Download citation
Download citation
link to html
The triclinic structure of the title compound, cyclo-tetra­kis­(μ-1,1-dioxo-1λ6,2-benzothia­zole-3-thiol­ato-κ2S:S)tetra­kis­[(triphenyl­phosphane-κP)silver(I)], [Ag4(C7H4NO2S2)4(C18H15P)4], is a polymorph of the previously reported monoclinic structure [Dennehy, Mandolesi, Quinzani & Jennings (2007). Z. Anorg. Allg. Chem. 633, 2746–2752]. In both polymorphs, the complex lies on a crystallographic inversion centre and the bond distances are closely comparable. Some differences can be found in the inter­atomic angles and torsion angles involving the inner Ag4S4 skeleton. The polymorphs contain essentially identical two-dimensional layers, but with different layer stacking arrangements. In the triclinic form, all layers are related by lattice translation, while in the monoclinic form they are arranged around glide planes so that adjacent layers are mirrored with respect to each other.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270111053674/bi3030sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270111053674/bi3030Isup2.hkl
Contains datablock I

CCDC reference: 866743

Comment top

Heterocyclic thiones are versatile S,N-chelating ligands and a considerable amount of work has centred around their coordination chemistry. They are capable of binding to metals in a variety of coordination modes and a large number of mononuclear, binuclear and complex polynuclear coordination compounds have been reported after the pioneering work by Raper (1996, 1997). We have developed a sustained interest in the coordination behaviour of heterocyclic thiones in general, and thiosaccharin [the thione form of saccharin, C6H4SO2NHCS, hereinafter tsac; systematic name: 1,1-dioxo-1λ6,2-benzothiazole-3(2H)-thione], in particular. As is well known for other heterocyclic thiones, tsac has a tautomeric equilibrium in solution (Scheme 1) and in its thiol form it can act as a good coordinating agent for soft metals, building interesting mononuclear and polynuclear structures with or without the presence of additional ligands. In particular, we have worked on the silver–tsac system, aiming to control its stereochemistry and nuclearity, and we have been able to develop new products, for example, by changing the stoichiometry of the soft bulky triphenylphosphane (PPh3) co-ligand. Surprisingly, the Ag–PPh3 stoichiometries in the resulting complexes do not always follow the mole ratios of the reaction mixture. For example, a stable tetracoordinated complex [Ag(tsac)(PPh3)3] was obtained from reaction mixtures with Ag–PPh3 molar ratios greater than 1:2, but a different Ag6(tsac)6 complex resulted for molar ratios of 1:1 or less (Dennehy, Quinzani & Jennings, 2007). In our search for the appropriate conditions to prepare silver(I) thiosaccharinates with less than three phosphane ligands on the metal nuclei, we recently produced a monoclinic tetranuclear complex, [Ag4(tsac)4(PPh3)4] (Dennehy, Mandolesi et al., 2007). Through a slight variation in the synthesis conditions, we have now obtained a triclinic polymorph of the same compound, which we report herein. The triclinic and monoclinic polymorphs are referred to as (I) and (II), respectively.

Some comparative crystal data for polymorphs (I) and (II) are given in Table 1. In order to highlight the similarities and differences between the structures, triclinic form (I) is described using a nonconventional nonreduced unit cell. The corresponding reduced cell is a = 13.8914 (7), b = 14.0768 (6), c = 14.1309 (7) Å, α = 77.771 (4), β = 73.572 (4) and γ = 66.603 (4)°.

The tetranuclear unit in (I) (Fig. 1) is very similar to its counterpart in (II). The molecule is composed of four fused Ag(tsac)(PPh3) groups, two of them independent and the remaining two generated by an inversion centre. The main characteristic is the centrosymmetric eight-membered skeleton, composed of four thione exocyclic S atoms and four Ag atoms in a regular chair conformation. Each Ag atom is triply coordinated by two S atoms and one PPh3 group in a slightly distorted planar arrangement; the deviations of the Ag atoms from the ligand coordination plane are 0.0192 (3) Å for Ag1 and 0.1392 (3) Å for Ag2, compared with the corresponding values of 0.0062 (14) and 0.0650 (16) Å for polymorph (II). The coordination distances in both complexes are extremely similar (Table 2), and the bond distances and angles in the bridging tsac ligands are typical of those observed in other related polynuclear silver thiosaccharinates (Dennehy, Mandolesi et al., 2007). A least-squares overlay of the complexes in (I) and (II) gives an r.m.s. deviation of 0.4 Å for 128 non-H atoms (Macrae et al., 2008). A least-squares overlay of the central core of the complex (Fig. 2) shows that (I) adopts a more regular chair conformation compared with (II), as reflected by the Ag1—S1—Ag2—S2 torsion angles [89.17 (5)° in (I) versus 79.80 (10)° in (II)]. These relatively small differences in the skeleton are magnified towards the outermost parts of the bulky PPh3 groups on account of the variation in the degree of rotation around the P—Ag bonds. However, in both polymorphs the overall globular shape for the molecule is conserved. The changes which arise are reflected in the geometries of the intra- and intermolecular interactions (Tables 3 and 4) to the extent that they cannot readily be correlated between one structure and the other.

The two polymorphs have closely comparable calculated densities (Table 2) but different distributions of the molecules in space. The choice of cell axes for (I) is intended to highlight the similarities in the (001) planes in both structures (see a, b and γ in Table 1, and the coloured ab faces in Fig. 3). Indeed, the structures contain essentially identical layers of molecules parallel to the (001) planes, and they look identical when projected along the b axis. Fig. 3, where for simplicity only the inorganic skeletons have been represented, presents for each structure two consecutive layers (with and without shading) of these (001) planes, projected onto the layer plane. In (I), the layer stacking takes place via a consistent c(I) cell shift, so that all layers are related by lattice translation. In (II), the n-glides generate alternating mirror images shifted by one half of the c(II) translation. Taking into account the differences in cell lengths and cell angles, this corresponds to slightly different interplanar spacings: d(001) = 11.159 (2) Å for (I) and d(002) = 10.910 (2) Å for (II).

The globular shape of the molecules involved, and the absence of strong directional intermolecular interactions, leads to arrangements compatible with the packing of spheres. A nearest-neighbours calculation for the molecular centroids gives exactly 12 neighbours for each structure, in the tight range of 14.667 (2)–15.672 (3) Å for (II) and the slightly broader range of 13.8914 (12)–17.7086 (13) Å for (I), in both cases followed by a 3 Å gap to the second nearest-neighbour shell. The distribution of the centroids in both structures can be envisaged as a hexagonal arrangement, parallel to (100) in (I) or (101) in (II), bi-capped by two parallel inverted triangles, resembling a 3 distribution (Fig. 4). The distribution in (II) is rather regular, with the line through the triangular centres being almost perpendicular to the equatorial plane [angle 179.91 (14)°] and the interplanar distances [corresponding to d(101)] being 11.838 (2) Å. The distribution in (I) is more deformed, with corresponding values of 171.78 (16)° for the line-to-plane angle and 12.432 (2)Å for d(100).

Related literature top

For related literature, see: Dennehy, Mandolesi, Quinzani & Jennings (2007); Dennehy, Quinzani & Jennings (2007); Dennehy, Tellería, Tarulli, Quinzani, Mandolesi, Güida, Echeverrí, Piro & Castellano (2007); Macrae et al. (2008); Perec & Baggio (2010); Raper (1996, 1997); Spek (2009).

Experimental top

Thiosaccharin (Htsac) was prepared by the reaction of saccharin (Mallindkrodt) with Lawesson's reagent (Fluka) in toluene [Quantities?]. Ag6(tsac)6 was obtained as a yellow solid by reaction of AgNO3 and thiosaccharin in acetonitrile in a 1:1 molar ratio (Dennehy, Tellería et al., 2007). The title [Ag4(tsac)4(PPh3)4] complex was prepared by slow addition of an acetonitrile solution containing 2,5-dimethylpyrazine (10 mg) to another yellow solution of Ag6(tsac)6 (0.0120 g, 0.04 mmol of Ag) and PPh3 (0.0100 g, 0.04 mmol) in acetonitrile (10 ml). The resulting clear yellow solution was kept at room temperature and crystals of (I) were formed after one month.

Refinement top

All H atoms were visible in a difference Fourier map, but they were placed in idealized positions and allowed to ride for subsequent refinement, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Attention is drawn to a refinement paradox. When checking the final results with PLATON checkCIF (Spek, 2009), the Hirshfeld tests implemented therein generated a significant number of alerts regarding suspiciously large `Hirshfeld test dfferences' (HTD) for many of the Ag—S bonds, thus advising careful review of the cation-type assignment. To our surprise, lower R indices and better Hirshfeld indicators were obtained when the structure was refined with Pd atoms in place of Ag: R, wR and HTD values are 0.0553, 0.0882 and 17.3, respectively, for Ag, and 0.0543, 0.0830 and 13.2, respectively, for Pd. This contradicts clear synthetic and analytical evidence for the composition of the complex; an EDAX analysis on a Philips 515 microscope (Philips Export BV, Eindhoven, The Netherlands) equipped with an EDAX PV9100 probe (EDAX International Inc., Prairie View, Illinois, USA) showed that Ag was the only metallic element present. Even if surprising, this is not a novel paradox: we had previously found similar refinement `misbehaviour' with different cation pairs (e.g. CuII versus NiII; Perec & Baggio, 2010).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted. The eight-membered Ag4S4 skeleton is highlighted. [Symmetry code: (i) -x, -y + 2, -z + 2.]
[Figure 2] Fig. 2. A least-squares overlay of the eight-membered rings in (I) (heavy lines) and (II) (broken lines). [Symmetry code: (i) -x, -y + 2, -z + 2.]
[Figure 3] Fig. 3. Packing diagrams of (I) (top) and (II) (bottom), projected perpendicular to the (001) plane, showing two consecutive layers in different shading. Only the central ring of each molecule has been drawn, for clarity. Note the very similar a, b and γ cell parameters in the coloured cell faces.
[Figure 4] Fig. 4. Schematic nearest-neighbours representations of the structures of (I) (left) and (II) (right) (see Comment for details).
cyclo-tetrakis(µ-1,1-dioxo-1λ6,2-benzothiazole-3-thiolato- κ2S:S)tetrakis[(triphenylphosphane-κP)silver(I)] top
Crystal data top
[Ag4(C7H4NO2S2)4(C18H15P)4]Z = 1
Mr = 2273.49F(000) = 1144
Triclinic, P1Dx = 1.562 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 15.3566 (10) ÅCell parameters from 4175 reflections
b = 14.1309 (7) Åθ = 3.5–28.9°
c = 14.0768 (6) ŵ = 1.10 mm1
α = 77.771 (4)°T = 291 K
β = 123.880 (3)°Block, colourless
γ = 86.465 (1)°0.20 × 0.16 × 0.12 mm
V = 2416.9 (2) Å3
Data collection top
Oxford Gemini CCD S Ultra
diffractometer
11017 independent reflections
Radiation source: fine-focus sealed tube5568 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.060
ω scans, thick slicesθmax = 29.0°, θmin = 3.5°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
h = 1919
Tmin = 0.98, Tmax = 0.99k = 1819
20631 measured reflectionsl = 1814
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H-atom parameters constrained
S = 0.94 w = 1/[σ2(Fo2) + (0.030P)2]
where P = (Fo2 + 2Fc2)/3
11017 reflections(Δ/σ)max < 0.001
577 parametersΔρmax = 0.72 e Å3
0 restraintsΔρmin = 0.70 e Å3
Crystal data top
[Ag4(C7H4NO2S2)4(C18H15P)4]γ = 86.465 (1)°
Mr = 2273.49V = 2416.9 (2) Å3
Triclinic, P1Z = 1
a = 15.3566 (10) ÅMo Kα radiation
b = 14.1309 (7) ŵ = 1.10 mm1
c = 14.0768 (6) ÅT = 291 K
α = 77.771 (4)°0.20 × 0.16 × 0.12 mm
β = 123.880 (3)°
Data collection top
Oxford Gemini CCD S Ultra
diffractometer
11017 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
5568 reflections with I > 2σ(I)
Tmin = 0.98, Tmax = 0.99Rint = 0.060
20631 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 0.94Δρmax = 0.72 e Å3
11017 reflectionsΔρmin = 0.70 e Å3
577 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.07002 (3)0.06867 (3)0.07782 (3)0.05941 (14)
Ag20.15283 (3)0.21930 (3)0.09355 (3)0.05819 (14)
P10.02938 (11)0.04555 (10)0.26070 (10)0.0473 (3)
P20.30143 (11)0.33152 (9)0.13510 (11)0.0438 (3)
S170.42230 (11)0.04441 (10)0.17977 (11)0.0500 (3)
S180.09538 (13)0.47073 (11)0.34340 (13)0.0691 (5)
S10.15624 (11)0.04807 (9)0.13180 (11)0.0494 (3)
S20.02862 (11)0.23119 (9)0.04545 (10)0.0489 (3)
O170.4688 (3)0.0063 (3)0.1279 (3)0.0731 (11)
O180.1151 (3)0.5655 (3)0.3295 (4)0.0896 (14)
O270.4286 (3)0.1434 (2)0.1870 (3)0.0637 (10)
O280.1632 (3)0.4588 (3)0.4596 (3)0.0891 (15)
N170.2958 (3)0.0341 (3)0.1074 (3)0.0459 (10)
N180.0959 (3)0.3835 (3)0.2437 (4)0.0557 (12)
C110.0427 (4)0.0845 (4)0.2546 (4)0.0494 (14)
C210.1083 (4)0.1321 (4)0.2759 (4)0.0565 (15)
H210.14710.09650.29690.068*
C310.1172 (5)0.2319 (5)0.2665 (5)0.0714 (18)
H310.16190.26330.28090.086*
C410.0603 (6)0.2847 (5)0.2360 (5)0.082 (2)
H410.06610.35200.22960.098*
C510.0048 (6)0.2385 (5)0.2151 (5)0.083 (2)
H510.04440.27430.19570.099*
C610.0130 (5)0.1397 (5)0.2222 (5)0.0689 (17)
H610.05620.10960.20520.083*
C120.1203 (4)0.0921 (4)0.2929 (4)0.0479 (13)
C220.0894 (5)0.1467 (4)0.4038 (5)0.0707 (18)
H220.01780.16020.46930.085*
C320.1651 (6)0.1821 (5)0.4186 (6)0.086 (2)
H320.14360.21990.49390.103*
C420.2700 (6)0.1618 (5)0.3240 (7)0.0801 (19)
H420.32020.18510.33460.096*
C520.3016 (5)0.1075 (5)0.2135 (6)0.0742 (18)
H520.37350.09370.14870.089*
C620.2282 (5)0.0731 (4)0.1975 (5)0.0629 (16)
H620.25070.03640.12140.075*
C130.1035 (4)0.1061 (4)0.3961 (4)0.0468 (13)
C230.1467 (5)0.2022 (4)0.4130 (4)0.0616 (16)
H230.10900.23210.35290.074*
C330.2434 (5)0.2539 (4)0.5158 (5)0.0721 (18)
H330.27020.31870.52570.087*
C430.3011 (5)0.2108 (5)0.6043 (5)0.0735 (18)
H430.36740.24610.67420.088*
C530.2608 (5)0.1152 (5)0.5896 (5)0.0678 (18)
H530.30030.08540.64920.081*
C630.1621 (5)0.0633 (4)0.4867 (4)0.0596 (15)
H630.13460.00090.47800.072*
C140.4199 (4)0.3503 (3)0.2876 (4)0.0475 (13)
C240.5212 (5)0.3528 (4)0.3173 (5)0.0682 (17)
H240.53290.34390.25820.082*
C340.6079 (5)0.3687 (4)0.4372 (6)0.082 (2)
H340.67680.36930.45720.098*
C440.5914 (7)0.3835 (5)0.5246 (6)0.087 (2)
H440.64900.39520.60430.105*
C540.4909 (6)0.3810 (5)0.4945 (5)0.091 (2)
H540.48030.39210.55450.109*
C640.4031 (5)0.3624 (4)0.3766 (5)0.0682 (17)
H640.33400.35800.35720.082*
C150.2829 (4)0.4573 (4)0.1359 (4)0.0447 (13)
C250.3666 (5)0.5357 (4)0.1823 (4)0.0573 (15)
H250.43540.52460.21410.069*
C350.3505 (5)0.6299 (4)0.1827 (4)0.0673 (18)
H350.40800.68200.21420.081*
C450.2495 (6)0.6473 (4)0.1365 (5)0.075 (2)
H450.23850.71140.13700.090*
C550.1656 (6)0.5709 (5)0.0901 (5)0.0782 (19)
H550.09700.58240.05860.094*
C650.1827 (5)0.4756 (4)0.0897 (5)0.0615 (15)
H650.12500.42340.05760.074*
C160.3509 (4)0.2976 (3)0.0452 (4)0.0448 (13)
C260.3723 (5)0.3606 (4)0.0056 (4)0.0659 (16)
H260.35600.42290.00070.079*
C360.4174 (5)0.3322 (5)0.0652 (5)0.081 (2)
H360.43180.37560.09840.097*
C460.4412 (5)0.2402 (6)0.0760 (5)0.082 (2)
H460.47260.22170.11560.099*
C560.4190 (5)0.1769 (5)0.0292 (5)0.074 (2)
H560.43430.11430.03750.089*
C660.3737 (4)0.2042 (4)0.0309 (4)0.0609 (16)
H660.35830.15960.06230.073*
C170.2789 (4)0.0230 (3)0.1793 (4)0.0391 (12)
C270.3766 (4)0.0651 (3)0.3063 (4)0.0424 (12)
C370.3835 (5)0.1213 (4)0.4038 (4)0.0641 (17)
H370.32380.14020.39700.077*
C470.4841 (6)0.1485 (5)0.5128 (5)0.085 (2)
H470.49160.18650.58050.102*
C570.5726 (6)0.1215 (5)0.5243 (5)0.083 (2)
H570.63870.14220.59900.099*
C670.5651 (4)0.0645 (4)0.4275 (5)0.0661 (17)
H670.62520.04600.43490.079*
C770.4656 (4)0.0354 (3)0.3188 (4)0.0492 (13)
C180.0017 (4)0.3260 (4)0.1666 (4)0.0474 (13)
C280.0822 (4)0.3480 (4)0.1842 (4)0.0482 (13)
C380.1877 (5)0.2998 (4)0.1216 (5)0.0676 (17)
H380.21720.24420.05550.081*
C480.2491 (6)0.3350 (5)0.1580 (6)0.089 (2)
H480.32050.30240.11630.107*
C580.2065 (7)0.4178 (6)0.2554 (7)0.103 (3)
H580.24990.44140.27760.124*
C680.1003 (6)0.4657 (5)0.3201 (6)0.082 (2)
H680.07040.52050.38720.098*
C780.0398 (5)0.4303 (4)0.2825 (5)0.0573 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0509 (3)0.0857 (3)0.0487 (2)0.0150 (2)0.0298 (2)0.0307 (2)
Ag20.0521 (3)0.0541 (3)0.0684 (3)0.0082 (2)0.0375 (2)0.0123 (2)
P10.0435 (9)0.0606 (9)0.0405 (7)0.0118 (7)0.0244 (6)0.0205 (6)
P20.0426 (8)0.0415 (7)0.0470 (7)0.0114 (6)0.0267 (6)0.0107 (6)
S170.0439 (9)0.0550 (8)0.0565 (8)0.0149 (6)0.0333 (7)0.0133 (6)
S180.0636 (11)0.0529 (10)0.0725 (10)0.0097 (8)0.0330 (8)0.0076 (8)
S10.0447 (8)0.0508 (8)0.0623 (8)0.0160 (6)0.0356 (7)0.0189 (6)
S20.0494 (9)0.0529 (8)0.0490 (7)0.0164 (6)0.0297 (6)0.0192 (6)
O170.059 (3)0.097 (3)0.088 (3)0.017 (2)0.056 (2)0.030 (2)
O180.085 (3)0.050 (3)0.113 (3)0.007 (2)0.050 (3)0.015 (2)
O270.062 (3)0.050 (2)0.082 (2)0.0230 (19)0.044 (2)0.0151 (19)
O280.085 (3)0.088 (3)0.057 (2)0.018 (2)0.022 (2)0.012 (2)
N170.038 (3)0.053 (3)0.045 (2)0.016 (2)0.0243 (19)0.0110 (19)
N180.042 (3)0.052 (3)0.064 (3)0.012 (2)0.027 (2)0.015 (2)
C110.050 (4)0.063 (4)0.035 (3)0.013 (3)0.023 (2)0.018 (2)
C210.055 (4)0.063 (4)0.055 (3)0.018 (3)0.032 (3)0.024 (3)
C310.069 (5)0.073 (5)0.066 (4)0.008 (4)0.034 (3)0.028 (3)
C410.102 (6)0.057 (4)0.074 (4)0.015 (4)0.043 (4)0.023 (3)
C510.102 (6)0.080 (5)0.079 (4)0.033 (4)0.061 (4)0.020 (4)
C610.086 (5)0.072 (4)0.075 (4)0.020 (4)0.061 (4)0.024 (3)
C120.047 (3)0.059 (3)0.046 (3)0.014 (3)0.029 (3)0.025 (3)
C220.064 (4)0.095 (5)0.053 (3)0.031 (4)0.033 (3)0.021 (3)
C320.104 (6)0.104 (5)0.081 (4)0.044 (5)0.070 (5)0.028 (4)
C420.074 (5)0.095 (5)0.114 (5)0.041 (4)0.071 (5)0.053 (5)
C520.051 (4)0.086 (5)0.080 (4)0.012 (3)0.035 (3)0.026 (4)
C620.051 (4)0.075 (4)0.062 (3)0.007 (3)0.034 (3)0.019 (3)
C130.042 (3)0.061 (3)0.041 (3)0.018 (3)0.024 (2)0.020 (2)
C230.051 (4)0.072 (4)0.054 (3)0.014 (3)0.024 (3)0.025 (3)
C330.069 (5)0.069 (4)0.065 (4)0.001 (3)0.036 (3)0.010 (3)
C430.051 (4)0.102 (5)0.045 (3)0.009 (4)0.021 (3)0.005 (3)
C530.059 (4)0.100 (5)0.045 (3)0.030 (4)0.027 (3)0.029 (3)
C630.059 (4)0.074 (4)0.049 (3)0.019 (3)0.032 (3)0.022 (3)
C140.048 (4)0.038 (3)0.053 (3)0.011 (2)0.027 (3)0.015 (2)
C240.056 (4)0.079 (4)0.057 (3)0.016 (3)0.027 (3)0.017 (3)
C340.057 (5)0.072 (4)0.079 (4)0.023 (3)0.021 (4)0.011 (4)
C440.086 (6)0.073 (5)0.058 (4)0.019 (4)0.015 (4)0.021 (3)
C540.098 (6)0.110 (6)0.049 (4)0.012 (5)0.031 (4)0.039 (4)
C640.077 (5)0.077 (4)0.057 (3)0.018 (3)0.041 (3)0.025 (3)
C150.050 (4)0.052 (3)0.037 (3)0.019 (3)0.027 (2)0.016 (2)
C250.060 (4)0.051 (4)0.049 (3)0.015 (3)0.025 (3)0.012 (3)
C350.081 (5)0.048 (4)0.049 (3)0.003 (3)0.027 (3)0.011 (3)
C450.106 (6)0.052 (4)0.068 (4)0.030 (4)0.046 (4)0.028 (3)
C550.070 (5)0.082 (5)0.098 (5)0.045 (4)0.049 (4)0.046 (4)
C650.059 (4)0.059 (4)0.076 (4)0.018 (3)0.041 (3)0.031 (3)
C160.040 (3)0.045 (3)0.039 (3)0.009 (2)0.019 (2)0.006 (2)
C260.076 (5)0.070 (4)0.064 (4)0.013 (3)0.050 (3)0.014 (3)
C360.099 (6)0.094 (5)0.079 (4)0.024 (4)0.070 (4)0.023 (4)
C460.062 (5)0.115 (6)0.062 (4)0.020 (4)0.039 (3)0.002 (4)
C560.070 (5)0.070 (4)0.071 (4)0.031 (4)0.039 (4)0.001 (3)
C660.056 (4)0.064 (4)0.057 (3)0.014 (3)0.032 (3)0.010 (3)
C170.047 (3)0.038 (3)0.041 (3)0.012 (2)0.028 (2)0.019 (2)
C270.046 (3)0.038 (3)0.045 (3)0.012 (2)0.027 (2)0.013 (2)
C370.073 (5)0.061 (4)0.054 (3)0.023 (3)0.037 (3)0.007 (3)
C470.100 (6)0.073 (5)0.049 (3)0.019 (4)0.030 (4)0.000 (3)
C570.070 (5)0.075 (5)0.057 (4)0.011 (4)0.014 (3)0.011 (3)
C670.044 (4)0.057 (4)0.069 (4)0.012 (3)0.019 (3)0.012 (3)
C770.046 (3)0.043 (3)0.048 (3)0.007 (2)0.023 (3)0.011 (2)
C180.048 (4)0.050 (3)0.050 (3)0.019 (3)0.028 (3)0.022 (2)
C280.050 (4)0.057 (3)0.052 (3)0.017 (3)0.036 (3)0.021 (3)
C380.059 (4)0.075 (4)0.071 (4)0.017 (3)0.042 (3)0.015 (3)
C480.071 (5)0.105 (6)0.104 (5)0.014 (4)0.062 (4)0.018 (5)
C580.100 (7)0.136 (7)0.117 (6)0.051 (6)0.086 (5)0.036 (5)
C680.089 (6)0.089 (5)0.078 (4)0.029 (4)0.056 (4)0.019 (4)
C780.063 (4)0.054 (3)0.067 (3)0.016 (3)0.044 (3)0.018 (3)
Geometric parameters (Å, º) top
Ag1—P12.3904 (13)C63—H630.9300
Ag1—S2i2.5440 (13)C14—C241.364 (7)
Ag1—S12.5484 (13)C14—C641.393 (7)
Ag2—P22.3952 (15)C24—C341.403 (7)
Ag2—S22.5008 (14)C24—H240.9300
Ag2—S12.5852 (13)C34—C441.367 (9)
P1—C121.812 (5)C34—H340.9300
P1—C131.813 (5)C44—C541.349 (9)
P1—C111.815 (5)C44—H440.9300
P2—C161.808 (5)C54—C641.385 (7)
P2—C151.816 (5)C54—H540.9300
P2—C141.826 (5)C64—H640.9300
S17—O171.426 (4)C15—C651.364 (7)
S17—O271.429 (3)C15—C251.374 (7)
S17—N171.651 (4)C25—C351.367 (6)
S17—C771.751 (5)C25—H250.9300
S18—O281.424 (4)C35—C451.371 (8)
S18—O181.432 (4)C35—H350.9300
S18—N181.664 (4)C45—C551.358 (8)
S18—C781.742 (6)C45—H450.9300
S1—C171.702 (5)C55—C651.387 (7)
S2—C181.729 (5)C55—H550.9300
S2—Ag1i2.5440 (13)C65—H650.9300
N17—C171.311 (5)C16—C261.381 (7)
N18—C181.289 (6)C16—C661.388 (6)
C11—C211.376 (7)C26—C361.372 (8)
C11—C611.383 (7)C26—H260.9300
C21—C311.379 (7)C36—C461.373 (8)
C21—H210.9300C36—H360.9300
C31—C411.366 (9)C46—C561.347 (8)
C31—H310.9300C46—H460.9300
C41—C511.357 (9)C56—C661.379 (8)
C41—H410.9300C56—H560.9300
C51—C611.371 (8)C66—H660.9300
C51—H510.9300C17—C271.500 (6)
C61—H610.9300C27—C371.375 (6)
C12—C221.369 (6)C27—C771.381 (7)
C12—C621.390 (7)C37—C471.387 (7)
C22—C321.394 (8)C37—H370.9300
C22—H220.9300C47—C571.364 (9)
C32—C421.356 (8)C47—H470.9300
C32—H320.9300C57—C671.367 (8)
C42—C521.360 (8)C57—H570.9300
C42—H420.9300C67—C771.376 (6)
C52—C621.365 (8)C67—H670.9300
C52—H520.9300C18—C281.479 (7)
C62—H620.9300C28—C381.373 (7)
C13—C631.383 (6)C28—C781.383 (6)
C13—C231.385 (7)C38—C481.373 (8)
C23—C331.361 (7)C38—H380.9300
C23—H230.9300C48—C581.380 (9)
C33—C431.366 (7)C48—H480.9300
C33—H330.9300C58—C681.376 (9)
C43—C531.373 (8)C58—H580.9300
C43—H430.9300C68—C781.374 (8)
C53—C631.378 (7)C68—H680.9300
C53—H530.9300
P1—Ag1—S2i126.76 (5)C64—C14—P2116.7 (4)
P1—Ag1—S1133.92 (5)C14—C24—C34119.9 (6)
S2i—Ag1—S199.30 (4)C14—C24—H24120.0
P2—Ag2—S2135.38 (4)C34—C24—H24120.0
P2—Ag2—S1126.12 (4)C44—C34—C24120.2 (7)
S2—Ag2—S197.49 (4)C44—C34—H34119.9
C12—P1—C13104.3 (2)C24—C34—H34119.9
C12—P1—C11106.6 (3)C54—C44—C34119.5 (6)
C13—P1—C11104.7 (2)C54—C44—H44120.2
C12—P1—Ag1110.94 (15)C34—C44—H44120.2
C13—P1—Ag1117.26 (18)C44—C54—C64121.8 (7)
C11—P1—Ag1112.20 (15)C44—C54—H54119.1
C16—P2—C15106.0 (2)C64—C54—H54119.1
C16—P2—C14103.3 (2)C54—C64—C14118.9 (6)
C15—P2—C14102.1 (2)C54—C64—H64120.5
C16—P2—Ag2118.59 (17)C14—C64—H64120.5
C15—P2—Ag2114.55 (19)C65—C15—C25118.3 (5)
C14—P2—Ag2110.53 (18)C65—C15—P2119.3 (4)
O17—S17—O27117.1 (2)C25—C15—P2122.4 (4)
O17—S17—N17108.7 (2)C35—C25—C15121.1 (5)
O27—S17—N17110.0 (2)C35—C25—H25119.4
O17—S17—C77113.0 (3)C15—C25—H25119.4
O27—S17—C77109.9 (2)C25—C35—C45120.0 (6)
N17—S17—C7796.2 (2)C25—C35—H35120.0
O28—S18—O18117.6 (3)C45—C35—H35120.0
O28—S18—N18110.1 (2)C55—C45—C35119.8 (5)
O18—S18—N18108.8 (3)C55—C45—H45120.1
O28—S18—C78111.2 (3)C35—C45—H45120.1
O18—S18—C78111.3 (3)C45—C55—C65119.8 (6)
N18—S18—C7895.5 (2)C45—C55—H55120.1
C17—S1—Ag191.55 (16)C65—C55—H55120.1
C17—S1—Ag2108.51 (16)C15—C65—C55121.0 (6)
Ag1—S1—Ag2101.38 (4)C15—C65—H65119.5
C18—S2—Ag2102.77 (19)C55—C65—H65119.5
C18—S2—Ag1i107.06 (17)C26—C16—C66117.8 (5)
Ag2—S2—Ag1i97.33 (4)C26—C16—P2124.0 (4)
C17—N17—S17111.2 (3)C66—C16—P2118.1 (4)
C18—N18—S18110.5 (4)C36—C26—C16120.7 (6)
C21—C11—C61118.2 (5)C36—C26—H26119.7
C21—C11—P1123.7 (4)C16—C26—H26119.7
C61—C11—P1118.1 (5)C26—C36—C46120.4 (6)
C11—C21—C31120.8 (6)C26—C36—H36119.8
C11—C21—H21119.6C46—C36—H36119.8
C31—C21—H21119.6C56—C46—C36119.8 (6)
C41—C31—C21120.0 (7)C56—C46—H46120.1
C41—C31—H31120.0C36—C46—H46120.1
C21—C31—H31120.0C46—C56—C66120.5 (6)
C51—C41—C31119.7 (6)C46—C56—H56119.8
C51—C41—H41120.1C66—C56—H56119.8
C31—C41—H41120.1C56—C66—C16120.7 (6)
C41—C51—C61120.8 (7)C56—C66—H66119.6
C41—C51—H51119.6C16—C66—H66119.6
C61—C51—H51119.6N17—C17—C27114.4 (4)
C51—C61—C11120.4 (6)N17—C17—S1122.6 (3)
C51—C61—H61119.8C27—C17—S1123.0 (4)
C11—C61—H61119.8C37—C27—C77120.9 (5)
C22—C12—C62118.2 (5)C37—C27—C17128.3 (5)
C22—C12—P1124.4 (4)C77—C27—C17110.7 (4)
C62—C12—P1117.4 (4)C27—C37—C47116.6 (6)
C12—C22—C32120.1 (6)C27—C37—H37121.7
C12—C22—H22120.0C47—C37—H37121.7
C32—C22—H22120.0C57—C47—C37122.5 (6)
C42—C32—C22120.4 (6)C57—C47—H47118.8
C42—C32—H32119.8C37—C47—H47118.8
C22—C32—H32119.8C47—C57—C67120.8 (6)
C32—C42—C52120.0 (6)C47—C57—H57119.6
C32—C42—H42120.0C67—C57—H57119.6
C52—C42—H42120.0C57—C67—C77117.7 (6)
C42—C52—C62120.2 (6)C57—C67—H67121.2
C42—C52—H52119.9C77—C67—H67121.2
C62—C52—H52119.9C67—C77—C27121.5 (5)
C52—C62—C12121.1 (6)C67—C77—S17131.0 (5)
C52—C62—H62119.4C27—C77—S17107.4 (4)
C12—C62—H62119.4N18—C18—C28116.1 (5)
C63—C13—C23117.9 (5)N18—C18—S2122.9 (5)
C63—C13—P1123.5 (4)C28—C18—S2120.9 (4)
C23—C13—P1118.5 (4)C38—C28—C78119.5 (5)
C33—C23—C13121.4 (5)C38—C28—C18130.6 (5)
C33—C23—H23119.3C78—C28—C18109.9 (5)
C13—C23—H23119.3C28—C38—C48119.1 (6)
C23—C33—C43120.3 (6)C28—C38—H38120.5
C23—C33—H33119.9C48—C38—H38120.5
C43—C33—H33119.9C38—C48—C58121.1 (7)
C33—C43—C53119.6 (5)C38—C48—H48119.5
C33—C43—H43120.2C58—C48—H48119.5
C53—C43—H43120.2C68—C58—C48120.4 (7)
C43—C53—C63120.3 (5)C68—C58—H58119.8
C43—C53—H53119.9C48—C58—H58119.8
C63—C53—H53119.9C78—C68—C58118.0 (6)
C53—C63—C13120.5 (6)C78—C68—H68121.0
C53—C63—H63119.8C58—C68—H68121.0
C13—C63—H63119.8C68—C78—C28121.9 (6)
C24—C14—C64119.6 (5)C68—C78—S18130.2 (5)
C24—C14—P2123.7 (4)C28—C78—S18107.9 (4)
S2i—Ag1—P1—C1274.87 (19)C24—C14—C64—C542.8 (8)
S1—Ag1—P1—C12107.05 (19)P2—C14—C64—C54177.3 (4)
S2i—Ag1—P1—C1344.8 (2)C16—P2—C15—C65119.0 (4)
S1—Ag1—P1—C13133.31 (18)C14—P2—C15—C65133.2 (4)
S2i—Ag1—P1—C11166.1 (2)Ag2—P2—C15—C6513.7 (4)
S1—Ag1—P1—C1112.0 (2)C16—P2—C15—C2561.4 (4)
S2—Ag2—P2—C16124.86 (17)C14—P2—C15—C2546.4 (5)
S1—Ag2—P2—C1669.37 (18)Ag2—P2—C15—C25165.9 (3)
S2—Ag2—P2—C151.56 (17)C65—C15—C25—C350.1 (7)
S1—Ag2—P2—C15164.21 (15)P2—C15—C25—C35179.5 (4)
S2—Ag2—P2—C14116.23 (18)C15—C25—C35—C450.2 (8)
S1—Ag2—P2—C1449.54 (18)C25—C35—C45—C550.3 (9)
P1—Ag1—S1—C1795.75 (16)C35—C45—C55—C650.0 (9)
S2i—Ag1—S1—C1785.82 (16)C25—C15—C65—C550.3 (8)
P1—Ag1—S1—Ag213.48 (9)P2—C15—C65—C55179.2 (4)
S2i—Ag1—S1—Ag2164.95 (5)C45—C55—C65—C150.3 (9)
P2—Ag2—S1—C175.32 (17)C15—P2—C16—C262.3 (5)
S2—Ag2—S1—C17175.29 (16)C14—P2—C16—C26104.7 (5)
P2—Ag2—S1—Ag1100.86 (6)Ag2—P2—C16—C26132.7 (4)
S2—Ag2—S1—Ag189.17 (5)C15—P2—C16—C66179.1 (4)
P2—Ag2—S2—C1857.11 (18)C14—P2—C16—C6672.1 (4)
S1—Ag2—S2—C18111.34 (17)Ag2—P2—C16—C6650.5 (4)
P2—Ag2—S2—Ag1i166.52 (5)C66—C16—C26—C361.7 (8)
S1—Ag2—S2—Ag1i1.93 (4)P2—C16—C26—C36175.1 (5)
O17—S17—N17—C17119.1 (4)C16—C26—C36—C460.5 (10)
O27—S17—N17—C17111.6 (3)C26—C36—C46—C560.9 (10)
C77—S17—N17—C172.2 (4)C36—C46—C56—C660.8 (10)
O28—S18—N18—C18115.5 (4)C46—C56—C66—C160.5 (9)
O18—S18—N18—C18114.2 (4)C26—C16—C66—C561.7 (8)
C78—S18—N18—C180.5 (4)P2—C16—C66—C56175.2 (4)
C12—P1—C11—C212.1 (5)S17—N17—C17—C270.8 (5)
C13—P1—C11—C21108.0 (4)S17—N17—C17—S1179.8 (2)
Ag1—P1—C11—C21123.7 (4)Ag1—S1—C17—N173.9 (4)
C12—P1—C11—C61175.2 (4)Ag2—S1—C17—N1798.6 (4)
C13—P1—C11—C6174.6 (4)Ag1—S1—C17—C27176.8 (4)
Ag1—P1—C11—C6153.7 (4)Ag2—S1—C17—C2780.7 (4)
C61—C11—C21—C310.7 (8)N17—C17—C27—C37175.1 (5)
P1—C11—C21—C31178.1 (4)S1—C17—C27—C375.5 (7)
C11—C21—C31—C410.2 (8)N17—C17—C27—C771.4 (6)
C21—C31—C41—C510.0 (9)S1—C17—C27—C77177.9 (4)
C31—C41—C51—C611.1 (10)C77—C27—C37—C471.9 (8)
C41—C51—C61—C112.0 (10)C17—C27—C37—C47178.1 (5)
C21—C11—C61—C511.8 (8)C27—C37—C47—C570.0 (10)
P1—C11—C61—C51179.3 (4)C37—C47—C57—C670.9 (11)
C13—P1—C12—C229.8 (5)C47—C57—C67—C770.1 (10)
C11—P1—C12—C22100.6 (5)C57—C67—C77—C272.1 (8)
Ag1—P1—C12—C22137.0 (4)C57—C67—C77—S17174.2 (5)
C13—P1—C12—C62168.3 (4)C37—C27—C77—C673.0 (8)
C11—P1—C12—C6281.3 (4)C17—C27—C77—C67179.9 (5)
Ag1—P1—C12—C6241.1 (4)C37—C27—C77—S17174.0 (4)
C62—C12—C22—C320.3 (9)C17—C27—C77—S172.8 (5)
P1—C12—C22—C32177.7 (5)O17—S17—C77—C6767.0 (6)
C12—C22—C32—C420.8 (10)O27—S17—C77—C6765.8 (6)
C22—C32—C42—C520.7 (11)N17—S17—C77—C67179.6 (5)
C32—C42—C52—C620.1 (10)O17—S17—C77—C27116.3 (4)
C42—C52—C62—C120.4 (9)O27—S17—C77—C27110.9 (4)
C22—C12—C62—C520.3 (9)N17—S17—C77—C272.9 (4)
P1—C12—C62—C52178.5 (5)S18—N18—C18—C281.1 (5)
C12—P1—C13—C6395.0 (5)S18—N18—C18—S2176.4 (2)
C11—P1—C13—C6316.7 (5)Ag2—S2—C18—N1811.9 (4)
Ag1—P1—C13—C63141.9 (4)Ag1i—S2—C18—N18113.8 (4)
C12—P1—C13—C2381.6 (5)Ag2—S2—C18—C28170.6 (3)
C11—P1—C13—C23166.6 (4)Ag1i—S2—C18—C2868.7 (4)
Ag1—P1—C13—C2341.5 (5)N18—C18—C28—C38177.5 (5)
C63—C13—C23—C330.7 (9)S2—C18—C28—C384.9 (7)
P1—C13—C23—C33176.2 (5)N18—C18—C28—C781.3 (6)
C13—C23—C33—C431.2 (9)S2—C18—C28—C78176.3 (3)
C23—C33—C43—C530.4 (9)C78—C28—C38—C480.3 (8)
C33—C43—C53—C630.8 (10)C18—C28—C38—C48179.0 (5)
C43—C53—C63—C131.3 (9)C28—C38—C48—C580.4 (10)
C23—C13—C63—C530.6 (8)C38—C48—C58—C681.5 (11)
P1—C13—C63—C53177.3 (4)C48—C58—C68—C781.8 (11)
C16—P2—C14—C249.6 (5)C58—C68—C78—C281.2 (9)
C15—P2—C14—C24100.3 (5)C58—C68—C78—S18178.7 (5)
Ag2—P2—C14—C24137.4 (4)C38—C28—C78—C680.1 (8)
C16—P2—C14—C64170.3 (4)C18—C28—C78—C68178.8 (5)
C15—P2—C14—C6479.8 (4)C38—C28—C78—S18178.2 (4)
Ag2—P2—C14—C6442.5 (4)C18—C28—C78—S180.8 (5)
C64—C14—C24—C340.8 (8)O28—S18—C78—C6863.9 (6)
P2—C14—C24—C34179.3 (4)O18—S18—C78—C6869.3 (6)
C14—C24—C34—C441.1 (9)N18—S18—C78—C68178.0 (5)
C24—C34—C44—C541.1 (10)O28—S18—C78—C28113.9 (4)
C34—C44—C54—C640.9 (10)O18—S18—C78—C28112.8 (4)
C44—C54—C64—C142.8 (9)N18—S18—C78—C280.2 (4)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C46—H46···O27ii0.932.443.350 (10)165
C52—H52···O17ii0.932.563.196 (10)126
C23—H23···Cg1i0.932.993.865 (6)158
C37—H37···Cg2i0.932.933.734 (9)146
Symmetry codes: (i) x, y, z; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formula[Ag4(C7H4NO2S2)4(C18H15P)4]
Mr2273.49
Crystal system, space groupTriclinic, P1
Temperature (K)291
a, b, c (Å)15.3566 (10), 14.1309 (7), 14.0768 (6)
α, β, γ (°)77.771 (4), 123.880 (3), 86.465 (1)
V3)2416.9 (2)
Z1
Radiation typeMo Kα
µ (mm1)1.10
Crystal size (mm)0.20 × 0.16 × 0.12
Data collection
DiffractometerOxford Gemini CCD S Ultra
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.98, 0.99
No. of measured, independent and
observed [I > 2σ(I)] reflections
20631, 11017, 5568
Rint0.060
(sin θ/λ)max1)0.681
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.112, 0.94
No. of reflections11017
No. of parameters577
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.72, 0.70

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C46—H46···O27i0.932.443.350 (10)165
C52—H52···O17i0.932.563.196 (10)126
C23—H23···Cg1ii0.932.993.865 (6)158
C37—H37···Cg2ii0.932.933.734 (9)146
Symmetry codes: (i) x1, y, z; (ii) x, y, z.
Comparison of crystal data for (I) (this work) and (II) (Dennehy, Mandolesi et al., 2007) top
(I)(II)(I)(II)
Crystal systemTriclinicMonoclinicSpace groupP1P21/n
a (Å)15.3566 (10)15.024 (3)α (°)77.771 (4)90
b (Å)14.1309 (7)14.681 (3)β (°)123.880 (3)95.31 (3)
c (Å)14.0768 (6)21.914 (4)γ (°)86.465 (1)90
V3)2416.9 (2)4812.77Z12
Dx (Mg m-3)1.5621.569
Comparison of selected bond lengths and angles (Å,°) in (I) (this work) and (II) (Dennehy, Mandolesi et al., 2007) top
(I)(II)(I)(II)
Ag1—P12.3904 (13)2.398 (3)Ag2—P22.3952 (15)2.396 (2)
Ag1—S2i2.5440 (13)2.551 (2)Ag2—S22.5008 (14)2.505 (2)
Ag1—S12.5484 (13)2.549 (3)Ag2—S12.5852 (13)2.582 (3)
P1—Ag1—S2i126.76 (5)122.81 (9)P2—Ag2—S2135.38 (4)135.79 (9)
P1—Ag1—S1133.92 (5)132.07 (9)P2—Ag2—S1126.12 (4)131.66 (8)
S2i—Ag1—S199.30 (4)105.13 (8)S2—Ag2—S197.49 (4)92.33 (8)
S2i—Ag1—S1—Ag2-164.95 (5)-163.22 (8)S1—Ag2—S2—Ag1i1.93 (4)11.17 (10)
Ag1—S1—Ag2—S289.17 (5)79.80 (10)Ag2—S2—Ag1i—S1i-88.11 (6)-95.45 (9)
Symmetry code: (i) -x, -y, -z.
ππ interactions (Å, °) for (I) top
Group 1/group 2ccd (Å)ipd (Å)sa (°)
Cg3···Cg3ii3.735 (4)3.441 (2)22.8 (2)
Symmetry code: (ii) -1 - x, -y, -1 - z. Cg3 is the centroid of the C27/C37/C47/C57/C67/C77 ring, ccd is the centre-to-centre distance (distance between ring centroids), ipd is the interplanar distance (distance from one plane to the neighbouring centroid), sa is the slippage angle (angle subtended by the intercentroid vector to the plane normal). For details, see Janiak (2000).
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds