Download citation
Download citation
link to html
The structure of the title compound, [U(C14H9N3O2)O2(CH3OH)2]·CH3OH, is the first to be reported for an actinide complex including triazole ligands. The UVI atom exhibits a penta­gonal–bipyramidal NO6 coordination environment, involving two axial oxide ligands [U=O = 1.766 (3) and 1.789 (3) Å], four equatorial O atoms [U—O = 2.269 (3)–2.448 (3) Å] from the ligand and the two coordinated methanol mol­ecules, and one equatorial N atom [U—N = 2.513 (4) Å] from the ligand. In the crystal structure, the complex mol­ecules are linked via inter­molecular N—H...O and O—H...O hydrogen bonds to form a two-dimensional structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270112003034/bi3033sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112003034/bi3033Isup2.hkl
Contains datablock I

CCDC reference: 873875

Comment top

The synthesis of coordination compounds containing f-block elements and, more specifically, those containing the uranyl cation (UO22+) has undergone an important development in recent years. This interest is largely due to the increasing handling of uranium in the nuclear fuel cycle worldwide. In order to recover uranium, the development of new ligand systems suitable for the co-extraction of lanthanides and actinides from nuclear waste is most important. 1,2,4-Triazole and its derivatives are potentially useful for separating problematic metals from both ordinary and radioactive waste. Recently, the triazole ligands 2,6-bis(5-butyl-1,2,4-triazol-3-yl)pyridine (DBTZP) and 2,6-bis(5-methyl-1,2,4-triazol-3-yl)pyridine (DMTZP) have been found to have good extraction properties (Drew et al., 1999).

The uranyl ion, being a hard Lewis acid, has a high affinity for hard donor groups. Equatorial pentacoordination generally results from five- and six-membered chelate rings with bidentate ligands, as in [UO2(acac)2(H2O)] (acac is acetylacetate; Frasson et al., 1966), or with small monodentate ligands, as in [UO2(DMSO)5]2+ (DMSO is dimethyl sulfoxide; Harrowfield et al., 1983). To expand our studies concerning the coordination chemistry of 1,2,4-triazole, we were interested in investigating the behaviour of O,N,O'-chelating ligands with UO22+. A substantial amount of research has been dedicated to d-block complexes which incorporate derivatives of 1,2,4-triazoles (Aromi et al., 2011). These compounds are receiving growing interest due to their magnetic and luminescent properties. Previously, coordination compounds of vanadium and copper with 3,5-bis(2-hydroxyphenyl)-1,2,4-triazole (H2L) have been synthesized. In the case of copper, the two-dimensional mixed-valence complex [CuICuII(L)]n was obtained (Fang et al., 2011), while for vanadium the product was [(VOL)2(OMe)2].H2O (Browne et al., 2006). We report here the structure of the title compound, (I), which is the first reported crystal structure of a 1,2,4-triazole complex of UO22+. The structure is important as a prototype for the construction of actinide and triazole coordination frameworks, which could be anticipated especially for the typical MO22+ cations and for a wide range of azole ligands, such as 1,2,3-triazole, 1,2,4-triazole and tetrazole.

In (I), the ligand is coordinated in a tridentate manner to the uranyl(VI) ion, together with two methanol molecules (Fig. 1). This evokes a pentagonal–bipyramidal geometry around the metal centre. These kinds of monomeric neutral complexes of uranyl with tridentate ligands are very rare. There are only a few similar complexes containing ligands such as 2-pyridineformamide thiosemicarbazone (Santos & Abram, 2004), 2,2':6',2''-terpyridine (Charushnikova & Auwer, 2004; Berthet et al., 2004), bis(2-hydroxycyclohexyl) sulfide (Baracco et al., 1975), N,N,N',N'-tetraalkylpyridine-2,6-dicarboxamide (Duval et al., 2006), aminobis(phenolate) (Sopo et al., 2008), 2,6-bis[(dimethylamino)methyl]pyridine (Masci & Thuéry, 2004), diglycolamide ligands (Kannan et al., 2008) and 2,6-bis(5,6-dialkyl-1,2,4-triazin-3-yl)pyridine (Berthet et al., 2008). Amongst these, only N,N,N',N'-tetraalkylpyridine-2,6-dicarboxamide and aminobis(phenolate) are of the O,N,O'-chelating type. In (I), the 3,3'-(1H-1,2,4-triazole-3,5-diyl)diphenolate ligand (L) binds to UO22+ as a dianion via the two phenolate O atoms and the triazole atom N1, while the labile H atom is located on atom N2. The U1—O1 bond length [2.269 (3) Å] is comparable with those reported for related six-membered chelate fragments involving phenolate and N-atom donors (Back et al., 2010; Sopo et al., 2008), while the coordination interaction with the second phenolate ring is slightly longer [U1—O2 = 2.281 (3) Å]. The U1—N1 distance of 2.513 (4) Å is notably shorter than the average for U—N bonds, but is consistent with the situation in other O,N,O'-bonded uranium complexes (Sopo et al., 2008; Lam et al., 2010). It is worth noting that the ligand is not planar: the torsion angles between the phenolate rings and the central triazole unit are C1—C2—C3—N1 = -19.4 (7)° and N1—C4—C5—C6 = -26.0 (7)°. The corresponding values are 14.0 and 19.6° for [Al(L1)2]- {L1 is [3,5-bis(2-hydroxyphenyl)-1,2,4-triazol-1-yl]benzene}, and 19.2 and 24.0° for [Cu(L)(pyridine)]2 (Steinhauser et al., 2004).

The OUO groups are not exactly linear, as the OUO angles are 178.69 (15)°. Nonlinear OUO bonds are found generally in uranyl complexes with five nonsymmetrically bonding equatorial ligands, one of them being methanol (Back et al., 2009). The reason for the bending of the OUO bonds is presumably due to uneven π-donation from the ligands to the UO22+ unit, which results from the asymmetrical location of the donor atoms around uranium caused by pentacoordination (Sonnenberg et al., 2005).

The intermolecular interactions in (I) involve hydrogen bonding between the two coordinated methanol molecules and two phenolate O atoms in adjacent complexes (Table 1). The uncoordinated methanol molecule also links between complexes via N—H···O and O—H···O hydrogen bonds. The hydrogen bonds link the complex molecules into a two-dimensional structure parallel to the (010) plane (Fig. 2).

Related literature top

For related literature, see: Aromi et al. (2011); Back et al. (2009, 2010); Baracco et al. (1975); Berthet et al. (2004, 2008); Browne et al. (2006); Charushnikova & Auwer (2004); Drew et al. (1999); Duval et al. (2006); Fang et al. (2011); Frasson et al. (1966); Harrowfield et al. (1983); Kannan et al. (2008); Lam et al. (2010); Masci & Thuéry (2004); Santos & Abram (2004); Sonnenberg et al. (2005); Sopo et al. (2008); Steinhauser et al. (2004).

Experimental top

For the preparation of (I), a mixture of 3,5-bis(2-hydroxyphenyl)-1H-1,2,4-triazole (0.2 mmol) and UO2(CH3COO)2.2H2O (0.2 mmol) in methanol (25 ml) was stirred for 20 min and then filtered. The filtrate was left to evaporate slowly at room temperature. Red single crystals of (I) suitable for X-ray analysis were obtained after 4 d.

Refinement top

Atoms H3O, H4O, H7O and H2N were located in difference Fourier maps and their coordinates and isotropic displacement parameters were refined; the O—H distances were restrained to 0.82 (2) Å, while atom H2N was unrestrained. The remaining H atoms were placed geometrically and treated as riding, with C—H = 0.95 (aromatic) or 0.98 Å (methyl), and with Uiso(H) = 1.5Ueq(C) for methyl H atoms or 1.2Ueq(parent) otherwise. The methyl groups were also allowed to rotate about their local threefold axes. The maxima and minima in the residual electron density are associated with atom U1.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A projection of the structure of (I) along the c axis. Intermolecular hydrogen bonds are shown as dashed lines and H atoms not involved in hydrogen bonding have been omitted. [Symmetry codes: (i) x + 1/2, y, -z + 3/2; (ii) x - 1/2, y, -z + 3/2.]
Bis(methanol-κO)dioxido[3,3'-(1H-1,2,4-triazole-3,5- diyl)diphenolato-κ3O,N4,O']uranium(VI) methanol monosolvate top
Crystal data top
[U(C14H9N3O2)O2(CH4O)2]·CH4OF(000) = 2336
Mr = 617.40Dx = 2.038 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 4339 reflections
a = 11.0737 (11) Åθ = 2.4–26.4°
b = 18.0705 (17) ŵ = 8.11 mm1
c = 20.1156 (19) ÅT = 173 K
V = 4025.3 (7) Å3Prism, red
Z = 80.45 × 0.18 × 0.12 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4019 independent reflections
Radiation source: fine-focus sealed tube3126 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ϕ and ω scansθmax = 26.4°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 1313
Tmin = 0.121, Tmax = 0.443k = 1722
12248 measured reflectionsl = 2224
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.061H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0253P)2 + 5.8464P]
where P = (Fo2 + 2Fc2)/3
4019 reflections(Δ/σ)max = 0.002
272 parametersΔρmax = 0.94 e Å3
3 restraintsΔρmin = 0.96 e Å3
Crystal data top
[U(C14H9N3O2)O2(CH4O)2]·CH4OV = 4025.3 (7) Å3
Mr = 617.40Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 11.0737 (11) ŵ = 8.11 mm1
b = 18.0705 (17) ÅT = 173 K
c = 20.1156 (19) Å0.45 × 0.18 × 0.12 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4019 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
3126 reflections with I > 2σ(I)
Tmin = 0.121, Tmax = 0.443Rint = 0.033
12248 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0273 restraints
wR(F2) = 0.061H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.94 e Å3
4019 reflectionsΔρmin = 0.96 e Å3
272 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
U10.592060 (14)0.089893 (9)0.709878 (8)0.01360 (7)
N10.5906 (3)0.0885 (2)0.58496 (18)0.0142 (8)
N20.5401 (4)0.1076 (2)0.4823 (2)0.0202 (10)
H2N0.517 (4)0.125 (3)0.447 (3)0.025 (16)*
N30.6228 (3)0.0512 (2)0.47976 (19)0.0190 (9)
O10.7683 (3)0.04433 (19)0.66944 (15)0.0194 (7)
O20.4124 (3)0.13386 (18)0.67101 (15)0.0159 (7)
O30.7129 (3)0.0588 (2)0.80717 (16)0.0213 (8)
H3O0.778 (3)0.079 (3)0.815 (3)0.031 (17)*
O40.4728 (3)0.1108 (2)0.81062 (16)0.0211 (8)
H4O0.405 (2)0.096 (3)0.816 (3)0.027 (16)*
O50.5299 (3)0.00149 (18)0.70913 (16)0.0196 (7)
O60.6546 (3)0.17972 (18)0.71249 (16)0.0215 (8)
O70.4766 (4)0.1418 (2)0.3533 (2)0.0438 (11)
H7O0.470 (7)0.105 (2)0.331 (3)0.06 (2)*
C10.7893 (4)0.0129 (3)0.6279 (2)0.0187 (10)
C20.7356 (4)0.0162 (3)0.5650 (2)0.0163 (10)
C30.6506 (4)0.0412 (3)0.5433 (2)0.0165 (10)
C40.5216 (4)0.1300 (3)0.5446 (2)0.0153 (10)
C50.4392 (4)0.1884 (3)0.5637 (2)0.0171 (11)
C60.3868 (4)0.1879 (3)0.6277 (2)0.0153 (10)
C70.3043 (4)0.2432 (3)0.6441 (2)0.0190 (11)
H70.26890.24370.68720.023*
C80.2729 (4)0.2978 (3)0.5985 (2)0.0230 (11)
H80.21640.33500.61050.028*
C90.3235 (4)0.2981 (3)0.5358 (3)0.0247 (12)
H90.30200.33530.50470.030*
C100.4058 (4)0.2438 (3)0.5186 (2)0.0216 (11)
H100.44030.24410.47540.026*
C110.7648 (4)0.0742 (3)0.5225 (3)0.0228 (12)
H110.73030.07580.47920.027*
C120.8436 (5)0.1298 (3)0.5422 (3)0.0300 (13)
H120.86150.16960.51300.036*
C130.8957 (5)0.1269 (3)0.6042 (3)0.0333 (14)
H130.94990.16470.61780.040*
C140.8691 (4)0.0687 (3)0.6470 (3)0.0276 (13)
H140.90560.06690.68970.033*
C150.7248 (5)0.0148 (3)0.8324 (3)0.0324 (13)
H15A0.64480.03430.84370.049*
H15B0.77570.01430.87230.049*
H15C0.76200.04640.79850.049*
C160.5033 (5)0.1319 (4)0.8774 (3)0.0375 (15)
H16A0.52790.08800.90260.056*
H16B0.43290.15460.89880.056*
H16C0.57000.16760.87650.056*
C170.4098 (7)0.1874 (4)0.3109 (4)0.071 (3)
H17A0.46430.22160.28790.106*
H17B0.35090.21570.33690.106*
H17C0.36730.15690.27810.106*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
U10.01463 (9)0.01490 (11)0.01126 (10)0.00083 (8)0.00039 (7)0.00046 (8)
N10.0172 (19)0.013 (2)0.0120 (19)0.0002 (18)0.0028 (16)0.0013 (16)
N20.023 (2)0.024 (3)0.013 (2)0.0012 (19)0.0007 (19)0.0041 (19)
N30.022 (2)0.020 (2)0.015 (2)0.0021 (18)0.0036 (16)0.0026 (18)
O10.0168 (16)0.025 (2)0.0164 (17)0.0031 (15)0.0028 (14)0.0064 (15)
O20.0160 (16)0.0200 (19)0.0118 (16)0.0045 (14)0.0013 (14)0.0024 (14)
O30.0214 (18)0.020 (2)0.0225 (19)0.0027 (17)0.0049 (15)0.0020 (15)
O40.0197 (19)0.034 (2)0.0099 (17)0.0023 (17)0.0018 (15)0.0031 (14)
O50.0183 (16)0.0204 (19)0.0202 (18)0.0025 (15)0.0027 (15)0.0012 (15)
O60.0239 (18)0.0201 (19)0.0207 (18)0.0042 (15)0.0010 (15)0.0012 (15)
O70.073 (3)0.034 (3)0.024 (2)0.007 (2)0.019 (2)0.001 (2)
C10.013 (2)0.022 (3)0.022 (3)0.001 (2)0.003 (2)0.001 (2)
C20.013 (2)0.015 (3)0.021 (2)0.0003 (19)0.006 (2)0.000 (2)
C30.016 (2)0.018 (3)0.016 (3)0.004 (2)0.004 (2)0.006 (2)
C40.015 (2)0.021 (3)0.010 (2)0.005 (2)0.0030 (19)0.004 (2)
C50.015 (2)0.021 (3)0.015 (2)0.001 (2)0.0011 (19)0.002 (2)
C60.014 (2)0.014 (3)0.017 (2)0.0018 (19)0.0035 (19)0.001 (2)
C70.022 (2)0.015 (3)0.020 (3)0.001 (2)0.003 (2)0.001 (2)
C80.019 (2)0.019 (3)0.031 (3)0.006 (2)0.003 (2)0.002 (2)
C90.032 (3)0.017 (3)0.025 (3)0.003 (2)0.001 (2)0.010 (2)
C100.027 (3)0.023 (3)0.015 (2)0.007 (2)0.001 (2)0.004 (2)
C110.025 (3)0.023 (3)0.021 (3)0.002 (2)0.001 (2)0.010 (2)
C120.028 (3)0.020 (3)0.042 (4)0.008 (3)0.002 (3)0.011 (3)
C130.033 (3)0.026 (3)0.041 (4)0.014 (3)0.006 (3)0.003 (3)
C140.021 (3)0.039 (4)0.022 (3)0.011 (2)0.004 (2)0.001 (2)
C150.039 (3)0.027 (3)0.031 (3)0.004 (3)0.011 (3)0.010 (3)
C160.040 (3)0.050 (4)0.022 (3)0.009 (3)0.007 (3)0.014 (3)
C170.098 (6)0.034 (4)0.081 (6)0.000 (4)0.044 (5)0.016 (4)
Geometric parameters (Å, º) top
U1—O61.766 (3)C5—C101.401 (6)
U1—O51.789 (3)C5—C61.412 (6)
U1—O12.269 (3)C6—C71.395 (6)
U1—O22.281 (3)C7—C81.391 (6)
U1—O32.437 (3)C7—H70.9500
U1—O42.448 (3)C8—C91.380 (7)
U1—N12.513 (4)C8—H80.9500
N1—C41.345 (6)C9—C101.382 (7)
N1—C31.369 (6)C9—H90.9500
N2—C41.332 (6)C10—H100.9500
N2—N31.372 (6)C11—C121.389 (7)
N2—H2N0.82 (5)C11—H110.9500
N3—C31.327 (6)C12—C131.376 (8)
O1—C11.351 (5)C12—H120.9500
O2—C61.338 (5)C13—C141.390 (8)
O3—C151.431 (6)C13—H130.9500
O3—H3O0.82 (2)C14—H140.9500
O4—C161.438 (6)C15—H15A0.9800
O4—H4O0.806 (19)C15—H15B0.9800
O7—C171.399 (7)C15—H15C0.9800
O7—H7O0.80 (2)C16—H16A0.9800
C1—C141.394 (7)C16—H16B0.9800
C1—C21.398 (6)C16—H16C0.9800
C2—C111.391 (6)C17—H17A0.9800
C2—C31.467 (6)C17—H17B0.9800
C4—C51.446 (6)C17—H17C0.9800
O6—U1—O5178.69 (15)C10—C5—C6119.1 (4)
O6—U1—O190.40 (14)C10—C5—C4121.0 (4)
O5—U1—O189.60 (13)C6—C5—C4119.8 (4)
O6—U1—O291.83 (13)O2—C6—C7120.5 (4)
O5—U1—O289.03 (13)O2—C6—C5120.7 (4)
O1—U1—O2138.93 (11)C7—C6—C5118.7 (4)
O6—U1—O388.44 (14)C8—C7—C6121.0 (5)
O5—U1—O390.30 (13)C8—C7—H7119.5
O1—U1—O374.44 (11)C6—C7—H7119.5
O2—U1—O3146.60 (11)C9—C8—C7120.3 (5)
O6—U1—O492.59 (13)C9—C8—H8119.8
O5—U1—O486.65 (13)C7—C8—H8119.8
O1—U1—O4144.75 (11)C8—C9—C10119.5 (5)
O2—U1—O476.08 (11)C8—C9—H9120.2
O3—U1—O470.55 (12)C10—C9—H9120.2
O6—U1—N192.38 (14)C9—C10—C5121.3 (5)
O5—U1—N188.84 (13)C9—C10—H10119.4
O1—U1—N169.10 (11)C5—C10—H10119.4
O2—U1—N169.83 (11)C12—C11—C2121.0 (5)
O3—U1—N1143.54 (11)C12—C11—H11119.5
O4—U1—N1145.68 (11)C2—C11—H11119.5
C4—N1—C3104.8 (4)C13—C12—C11119.7 (5)
C4—N1—U1127.0 (3)C13—C12—H12120.2
C3—N1—U1128.0 (3)C11—C12—H12120.2
C4—N2—N3111.3 (4)C12—C13—C14120.1 (5)
C4—N2—H2N131 (4)C12—C13—H13120.0
N3—N2—H2N117 (4)C14—C13—H13120.0
C3—N3—N2102.7 (4)C13—C14—C1120.7 (5)
C1—O1—U1130.4 (3)C13—C14—H14119.6
C6—O2—U1131.5 (3)C1—C14—H14119.6
C15—O3—U1123.4 (3)O3—C15—H15A109.5
C15—O3—H3O106 (4)O3—C15—H15B109.5
U1—O3—H3O122 (4)H15A—C15—H15B109.5
C16—O4—U1133.5 (3)O3—C15—H15C109.5
C16—O4—H4O100 (4)H15A—C15—H15C109.5
U1—O4—H4O125 (4)H15B—C15—H15C109.5
C17—O7—H7O96 (5)O4—C16—H16A109.5
O1—C1—C14119.5 (4)O4—C16—H16B109.5
O1—C1—C2121.3 (4)H16A—C16—H16B109.5
C14—C1—C2119.2 (5)O4—C16—H16C109.5
C11—C2—C1119.3 (4)H16A—C16—H16C109.5
C11—C2—C3119.9 (4)H16B—C16—H16C109.5
C1—C2—C3120.8 (4)O7—C17—H17A109.5
N3—C3—N1113.1 (4)O7—C17—H17B109.5
N3—C3—C2122.2 (4)H17A—C17—H17B109.5
N1—C3—C2124.8 (4)O7—C17—H17C109.5
N2—C4—N1108.1 (4)H17A—C17—H17C109.5
N2—C4—C5124.7 (4)H17B—C17—H17C109.5
N1—C4—C5127.2 (4)
O6—U1—N1—C468.1 (4)C14—C1—C2—C3179.7 (4)
O5—U1—N1—C4112.4 (4)N2—N3—C3—N10.5 (5)
O1—U1—N1—C4157.6 (4)N2—N3—C3—C2178.4 (4)
O2—U1—N1—C423.0 (3)C4—N1—C3—N30.1 (5)
O3—U1—N1—C4158.7 (3)U1—N1—C3—N3174.6 (3)
O4—U1—N1—C430.0 (5)C4—N1—C3—C2178.7 (4)
O6—U1—N1—C3118.5 (4)U1—N1—C3—C24.2 (6)
O5—U1—N1—C361.0 (4)C11—C2—C3—N317.2 (7)
O1—U1—N1—C329.0 (3)C1—C2—C3—N3161.8 (4)
O2—U1—N1—C3150.4 (4)C11—C2—C3—N1161.5 (4)
O3—U1—N1—C327.9 (5)C1—C2—C3—N119.4 (7)
O4—U1—N1—C3143.4 (3)N3—N2—C4—N10.7 (5)
C4—N2—N3—C30.7 (5)N3—N2—C4—C5179.7 (4)
O6—U1—O1—C1148.7 (4)C3—N1—C4—N20.4 (5)
O5—U1—O1—C132.6 (4)U1—N1—C4—N2174.3 (3)
O2—U1—O1—C155.5 (4)C3—N1—C4—C5179.4 (4)
O3—U1—O1—C1123.0 (4)U1—N1—C4—C54.8 (6)
O4—U1—O1—C1116.2 (4)N2—C4—C5—C1023.9 (7)
N1—U1—O1—C156.3 (4)N1—C4—C5—C10157.2 (5)
O6—U1—O2—C638.1 (4)N2—C4—C5—C6152.9 (5)
O5—U1—O2—C6142.8 (4)N1—C4—C5—C626.0 (7)
O1—U1—O2—C654.6 (4)U1—O2—C6—C7128.7 (4)
O3—U1—O2—C6128.1 (4)U1—O2—C6—C553.6 (6)
O4—U1—O2—C6130.4 (4)C10—C5—C6—O2176.9 (4)
N1—U1—O2—C653.7 (4)C4—C5—C6—O20.0 (6)
O6—U1—O3—C15170.7 (4)C10—C5—C6—C70.8 (7)
O5—U1—O3—C159.6 (4)C4—C5—C6—C7177.7 (4)
O1—U1—O3—C1579.9 (4)O2—C6—C7—C8177.1 (4)
O2—U1—O3—C1598.3 (4)C5—C6—C7—C80.6 (7)
O4—U1—O3—C1596.0 (4)C6—C7—C8—C90.1 (7)
N1—U1—O3—C1578.8 (4)C7—C8—C9—C100.1 (7)
O6—U1—O4—C1656.9 (5)C8—C9—C10—C50.2 (7)
O5—U1—O4—C16122.0 (5)C6—C5—C10—C90.6 (7)
O1—U1—O4—C1637.4 (5)C4—C5—C10—C9177.5 (4)
O2—U1—O4—C16148.2 (5)C1—C2—C11—C121.9 (7)
O3—U1—O4—C1630.5 (4)C3—C2—C11—C12179.1 (5)
N1—U1—O4—C16155.0 (4)C2—C11—C12—C131.3 (8)
U1—O1—C1—C14126.0 (4)C11—C12—C13—C140.3 (9)
U1—O1—C1—C256.1 (6)C12—C13—C14—C10.3 (9)
O1—C1—C2—C11176.6 (4)O1—C1—C14—C13177.6 (5)
C14—C1—C2—C111.3 (7)C2—C1—C14—C130.2 (8)
O1—C1—C2—C32.5 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O70.82 (5)1.95 (5)2.758 (6)165 (5)
O3—H3O···O2i0.82 (2)1.81 (2)2.629 (5)174 (6)
O4—H4O···O1ii0.81 (2)1.80 (2)2.594 (5)168 (5)
O7—H7O···O5iii0.80 (2)2.04 (2)2.831 (6)168 (7)
Symmetry codes: (i) x+1/2, y, z+3/2; (ii) x1/2, y, z+3/2; (iii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[U(C14H9N3O2)O2(CH4O)2]·CH4O
Mr617.40
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)173
a, b, c (Å)11.0737 (11), 18.0705 (17), 20.1156 (19)
V3)4025.3 (7)
Z8
Radiation typeMo Kα
µ (mm1)8.11
Crystal size (mm)0.45 × 0.18 × 0.12
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.121, 0.443
No. of measured, independent and
observed [I > 2σ(I)] reflections
12248, 4019, 3126
Rint0.033
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.061, 1.04
No. of reflections4019
No. of parameters272
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.94, 0.96

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O70.82 (5)1.95 (5)2.758 (6)165 (5)
O3—H3O···O2i0.82 (2)1.81 (2)2.629 (5)174 (6)
O4—H4O···O1ii0.806 (19)1.80 (2)2.594 (5)168 (5)
O7—H7O···O5iii0.80 (2)2.04 (2)2.831 (6)168 (7)
Symmetry codes: (i) x+1/2, y, z+3/2; (ii) x1/2, y, z+3/2; (iii) x+1, y, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds