8)0.3674 (3)0.2436 (4)0.0266 (10)
N20.3306 (8)0.3726 (3)0.1918 (5)0.0262 (10)
C10.2011 (9)0.5505 (3)0.1872 (5)0.0210 (10)
C20.2341 (8)0.4847 (3)0.1046 (5)0.0204 (10)
C30.2324 (7)0.4857 (3)0.0402 (5)0.0192 (9)
C40.2015 (8)0.5542 (3)0.1198 (6)0.0207 (10)
C50.1783 (7)0.6215 (3)0.0341 (6)0.0207 (9)
C60.1782 (8)0.6201 (3)0.1074 (6)0.0200 (9)
C70.2875 (8)0.4174 (3)0.1808 (5)0.0221 (10)
C80.2854 (8)0.4220 (3)0.1216 (5)0.0218 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rb10.0294 (3)0.0238 (3)0.0235 (2)0.00083 (18)0.0010 (2)0.00145 (18)
Cl10.0344 (6)0.0179 (6)0.0251 (5)0.0016 (5)0.0015 (5)0.0038 (4)
Cl20.0325 (7)0.0180 (6)0.0268 (5)0.0017 (5)0.0021 (5)0.0036 (4)
O10.0334 (19)0.026 (2)0.0162 (16)0.0035 (17)0.0052 (14)0.0029 (14)
O20.0297 (19)0.0237 (19)0.0167 (16)0.0041 (17)0.0009 (14)0.0016 (14)
O30.051 (2)0.0204 (18)0.0204 (16)0.0058 (15)0.005 (2)0.0019 (15)
O40.043 (2)0.0225 (19)0.0315 (18)0.0041 (17)0.0005 (17)0.0013 (16)
N10.035 (2)0.025 (3)0.020 (2)0.002 (2)0.0010 (17)0.0014 (17)
N20.031 (2)0.017 (2)0.031 (2)0.0044 (17)0.0011 (19)0.0037 (17)
C10.026 (3)0.021 (3)0.016 (2)0.003 (2)0.0021 (18)0.0001 (18)
C20.021 (2)0.020 (3)0.020 (2)0.0008 (18)0.0010 (19)0.0009 (18)
C30.020 (2)0.017 (2)0.021 (2)0.0007 (16)0.000 (2)0.0037 (19)
C40.019 (2)0.021 (3)0.022 (2)0.0017 (19)0.0006 (18)0.0008 (19)
C50.023 (2)0.016 (2)0.023 (2)0.0016 (16)0.000 (2)0.0043 (19)
C60.024 (2)0.013 (2)0.023 (2)0.0038 (17)0.003 (2)0.0027 (18)
C70.024 (3)0.022 (3)0.020 (2)0.000 (2)0.0019 (19)0.005 (2)
C80.021 (2)0.023 (3)0.021 (2)0.008 (2)0.0021 (19)0.006 (2)
Geometric parameters (Å, º) top
Rb1—O42.915 (4)O3—H3A0.9500
Rb1—O32.922 (4)O3—H3B0.9501
Rb1—O2i3.004 (4)O4—Rb1v3.048 (4)
Rb1—O13.012 (4)O4—Rb1ii3.566 (4)
Rb1—O4ii3.048 (4)O4—H4A0.9501
Rb1—N2iii3.204 (5)O4—H4B0.9500
Rb1—N1iv3.259 (5)N1—C71.128 (8)
Rb1—O4v3.566 (4)N1—Rb1iv3.259 (5)
Rb1—Cl23.6098 (13)N2—C81.153 (7)
Rb1—Cl1i3.7576 (13)N2—Rb1vii3.204 (5)
Rb1—Rb1v4.8247 (7)C1—C21.442 (7)
Rb1—Rb1ii4.8247 (7)C1—C61.477 (7)
Rb1—H4B3.2373C2—C31.386 (7)
Cl1—C51.713 (5)C2—C71.456 (7)
Cl1—Rb1vi3.7576 (13)C3—C81.429 (7)
Cl2—C61.703 (5)C3—C41.465 (7)
O1—C11.246 (6)C4—C51.472 (7)
O2—C41.246 (7)C5—C61.355 (7)
O2—Rb1vi3.004 (4)
O4—Rb1—O3120.23 (12)O4ii—Rb1—Rb1ii35.08 (8)
O4—Rb1—O2i141.65 (11)N2iii—Rb1—Rb1ii124.37 (9)
O3—Rb1—O2i89.54 (12)N1iv—Rb1—Rb1ii108.77 (9)
O4—Rb1—O1115.35 (11)O4v—Rb1—Rb1ii119.93 (7)
O3—Rb1—O187.96 (11)Cl2—Rb1—Rb1ii55.25 (2)
O2i—Rb1—O187.06 (10)Cl1i—Rb1—Rb1ii69.92 (2)
O4—Rb1—O4ii82.41 (9)Rb1v—Rb1—Rb1ii83.442 (16)
O3—Rb1—O4ii157.09 (12)O4—Rb1—H4B16.7
O2i—Rb1—O4ii71.84 (11)O3—Rb1—H4B111.8
O1—Rb1—O4ii78.11 (12)O2i—Rb1—H4B156.8
O4—Rb1—N2iii107.97 (12)O1—Rb1—H4B102.1
O3—Rb1—N2iii59.26 (12)O4ii—Rb1—H4B89.1
O2i—Rb1—N2iii64.79 (11)N2iii—Rb1—H4B117.6
O1—Rb1—N2iii135.05 (11)N1iv—Rb1—H4B63.6
O4ii—Rb1—N2iii120.21 (12)O4v—Rb1—H4B72.3
O4—Rb1—N1iv79.58 (12)Cl2—Rb1—H4B53.8
O3—Rb1—N1iv60.91 (12)Cl1i—Rb1—H4B108.8
O2i—Rb1—N1iv138.67 (11)Rb1v—Rb1—H4B38.2
O1—Rb1—N1iv65.28 (12)Rb1ii—Rb1—H4B55.2
O4ii—Rb1—N1iv126.19 (12)C5—Cl1—Rb1vi101.43 (19)
N2iii—Rb1—N1iv113.55 (12)C6—Cl2—Rb1103.36 (18)
O4—Rb1—O4v73.89 (11)C1—O1—Rb1133.1 (3)
O3—Rb1—O4v49.62 (11)C4—O2—Rb1vi134.6 (3)
O2i—Rb1—O4v119.71 (10)Rb1—O3—H3A127.7
O1—Rb1—O4v125.13 (11)Rb1—O3—H3B118.2
O4ii—Rb1—O4v152.20 (15)H3A—O3—H3B105.4
N2iii—Rb1—O4v56.65 (11)Rb1—O4—Rb1v107.98 (13)
N1iv—Rb1—O4v63.88 (11)Rb1—O4—Rb1ii95.69 (11)
O4—Rb1—Cl264.54 (8)Rb1v—O4—Rb1ii152.20 (15)
O3—Rb1—Cl2118.84 (8)Rb1—O4—H4A144.9
O2i—Rb1—Cl2124.32 (8)Rb1v—O4—H4A99.9
O1—Rb1—Cl251.21 (8)Rb1ii—O4—H4A53.0
O4ii—Rb1—Cl265.43 (8)Rb1—O4—H4B101.2
N2iii—Rb1—Cl2170.82 (9)Rb1v—O4—H4B80.2
N1iv—Rb1—Cl261.01 (9)Rb1ii—O4—H4B109.8
O4v—Rb1—Cl2114.75 (7)H4A—O4—H4B104.2
O4—Rb1—Cl1i92.28 (8)C7—N1—Rb1iv132.7 (4)
O3—Rb1—Cl1i118.48 (8)C8—N2—Rb1vii136.4 (4)
O2i—Rb1—Cl1i50.23 (8)O1—C1—C2123.3 (5)
O1—Rb1—Cl1i125.57 (8)O1—C1—C6121.1 (5)
O4ii—Rb1—Cl1i59.27 (8)C2—C1—C6115.5 (4)
N2iii—Rb1—Cl1i61.57 (9)C3—C2—C1122.4 (5)
N1iv—Rb1—Cl1i168.87 (9)C3—C2—C7120.9 (5)
O4v—Rb1—Cl1i106.71 (7)C1—C2—C7116.4 (4)
Cl2—Rb1—Cl1i122.25 (3)C2—C3—C8122.2 (5)
O4—Rb1—Rb1v36.94 (8)C2—C3—C4122.2 (5)
O3—Rb1—Rb1v85.04 (8)C8—C3—C4115.2 (4)
O2i—Rb1—Rb1v142.51 (8)O2—C4—C3122.2 (5)
O1—Rb1—Rb1v129.63 (8)O2—C4—C5123.0 (5)
O4ii—Rb1—Rb1v117.86 (8)C3—C4—C5114.8 (4)
N2iii—Rb1—Rb1v80.81 (9)C6—C5—C4122.8 (5)
N1iv—Rb1—Rb1v67.87 (9)C6—C5—Cl1120.9 (4)
O4v—Rb1—Rb1v36.96 (7)C4—C5—Cl1116.2 (4)
Cl2—Rb1—Rb1v90.13 (3)C5—C6—C1122.2 (5)
Cl1i—Rb1—Rb1v101.08 (3)C5—C6—Cl2121.4 (4)
O4—Rb1—Rb1ii47.34 (9)C1—C6—Cl2116.3 (4)
O3—Rb1—Rb1ii166.98 (9)N1—C7—C2176.6 (6)
O2i—Rb1—Rb1ii103.31 (8)N2—C8—C3177.2 (5)
O1—Rb1—Rb1ii94.72 (8)
O4—Rb1—Cl2—C6148.3 (2)O4v—Rb1—O4—Rb1ii166.48 (16)
O3—Rb1—Cl2—C636.3 (2)Cl2—Rb1—O4—Rb1ii65.18 (7)
O2i—Rb1—Cl2—C675.1 (2)Cl1i—Rb1—O4—Rb1ii59.75 (8)
O1—Rb1—Cl2—C624.1 (2)Rb1v—Rb1—O4—Rb1ii165.23 (18)
O4ii—Rb1—Cl2—C6118.5 (2)Rb1—O1—C1—C2135.2 (5)
N1iv—Rb1—Cl2—C656.2 (2)Rb1—O1—C1—C641.0 (7)
O4v—Rb1—Cl2—C692.2 (2)O1—C1—C2—C3180.0 (5)
Cl1i—Rb1—Cl2—C6136.12 (19)C6—C1—C2—C33.6 (8)
Rb1v—Rb1—Cl2—C6120.66 (19)O1—C1—C2—C75.1 (8)
Rb1ii—Rb1—Cl2—C6157.42 (19)C6—C1—C2—C7171.3 (5)
O4—Rb1—O1—C131.0 (5)C1—C2—C3—C8173.7 (4)
O3—Rb1—O1—C191.7 (5)C7—C2—C3—C81.0 (8)
O2i—Rb1—O1—C1178.6 (5)C1—C2—C3—C41.4 (9)
O4ii—Rb1—O1—C1106.6 (5)C7—C2—C3—C4173.2 (4)
N2iii—Rb1—O1—C1132.3 (5)Rb1vi—O2—C4—C3134.1 (4)
N1iv—Rb1—O1—C133.0 (5)Rb1vi—O2—C4—C544.2 (7)
O4v—Rb1—O1—C156.6 (5)C2—C3—C4—O2180.0 (5)
Cl2—Rb1—O1—C138.7 (5)C8—C3—C4—O27.2 (7)
Cl1i—Rb1—O1—C1144.2 (5)C2—C3—C4—C51.5 (7)
Rb1v—Rb1—O1—C19.9 (5)C8—C3—C4—C5171.2 (4)
Rb1ii—Rb1—O1—C175.5 (5)O2—C4—C5—C6179.4 (5)
O3—Rb1—O4—Rb1v19.66 (18)C3—C4—C5—C62.2 (7)
O2i—Rb1—O4—Rb1v116.54 (16)O2—C4—C5—Cl13.4 (7)
O1—Rb1—O4—Rb1v122.98 (13)C3—C4—C5—Cl1175.0 (3)
O4ii—Rb1—O4—Rb1v164.06 (19)Rb1vi—Cl1—C5—C6157.1 (4)
N2iii—Rb1—O4—Rb1v44.69 (16)Rb1vi—Cl1—C5—C420.2 (4)
N1iv—Rb1—O4—Rb1v66.87 (13)C4—C5—C6—C10.1 (9)
O4v—Rb1—O4—Rb1v1.26 (3)Cl1—C5—C6—C1177.2 (4)
Cl2—Rb1—O4—Rb1v129.59 (14)C4—C5—C6—Cl2178.6 (3)
Cl1i—Rb1—O4—Rb1v105.48 (11)Cl1—C5—C6—Cl21.5 (7)
Rb1ii—Rb1—O4—Rb1v165.23 (18)O1—C1—C6—C5179.4 (6)
O3—Rb1—O4—Rb1ii175.11 (9)C2—C1—C6—C53.0 (8)
O2i—Rb1—O4—Rb1ii48.7 (2)O1—C1—C6—Cl20.6 (7)
O1—Rb1—O4—Rb1ii71.79 (13)C2—C1—C6—Cl2175.8 (4)
O4ii—Rb1—O4—Rb1ii1.16 (9)Rb1—Cl2—C6—C5155.3 (4)
N2iii—Rb1—O4—Rb1ii120.54 (12)Rb1—Cl2—C6—C123.5 (4)
N1iv—Rb1—O4—Rb1ii127.90 (12)
Symmetry codes: (i) x, y, z+1; (ii) x1/2, y+3/2, z+1; (iii) x+1, y+1, z+1; (iv) x+1, y+1, z; (v) x+1/2, y+3/2, z+1; (vi) x, y, z1; (vii) x+1, y+1, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3B···O1iv0.951.902.778 (6)153
O3—H3A···O2iii0.951.982.894 (6)162
O4—H4A···O3ii0.951.842.784 (6)177
O4—H4B···Cl1viii0.952.493.421 (4)167
O4—H4B···N2ix0.952.823.228 (6)107
Symmetry codes: (ii) x1/2, y+3/2, z+1; (iii) x+1, y+1, z+1; (iv) x+1, y+1, z; (viii) x+1/2, y+3/2, z; (ix) x+1/2, y+1/2, z.
(CsDDQx2H2O_293K) top
Crystal data top
C8H4Cl2CsN2O4F(000) = 748
Mr = 395.94Dx = 2.221 Mg m3
Orthorhombic, P21212Cu Kα radiation, λ = 1.5418 Å
Hall symbol: P 2 2abCell parameters from 2948 reflections
a = 6.6462 (1) Åθ = 4.5–75.5°
b = 18.2212 (3) ŵ = 28.64 mm1
c = 9.7758 (2) ÅT = 293 K
V = 1183.87 (4) Å3Prism, dark red
Z = 40.12 × 0.04 × 0.03 mm
Data collection top
Oxford Diffraction Xcalibur CCD
diffractometer
2232 independent reflections
Radiation source: fine-focus sealed tube2176 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ω scansθmax = 75.6°, θmin = 4.5°
Absorption correction: multi-scan
CrysAlis PRO (Agilent, 2012)
h = 78
Tmin = 0.500, Tmax = 1.000k = 2212
3678 measured reflectionsl = 712
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.093 w = 1/[σ2(Fo2) + (0.057P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
2232 reflectionsΔρmax = 0.87 e Å3
154 parametersΔρmin = 0.87 e Å3
0 restraintsAbsolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.016 (8)
Crystal data top
C8H4Cl2CsN2O4V = 1183.87 (4) Å3
Mr = 395.94Z = 4
Orthorhombic, P21212Cu Kα radiation
a = 6.6462 (1) ŵ = 28.64 mm1
b = 18.2212 (3) ÅT = 293 K
c = 9.7758 (2) Å0.12 × 0.04 × 0.03 mm
Data collection top
Oxford Diffraction Xcalibur CCD
diffractometer
2232 independent reflections
Absorption correction: multi-scan
CrysAlis PRO (Agilent, 2012)
2176 reflections with I > 2σ(I)
Tmin = 0.500, Tmax = 1.000Rint = 0.036
3678 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.093Δρmax = 0.87 e Å3
S = 1.07Δρmin = 0.87 e Å3
2232 reflectionsAbsolute structure: Flack (1983)
154 parametersAbsolute structure parameter: 0.016 (8)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cs10.40430 (6)0.65307 (2)0.54107 (3)0.04063 (13)
Cl10.1462 (3)0.70343 (7)0.11081 (15)0.0455 (3)
Cl20.1451 (3)0.69924 (7)0.20835 (14)0.0455 (4)
O10.1937 (8)0.5520 (2)0.3206 (4)0.0406 (9)
O20.1891 (8)0.5573 (2)0.2341 (4)0.0398 (9)
O30.7728 (10)0.5457 (3)0.5409 (4)0.0566 (13)
H3A0.79720.51370.61570.085*
H3B0.80980.51830.46220.085*
O40.4248 (10)0.8126 (3)0.4318 (6)0.0591 (13)
H4A0.38570.86080.45810.089*
H4B0.46730.81670.33940.089*
N10.3368 (11)0.3718 (3)0.2453 (6)0.0490 (13)
N20.3331 (12)0.3774 (3)0.1748 (6)0.0498 (14)
C10.1947 (9)0.5528 (3)0.1941 (5)0.0307 (10)
C20.2313 (8)0.4871 (3)0.1120 (5)0.0283 (10)
C30.2309 (8)0.4891 (3)0.0302 (4)0.0272 (9)
C40.1926 (9)0.5556 (3)0.1070 (5)0.0299 (10)
C50.1666 (9)0.6225 (3)0.0231 (5)0.0312 (10)
C60.1654 (9)0.6204 (3)0.1136 (5)0.0316 (10)
C70.2879 (10)0.4224 (3)0.1858 (5)0.0340 (11)
C80.2838 (9)0.4260 (3)0.1091 (5)0.0339 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cs10.04436 (19)0.04621 (19)0.03132 (16)0.00106 (15)0.00285 (13)0.00398 (13)
Cl10.0671 (10)0.0318 (6)0.0376 (6)0.0027 (6)0.0018 (7)0.0095 (5)
Cl20.0639 (10)0.0334 (6)0.0391 (6)0.0017 (6)0.0045 (7)0.0113 (5)
O10.060 (3)0.0421 (19)0.0197 (14)0.006 (2)0.0007 (16)0.0039 (14)
O20.056 (3)0.0421 (19)0.0209 (14)0.007 (2)0.0045 (17)0.0029 (14)
O30.093 (4)0.046 (2)0.0304 (18)0.011 (3)0.004 (2)0.0017 (18)
O40.069 (3)0.049 (2)0.059 (3)0.003 (3)0.004 (3)0.009 (2)
N10.062 (4)0.046 (3)0.039 (2)0.005 (3)0.010 (2)0.007 (2)
N20.064 (4)0.044 (3)0.042 (2)0.005 (3)0.009 (3)0.010 (2)
C10.036 (3)0.035 (2)0.0211 (19)0.002 (2)0.0044 (19)0.0034 (19)
C20.033 (2)0.030 (2)0.0216 (18)0.001 (2)0.0024 (19)0.0006 (18)
C30.030 (2)0.032 (2)0.0198 (17)0.0019 (19)0.0008 (19)0.0010 (18)
C40.037 (3)0.032 (2)0.0206 (18)0.006 (2)0.0012 (19)0.0004 (18)
C50.035 (2)0.031 (2)0.028 (2)0.005 (2)0.002 (2)0.0011 (19)
C60.037 (3)0.030 (2)0.028 (2)0.003 (2)0.002 (2)0.0033 (19)
C70.041 (3)0.036 (3)0.025 (2)0.001 (2)0.004 (2)0.001 (2)
C80.035 (3)0.038 (3)0.029 (2)0.001 (2)0.000 (2)0.001 (2)
Geometric parameters (Å, º) top
Cs1—O43.100 (5)O3—Cs1iv3.808 (5)
Cs1—O33.135 (6)O3—H3A0.9499
Cs1—O2i3.150 (4)O3—H3B0.9499
Cs1—O13.161 (4)O4—Cs1v3.258 (7)
Cs1—O4ii3.258 (7)O4—Cs1ii3.525 (7)
Cs1—N2iii3.327 (6)O4—H4A0.9500
Cs1—N1iv3.395 (6)O4—H4B0.9500
Cs1—O4v3.525 (7)N1—C71.138 (9)
Cs1—Cl23.7756 (15)N1—Cs1iv3.395 (6)
Cs1—O3iv3.808 (5)N2—C81.143 (8)
Cs1—Cl1i3.9198 (16)N2—Cs1vii3.327 (6)
Cs1—Cl2v3.9752 (14)C1—C21.462 (7)
Cl1—C51.711 (5)C1—C61.475 (7)
Cl1—Cs1vi3.9198 (16)C2—C31.391 (6)
Cl2—C61.714 (5)C2—C71.432 (7)
Cl2—Cs1ii3.9752 (14)C3—C81.429 (7)
O1—C11.237 (6)C3—C41.448 (7)
O2—C41.243 (6)C4—C51.479 (7)
O2—Cs1vi3.150 (4)C5—C61.337 (7)
O4—Cs1—O3123.42 (16)O4—Cs1—Cl2v63.88 (11)
O4—Cs1—O2i141.25 (14)O3—Cs1—Cl2v96.22 (10)
O3—Cs1—O2i90.53 (13)O2i—Cs1—Cl2v97.35 (8)
O4—Cs1—O1109.33 (13)O1—Cs1—Cl2v173.02 (8)
O3—Cs1—O188.96 (13)O4ii—Cs1—Cl2v102.34 (11)
O2i—Cs1—O187.24 (10)N2iii—Cs1—Cl2v52.20 (11)
O4—Cs1—O4ii83.75 (14)N1iv—Cs1—Cl2v114.28 (12)
O3—Cs1—O4ii152.12 (14)O4v—Cs1—Cl2v55.85 (10)
O2i—Cs1—O4ii66.76 (13)Cl2—Cs1—Cl2v124.313 (19)
O1—Cs1—O4ii74.58 (14)O3iv—Cs1—Cl2v140.22 (7)
O4—Cs1—N2iii114.88 (15)Cl1i—Cs1—Cl2v58.85 (4)
O3—Cs1—N2iii59.11 (14)C5—Cl1—Cs1vi101.47 (19)
O2i—Cs1—N2iii64.11 (15)C6—Cl2—Cs1104.05 (19)
O1—Cs1—N2iii134.77 (13)C6—Cl2—Cs1ii158.7 (2)
O4ii—Cs1—N2iii118.50 (17)Cs1—Cl2—Cs1ii78.68 (3)
O4—Cs1—N1iv79.03 (15)C1—O1—Cs1132.3 (4)
O3—Cs1—N1iv61.33 (13)C4—O2—Cs1vi134.6 (4)
O2i—Cs1—N1iv138.62 (12)Cs1—O3—Cs1iv110.62 (18)
O1—Cs1—N1iv64.28 (14)Cs1—O3—H3A121.1
O4ii—Cs1—N1iv126.20 (16)Cs1iv—O3—H3A57.9
N2iii—Cs1—N1iv115.02 (16)Cs1—O3—H3B122.1
O4—Cs1—O4v79.42 (13)Cs1iv—O3—H3B65.2
O3—Cs1—O4v49.01 (14)H3A—O3—H3B104.8
O2i—Cs1—O4v119.44 (13)Cs1—O4—Cs1v101.24 (16)
O1—Cs1—O4v126.08 (13)Cs1—O4—Cs1ii95.58 (16)
O4ii—Cs1—O4v156.87 (18)Cs1v—O4—Cs1ii156.87 (18)
N2iii—Cs1—O4v56.78 (15)Cs1—O4—H4A139.5
N1iv—Cs1—O4v65.81 (15)Cs1v—O4—H4A93.9
O4—Cs1—Cl260.95 (11)Cs1ii—O4—H4A63.1
O3—Cs1—Cl2119.68 (8)Cs1—O4—H4B114.5
O2i—Cs1—Cl2121.15 (9)Cs1v—O4—H4B76.8
O1—Cs1—Cl248.74 (8)Cs1ii—O4—H4B110.4
O4ii—Cs1—Cl265.22 (10)H4A—O4—H4B105.4
N2iii—Cs1—Cl2174.71 (12)C7—N1—Cs1iv133.6 (5)
N1iv—Cs1—Cl261.80 (12)C8—N2—Cs1vii138.5 (5)
O4v—Cs1—Cl2118.23 (9)O1—C1—C2122.7 (5)
O4—Cs1—O3iv154.87 (14)O1—C1—C6122.8 (5)
O3—Cs1—O3iv69.37 (18)C2—C1—C6114.5 (4)
O2i—Cs1—O3iv48.17 (10)C3—C2—C7121.7 (5)
O1—Cs1—O3iv46.28 (10)C3—C2—C1121.7 (5)
O4ii—Cs1—O3iv83.12 (13)C7—C2—C1116.2 (4)
N2iii—Cs1—O3iv90.23 (13)C2—C3—C8121.2 (5)
N1iv—Cs1—O3iv91.67 (13)C2—C3—C4122.8 (5)
O4v—Cs1—O3iv118.16 (13)C8—C3—C4115.9 (4)
Cl2—Cs1—O3iv94.04 (8)O2—C4—C3122.8 (5)
O4—Cs1—Cl1i95.67 (12)O2—C4—C5122.1 (5)
O3—Cs1—Cl1i119.23 (8)C3—C4—C5115.0 (4)
O2i—Cs1—Cl1i47.56 (8)C6—C5—C4122.1 (5)
O1—Cs1—Cl1i122.31 (9)C6—C5—Cl1121.7 (4)
O4ii—Cs1—Cl1i57.09 (11)C4—C5—Cl1116.2 (4)
N2iii—Cs1—Cl1i62.84 (13)C5—C6—C1123.8 (5)
N1iv—Cs1—Cl1i172.93 (11)C5—C6—Cl2121.1 (4)
O4v—Cs1—Cl1i108.82 (10)C1—C6—Cl2115.0 (4)
Cl2—Cs1—Cl1i119.74 (3)N1—C7—C2178.4 (7)
O3iv—Cs1—Cl1i95.04 (8)N2—C8—C3176.9 (7)
O4—Cs1—Cl2—C6147.4 (3)O3iv—Cs1—O4—Cs1v137.7 (3)
O3—Cs1—Cl2—C633.2 (2)Cl1i—Cs1—O4—Cs1v107.48 (13)
O2i—Cs1—Cl2—C677.7 (2)Cl2v—Cs1—O4—Cs1v56.36 (11)
O1—Cs1—Cl2—C624.9 (2)O3—Cs1—O4—Cs1ii172.62 (11)
O4ii—Cs1—Cl2—C6115.8 (2)O2i—Cs1—O4—Cs1ii40.2 (3)
N1iv—Cs1—Cl2—C654.4 (2)O1—Cs1—O4—Cs1ii70.59 (16)
O4v—Cs1—Cl2—C689.8 (2)O4ii—Cs1—O4—Cs1ii0.64 (14)
O3iv—Cs1—Cl2—C635.3 (2)N2iii—Cs1—O4—Cs1ii119.21 (17)
Cl1i—Cs1—Cl2—C6133.4 (2)N1iv—Cs1—O4—Cs1ii128.15 (17)
Cl2v—Cs1—Cl2—C6155.9 (2)O4v—Cs1—O4—Cs1ii164.7 (2)
O4—Cs1—Cl2—Cs1ii54.30 (14)Cl2—Cs1—O4—Cs1ii64.44 (11)
O3—Cs1—Cl2—Cs1ii168.42 (12)O3iv—Cs1—O4—Cs1ii58.2 (4)
O2i—Cs1—Cl2—Cs1ii80.66 (10)Cl1i—Cs1—O4—Cs1ii56.57 (11)
O1—Cs1—Cl2—Cs1ii133.43 (13)Cl2v—Cs1—O4—Cs1ii107.69 (14)
O4ii—Cs1—Cl2—Cs1ii42.55 (11)Cs1—O1—C1—C2131.7 (5)
N1iv—Cs1—Cl2—Cs1ii147.21 (12)Cs1—O1—C1—C646.3 (9)
O4v—Cs1—Cl2—Cs1ii111.85 (10)O1—C1—C2—C3179.7 (6)
O3iv—Cs1—Cl2—Cs1ii123.06 (9)C6—C1—C2—C32.0 (8)
Cl1i—Cs1—Cl2—Cs1ii24.91 (4)O1—C1—C2—C76.5 (9)
Cl2v—Cs1—Cl2—Cs1ii45.74 (6)C6—C1—C2—C7171.7 (5)
O4—Cs1—O1—C134.1 (6)C7—C2—C3—C81.2 (9)
O3—Cs1—O1—C191.1 (6)C1—C2—C3—C8174.5 (5)
O2i—Cs1—O1—C1178.3 (6)C7—C2—C3—C4174.1 (5)
O4ii—Cs1—O1—C1111.6 (6)C1—C2—C3—C40.7 (9)
N2iii—Cs1—O1—C1133.3 (5)Cs1vi—O2—C4—C3127.6 (5)
N1iv—Cs1—O1—C132.7 (6)Cs1vi—O2—C4—C549.7 (9)
O4v—Cs1—O1—C156.7 (6)C2—C3—C4—O2178.8 (6)
Cl2—Cs1—O1—C141.3 (5)C8—C3—C4—O25.7 (8)
O3iv—Cs1—O1—C1153.1 (6)C2—C3—C4—C53.8 (8)
Cl1i—Cs1—O1—C1144.4 (5)C8—C3—C4—C5171.7 (5)
O4—Cs1—O3—Cs1iv155.64 (14)O2—C4—C5—C6178.3 (6)
O2i—Cs1—O3—Cs1iv44.21 (13)C3—C4—C5—C64.3 (9)
O1—Cs1—O3—Cs1iv43.02 (12)O2—C4—C5—Cl13.7 (8)
O4ii—Cs1—O3—Cs1iv9.9 (3)C3—C4—C5—Cl1173.7 (4)
N2iii—Cs1—O3—Cs1iv103.25 (18)Cs1vi—Cl1—C5—C6155.6 (5)
N1iv—Cs1—O3—Cs1iv104.02 (18)Cs1vi—Cl1—C5—C422.4 (5)
O4v—Cs1—O3—Cs1iv174.2 (2)C4—C5—C6—C11.7 (10)
Cl2—Cs1—O3—Cs1iv82.71 (12)Cl1—C5—C6—C1176.2 (4)
O3iv—Cs1—O3—Cs1iv0.05 (13)C4—C5—C6—Cl2177.4 (4)
Cl1i—Cs1—O3—Cs1iv84.03 (12)Cl1—C5—C6—Cl20.5 (9)
Cl2v—Cs1—O3—Cs1iv141.66 (9)O1—C1—C6—C5179.8 (7)
O3—Cs1—O4—Cs1v23.3 (2)C2—C1—C6—C51.5 (9)
O2i—Cs1—O4—Cs1v123.8 (2)O1—C1—C6—Cl23.8 (8)
O1—Cs1—O4—Cs1v125.36 (15)C2—C1—C6—Cl2174.4 (4)
O4ii—Cs1—O4—Cs1v163.4 (2)Cs1—Cl2—C6—C5152.9 (5)
N2iii—Cs1—O4—Cs1v44.8 (2)Cs1ii—Cl2—C6—C5112.3 (6)
N1iv—Cs1—O4—Cs1v67.80 (17)Cs1—Cl2—C6—C123.2 (5)
O4v—Cs1—O4—Cs1v0.66 (14)Cs1ii—Cl2—C6—C171.7 (7)
Cl2—Cs1—O4—Cs1v131.51 (18)
Symmetry codes: (i) x, y, z+1; (ii) x1/2, y+3/2, z+1; (iii) x+1, y+1, z+1; (iv) x+1, y+1, z; (v) x+1/2, y+3/2, z+1; (vi) x, y, z1; (vii) x+1, y+1, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3B···O1iv0.951.892.803 (6)162
O3—H3A···O2iii0.951.962.902 (6)172
O4—H4A···O3ii0.951.862.785 (8)163
O4—H4B···Cl1viii0.952.563.479 (6)163
O4—H4B···N2ix0.952.793.263 (9)112
Symmetry codes: (ii) x1/2, y+3/2, z+1; (iii) x+1, y+1, z+1; (iv) x+1, y+1, z; (viii) x+1/2, y+3/2, z; (ix) x+1/2, y+1/2, z.
(CsDDQx2H2O_120K) top
Crystal data top
C8H4Cl2CsN2O4F(000) = 748
Mr = 395.94Dx = 2.269 Mg m3
Orthorhombic, P21212Cu Kα radiation, λ = 1.5418 Å
Hall symbol: P 2 2abCell parameters from 1958 reflections
a = 6.5601 (3) Åθ = 4.5–75.6°
b = 18.152 (1) ŵ = 29.25 mm1
c = 9.7345 (4) ÅT = 120 K
V = 1159.17 (10) Å3Prism, dark red
Z = 40.37 × 0.05 × 0.03 mm
Data collection top
Oxford Diffraction Xcalibur CCD
diffractometer
2051 independent reflections
Radiation source: fine-focus sealed tube1953 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
ω scansθmax = 75.7°, θmin = 4.5°
Absorption correction: multi-scan
CrysAlis PRO (Agilent, 2012)
h = 78
Tmin = 0.300, Tmax = 1.000k = 1822
3404 measured reflectionsl = 712
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.059H-atom parameters constrained
wR(F2) = 0.159 w = 1/[σ2(Fo2) + (0.1197P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2051 reflectionsΔρmax = 1.58 e Å3
155 parametersΔρmin = 1.34 e Å3
72 restraintsAbsolute structure: Refined as an inversion twin (TWIN + BASF)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.283 (17)
Crystal data top
C8H4Cl2CsN2O4V = 1159.17 (10) Å3
Mr = 395.94Z = 4
Orthorhombic, P21212Cu Kα radiation
a = 6.5601 (3) ŵ = 29.25 mm1
b = 18.152 (1) ÅT = 120 K
c = 9.7345 (4) Å0.37 × 0.05 × 0.03 mm
Data collection top
Oxford Diffraction Xcalibur CCD
diffractometer
2051 independent reflections
Absorption correction: multi-scan
CrysAlis PRO (Agilent, 2012)
1953 reflections with I > 2σ(I)
Tmin = 0.300, Tmax = 1.000Rint = 0.054
3404 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.059H-atom parameters constrained
wR(F2) = 0.159Δρmax = 1.58 e Å3
S = 1.06Δρmin = 1.34 e Å3
2051 reflectionsAbsolute structure: Refined as an inversion twin (TWIN + BASF)
155 parametersAbsolute structure parameter: 0.283 (17)
72 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cs10.39888 (9)0.65426 (3)0.54302 (6)0.0248 (2)
Cl10.1475 (4)0.70419 (16)0.1083 (3)0.0324 (6)
Cl20.1427 (5)0.69915 (15)0.2119 (3)0.0324 (6)
O10.1958 (13)0.5506 (4)0.3234 (7)0.0255 (16)
O20.1895 (14)0.5559 (5)0.2334 (8)0.0286 (17)
O30.7690 (12)0.5480 (4)0.5436 (8)0.0270 (15)
H3A0.78160.50500.59860.040*
H3B0.82310.53430.45680.040*
O40.4193 (13)0.8121 (4)0.4290 (8)0.0284 (16)
H4A0.33270.85080.45930.043*
H4B0.44540.82330.33540.043*
N10.3384 (17)0.3727 (7)0.2426 (12)0.037 (3)
N20.3367 (18)0.3765 (7)0.1735 (13)0.037 (2)
C10.1949 (17)0.5520 (6)0.1958 (11)0.0206 (19)
C20.2342 (15)0.4854 (5)0.1142 (9)0.0166 (18)
C30.2324 (16)0.4875 (6)0.0275 (9)0.0203 (19)
C40.1931 (18)0.5551 (6)0.1057 (11)0.025 (2)
C50.1679 (16)0.6205 (6)0.0218 (10)0.0213 (19)
C60.1653 (18)0.6201 (7)0.1178 (12)0.028 (2)
C70.2940 (17)0.4176 (7)0.1914 (10)0.022 (2)
C80.2888 (17)0.4213 (7)0.1100 (10)0.025 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cs10.0270 (3)0.0357 (3)0.0119 (3)0.0002 (2)0.0014 (2)0.0011 (2)
Cl10.0414 (15)0.0364 (12)0.0194 (11)0.0005 (11)0.0033 (11)0.0025 (9)
Cl20.0419 (16)0.0360 (13)0.0193 (11)0.0002 (11)0.0040 (11)0.0037 (9)
O10.031 (3)0.038 (3)0.007 (2)0.004 (3)0.003 (3)0.003 (2)
O20.032 (3)0.039 (3)0.014 (3)0.000 (3)0.002 (3)0.003 (3)
O30.037 (3)0.030 (3)0.015 (3)0.001 (3)0.003 (3)0.002 (3)
O40.035 (3)0.025 (3)0.025 (3)0.004 (3)0.005 (3)0.001 (3)
N10.026 (5)0.053 (6)0.033 (5)0.002 (5)0.007 (4)0.025 (5)
N20.033 (5)0.044 (6)0.035 (5)0.006 (5)0.006 (5)0.003 (5)
C10.019 (3)0.026 (4)0.017 (3)0.001 (3)0.003 (3)0.005 (3)
C20.013 (3)0.023 (4)0.013 (3)0.001 (3)0.001 (3)0.001 (3)
C30.022 (4)0.028 (4)0.011 (3)0.002 (3)0.001 (3)0.001 (3)
C40.028 (4)0.030 (4)0.016 (4)0.005 (3)0.003 (3)0.005 (3)
C50.020 (3)0.028 (3)0.017 (4)0.001 (3)0.000 (3)0.000 (3)
C60.028 (4)0.032 (4)0.024 (4)0.002 (3)0.003 (4)0.002 (3)
C70.025 (4)0.032 (4)0.009 (3)0.001 (4)0.001 (3)0.006 (3)
C80.021 (4)0.043 (4)0.010 (3)0.006 (3)0.005 (3)0.002 (3)
Geometric parameters (Å, º) top
Cs1—O43.075 (7)O3—H3A0.9500
Cs1—O33.101 (8)O3—H3B0.9500
Cs1—O2i3.133 (8)O4—Cs1v3.217 (9)
Cs1—O13.145 (8)O4—Cs1ii3.479 (9)
Cs1—O4ii3.217 (9)O4—H4A0.9501
Cs1—N2iii3.307 (12)O4—H4B0.9500
Cs1—N1iv3.430 (13)N1—C71.000 (17)
Cs1—O4v3.479 (9)N1—Cs1iv3.430 (13)
Cs1—Cl23.725 (3)N2—C81.069 (16)
Cs1—Cl1i3.880 (3)N2—Cs1vii3.307 (12)
Cs1—Cl2v3.915 (3)C1—C61.463 (15)
Cs1—Cs1v4.8519 (9)C1—C21.469 (14)
Cl1—C51.742 (11)C2—C31.380 (11)
Cl1—Cs1vi3.880 (3)C2—C71.494 (15)
Cl2—C61.710 (12)C3—C41.466 (14)
Cl2—Cs1ii3.915 (3)C3—C81.491 (15)
O1—C11.243 (13)C4—C51.450 (15)
O2—C41.243 (14)C5—C61.359 (15)
O2—Cs1vi3.133 (8)
O4—Cs1—O3123.1 (2)Cl2—Cs1—Cl2v124.25 (3)
O4—Cs1—O2i143.2 (2)Cl1i—Cs1—Cl2v58.80 (6)
O3—Cs1—O2i89.3 (2)O4—Cs1—Cs1v40.62 (16)
O4—Cs1—O1109.3 (2)O3—Cs1—Cs1v85.21 (14)
O3—Cs1—O187.7 (2)O2i—Cs1—Cs1v145.56 (16)
O2i—Cs1—O186.87 (19)O1—Cs1—Cs1v126.72 (14)
O4—Cs1—O4ii84.03 (19)O4ii—Cs1—Cs1v122.66 (14)
O3—Cs1—O4ii152.12 (19)N2iii—Cs1—Cs1v84.9 (2)
O2i—Cs1—O4ii67.7 (2)N1iv—Cs1—Cs1v67.4 (2)
O1—Cs1—O4ii75.9 (2)O4v—Cs1—Cs1v39.12 (12)
O4—Cs1—N2iii115.8 (3)Cl2—Cs1—Cs1v89.94 (5)
O3—Cs1—N2iii58.8 (2)Cl1i—Cs1—Cs1v105.72 (5)
O2i—Cs1—N2iii63.5 (3)Cl2v—Cs1—Cs1v48.87 (4)
O1—Cs1—N2iii133.5 (3)C5—Cl1—Cs1vi100.8 (4)
O4ii—Cs1—N2iii118.3 (3)C6—Cl2—Cs1103.9 (4)
O4—Cs1—N1iv78.6 (3)C6—Cl2—Cs1ii158.9 (4)
O3—Cs1—N1iv61.3 (2)Cs1—Cl2—Cs1ii78.80 (5)
O2i—Cs1—N1iv137.0 (2)C1—O1—Cs1132.0 (7)
O1—Cs1—N1iv63.1 (2)C4—O2—Cs1vi133.9 (8)
O4ii—Cs1—N1iv126.2 (2)Cs1—O3—H3A125.5
N2iii—Cs1—N1iv115.1 (2)Cs1—O3—H3B117.0
O4—Cs1—O4v79.7 (2)H3A—O3—H3B104.7
O3—Cs1—O4v48.76 (19)Cs1—O4—Cs1v100.9 (2)
O2i—Cs1—O4v118.4 (2)Cs1—O4—Cs1ii95.3 (2)
O1—Cs1—O4v125.0 (2)Cs1v—O4—Cs1ii156.9 (3)
O4ii—Cs1—O4v156.9 (3)Cs1—O4—H4A123.4
N2iii—Cs1—O4v56.6 (2)Cs1v—O4—H4A114.7
N1iv—Cs1—O4v66.3 (2)Cs1—O4—H4B123.7
O4—Cs1—Cl260.23 (15)Cs1v—O4—H4B82.2
O3—Cs1—Cl2119.40 (15)Cs1ii—O4—H4B102.4
O2i—Cs1—Cl2121.88 (17)H4A—O4—H4B104.2
O1—Cs1—Cl249.57 (14)C7—N1—Cs1iv133.4 (9)
O4ii—Cs1—Cl265.82 (15)C8—N2—Cs1vii139.9 (10)
N2iii—Cs1—Cl2174.6 (2)O1—C1—C6122.5 (10)
N1iv—Cs1—Cl261.33 (18)O1—C1—C2121.5 (10)
O4v—Cs1—Cl2118.17 (14)C6—C1—C2116.0 (9)
O4—Cs1—Cl1i96.69 (15)C3—C2—C1121.1 (10)
O3—Cs1—Cl1i118.45 (15)C3—C2—C7121.9 (9)
O2i—Cs1—Cl1i48.64 (16)C1—C2—C7116.9 (8)
O1—Cs1—Cl1i123.67 (16)C2—C3—C4122.9 (10)
O4ii—Cs1—Cl1i57.72 (15)C2—C3—C8120.9 (10)
N2iii—Cs1—Cl1i62.1 (2)C4—C3—C8116.0 (8)
N1iv—Cs1—Cl1i173.0 (2)O2—C4—C5123.4 (10)
O4v—Cs1—Cl1i107.90 (13)O2—C4—C3122.1 (10)
Cl2—Cs1—Cl1i120.92 (6)C5—C4—C3114.4 (9)
O4—Cs1—Cl2v64.47 (15)C6—C5—C4124.0 (11)
O3—Cs1—Cl2v95.84 (15)C6—C5—Cl1119.2 (9)
O2i—Cs1—Cl2v98.23 (16)C4—C5—Cl1116.8 (8)
O1—Cs1—Cl2v173.78 (14)C5—C6—C1121.5 (11)
O4ii—Cs1—Cl2v102.64 (14)C5—C6—Cl2122.2 (10)
N2iii—Cs1—Cl2v52.6 (2)C1—C6—Cl2116.3 (8)
N1iv—Cs1—Cl2v114.3 (2)N1—C7—C2178.3 (13)
O4v—Cs1—Cl2v55.39 (13)N2—C8—C3175.7 (12)
O4—Cs1—Cl2—C6146.8 (5)O4ii—Cs1—O4—Cs1ii0.66 (19)
O3—Cs1—Cl2—C633.2 (5)N2iii—Cs1—O4—Cs1ii119.3 (3)
O2i—Cs1—Cl2—C676.3 (5)N1iv—Cs1—O4—Cs1ii128.2 (2)
O1—Cs1—Cl2—C624.2 (5)O4v—Cs1—O4—Cs1ii164.1 (3)
O4ii—Cs1—Cl2—C6116.0 (5)Cl2—Cs1—O4—Cs1ii64.84 (15)
N1iv—Cs1—Cl2—C653.6 (5)Cl1i—Cs1—O4—Cs1ii57.09 (16)
O4v—Cs1—Cl2—C689.4 (5)Cl2v—Cs1—O4—Cs1ii107.73 (18)
Cl1i—Cs1—Cl2—C6134.0 (4)Cs1v—Cs1—O4—Cs1ii163.5 (3)
Cl2v—Cs1—Cl2—C6154.9 (4)Cs1—O1—C1—C643.4 (16)
Cs1v—Cs1—Cl2—C6117.7 (4)Cs1—O1—C1—C2133.5 (9)
O4—Cs1—Cl2—Cs1ii54.72 (18)O1—C1—C2—C3179.8 (11)
O3—Cs1—Cl2—Cs1ii168.28 (16)C6—C1—C2—C33.1 (16)
O2i—Cs1—Cl2—Cs1ii82.24 (19)O1—C1—C2—C75.4 (16)
O1—Cs1—Cl2—Cs1ii134.4 (2)C6—C1—C2—C7171.6 (9)
O4ii—Cs1—Cl2—Cs1ii42.49 (15)C1—C2—C3—C40.4 (18)
N1iv—Cs1—Cl2—Cs1ii147.8 (2)C7—C2—C3—C4174.1 (9)
O4v—Cs1—Cl2—Cs1ii112.10 (14)C1—C2—C3—C8175.0 (8)
Cl1i—Cs1—Cl2—Cs1ii24.56 (7)C7—C2—C3—C80.5 (17)
Cl2v—Cs1—Cl2—Cs1ii46.61 (11)Cs1vi—O2—C4—C547.4 (17)
Cs1v—Cs1—Cl2—Cs1ii83.81 (4)Cs1vi—O2—C4—C3129.9 (9)
O4—Cs1—O1—C131.0 (10)C2—C3—C4—O2179.1 (12)
O3—Cs1—O1—C193.5 (10)C8—C3—C4—O26.0 (17)
O2i—Cs1—O1—C1177.1 (10)C2—C3—C4—C53.4 (16)
O4ii—Cs1—O1—C1109.4 (10)C8—C3—C4—C5171.5 (9)
N2iii—Cs1—O1—C1134.8 (10)O2—C4—C5—C6177.9 (13)
N1iv—Cs1—O1—C134.7 (10)C3—C4—C5—C64.6 (17)
O4v—Cs1—O1—C159.9 (11)O2—C4—C5—Cl14.0 (16)
Cl2—Cs1—O1—C139.3 (9)C3—C4—C5—Cl1173.5 (8)
Cl1i—Cs1—O1—C1143.4 (9)Cs1vi—Cl1—C5—C6156.6 (10)
Cs1v—Cs1—O1—C111.1 (11)Cs1vi—Cl1—C5—C421.5 (9)
O3—Cs1—O4—Cs1v24.1 (3)C4—C5—C6—C12 (2)
O2i—Cs1—O4—Cs1v123.8 (3)Cl1—C5—C6—C1176.0 (8)
O1—Cs1—O4—Cs1v124.4 (2)C4—C5—C6—Cl2178.0 (8)
O4ii—Cs1—O4—Cs1v162.8 (3)Cl1—C5—C6—Cl20.0 (16)
N2iii—Cs1—O4—Cs1v44.2 (3)O1—C1—C6—C5179.0 (12)
N1iv—Cs1—O4—Cs1v68.4 (2)C2—C1—C6—C52.0 (16)
O4v—Cs1—O4—Cs1v0.67 (5)O1—C1—C6—Cl22.8 (15)
Cl2—Cs1—O4—Cs1v131.7 (2)C2—C1—C6—Cl2174.2 (8)
Cl1i—Cs1—O4—Cs1v106.39 (17)Cs1—Cl2—C6—C5153.1 (10)
Cl2v—Cs1—O4—Cs1v55.74 (15)Cs1ii—Cl2—C6—C5111.9 (13)
O3—Cs1—O4—Cs1ii172.44 (18)Cs1—Cl2—C6—C123.2 (9)
O2i—Cs1—O4—Cs1ii39.7 (4)Cs1ii—Cl2—C6—C171.9 (15)
O1—Cs1—O4—Cs1ii72.2 (2)
Symmetry codes: (i) x, y, z+1; (ii) x1/2, y+3/2, z+1; (iii) x+1, y+1, z+1; (iv) x+1, y+1, z; (v) x+1/2, y+3/2, z+1; (vi) x, y, z1; (vii) x+1, y+1, z1.

Experimental details

(LiDDQx2H2OxMe2O)(RbDDQx2H2O_293K)(RbDDQx2H2O_120K)(CsDDQx2H2O_293K)
Crystal data
Chemical formulaC11H10Cl2LiN2O5C8H4Cl2N2O4RbC8H4Cl2N2O4RbC8H4Cl2CsN2O4
Mr328.06348.50348.50395.94
Crystal system, space groupTriclinic, P1Orthorhombic, P21212Orthorhombic, P21212Orthorhombic, P21212
Temperature (K)120293120293
a, b, c (Å)6.667 (5), 10.495 (5), 11.977 (5)6.5088 (2), 18.1788 (6), 9.6194 (2)6.4217 (2), 18.0295 (6), 9.5740 (2)6.6462 (1), 18.2212 (3), 9.7758 (2)
α, β, γ (°)110.773 (5), 99.693 (5), 100.335 (5)90, 90, 9090, 90, 9090, 90, 90
V3)745.9 (7)1138.19 (6)1108.48 (6)1183.87 (4)
Z2444
Radiation typeCu KαCu KαCu KαCu Kα
µ (mm1)4.1110.3910.6728.64
Crystal size (mm)0.18 × 0.07 × 0.060.36 × 0.04 × 0.020.28 × 0.04 × 0.020.12 × 0.04 × 0.03
Data collection
DiffractometerOxford Diffraction Xcalibur CCD, Ruby, Nova
diffractometer
Oxford Diffraction Xcalibur CCD
diffractometer
Oxford Diffraction Xcalibur CCD
diffractometer
Oxford Diffraction Xcalibur CCD
diffractometer
Absorption correctionMulti-scan
CrysAlis PRO (Agilent, 2012)
Multi-scan
CrysAlis PRO (Agilent, 2012)
Multi-scan
CrysAlis PRO (Agilent, 2012)
Multi-scan
CrysAlis PRO (Agilent, 2012)
Tmin, Tmax0.621, 1.0000.182, 1.0000.651, 1.0000.500, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
5368, 2981, 2204 3524, 2060, 1948 5137, 2194, 2103 3678, 2232, 2176
Rint0.0710.0310.0430.036
(sin θ/λ)max1)0.6320.6290.6300.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.1, 0.310, 1.08 0.042, 0.119, 1.03 0.041, 0.118, 1.12 0.037, 0.093, 1.07
No. of reflections2981206021942232
No. of parameters257155155154
No. of restraints91000
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.63, 0.880.61, 0.820.72, 0.720.87, 0.87
Absolute structure?Refined as an inversion twin (TWIN + BASF)Refined as an inversion twin (TWIN + BASF) The refined BASF value indicates that this model represents the *minor* component. However, this model is retained since it has the same handedness as all other structures in this paper (it can be overlaid directly with the other structures and the DFT-optimized structures.Flack (1983)
Absolute structure parameter?0.46 (4)0.64 (4)0.016 (8)


(CsDDQx2H2O_120K)
Crystal data
Chemical formulaC8H4Cl2CsN2O4
Mr395.94
Crystal system, space groupOrthorhombic, P21212
Temperature (K)120
a, b, c (Å)6.5601 (3), 18.152 (1), 9.7345 (4)
α, β, γ (°)90, 90, 90
V3)1159.17 (10)
Z4
Radiation typeCu Kα
µ (mm1)29.25
Crystal size (mm)0.37 × 0.05 × 0.03
Data collection
DiffractometerOxford Diffraction Xcalibur CCD
diffractometer
Absorption correctionMulti-scan
CrysAlis PRO (Agilent, 2012)
Tmin, Tmax0.300, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
3404, 2051, 1953
Rint0.054
(sin θ/λ)max1)0.629
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.159, 1.06
No. of reflections2051
No. of parameters155
No. of restraints72
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.58, 1.34
Absolute structureRefined as an inversion twin (TWIN + BASF)
Absolute structure parameter0.283 (17)

Computer programs: CrysAlis PRO (Agilent, 2012), CrysAlis PRO, SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) & Mercury (Macrae et al., 2006), WinGX (Farrugia, 2012) & PLATON (Spek, 2003), SHELXL97.

Hydrogen-bond geometry (Å, º) for (RbDDQx2H2O_293K) top
D—H···AD—HH···AD···AD—H···A
O3—H3B···O1i0.951.942.822 (6)153.2
O3—H3A···O2ii0.951.982.901 (6)161.8
O4—H4A···O3iii0.951.862.807 (8)179.2
O4—H4B···Cl1iv0.952.593.527 (8)167.1
O4—H4B···N2v0.952.923.352 (9)109.1
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+1, z+1; (iii) x1/2, y+3/2, z+1; (iv) x+1/2, y+3/2, z; (v) x+1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) for (RbDDQx2H2O_120K) top
D—H···AD—HH···AD···AD—H···A
O3—H3B···O1i0.951.902.778 (6)152.6
O3—H3A···O2ii0.951.982.894 (6)161.9
O4—H4A···O3iii0.951.842.784 (6)177.0
O4—H4B···Cl1iv0.952.493.421 (4)166.9
O4—H4B···N2v0.952.823.228 (6)106.6
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+1, z+1; (iii) x1/2, y+3/2, z+1; (iv) x+1/2, y+3/2, z; (v) x+1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) for (CsDDQx2H2O_293K) top
D—H···AD—HH···AD···AD—H···A
O3—H3B···O1i0.951.892.803 (6)161.5
O3—H3A···O2ii0.951.962.902 (6)172.3
O4—H4A···O3iii0.951.862.785 (8)163.1
O4—H4B···Cl1iv0.952.563.479 (6)163.4
O4—H4B···N2v0.952.793.263 (9)111.5
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+1, z+1; (iii) x1/2, y+3/2, z+1; (iv) x+1/2, y+3/2, z; (v) x+1/2, y+1/2, z.
 

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds