Download citation
Download citation
link to html
The title isomers, viz. the N-(3-methyl­phen­yl)-, (I), and N-(2-methyl­phen­yl)-, (II), derivatives, both C26H28N2O4S, adopt an E configuration that places the thio­phene and trimeth­oxy­phenyl groups on opposite sides of the C=N double bond, providing a suitable orientation for formation of an intra­molecular N—H...N hydrogen bond. However, while the mol­ecule in (I) is close to being planar, the N-methyl­phenyl group in (II) is twisted significantly from the plane of the remainder of the mol­ecule. Both crystal structures are essentially layered and there are no inter­molecular N—H...O hydrogen bonds. Compound (I) has a significantly higher calculated density than (II) (1.340 cf 1.305 Mg m−3), indicating that the mol­ecular packing in the meta isomer is overall more efficient than that in the ortho isomer.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270110040448/bi3001sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110040448/bi3001Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110040448/bi3001IIsup3.hkl
Contains datablock II

CCDC references: 810008; 810009

Comment top

Thiophene derivatives have recently been incorporated into new pharmaceutical and chemical compounds tested as anti-inflammatory agents (Pillai et al., 2004, 2005). The double functionality of carboxamide/thiophene derivatives drives the study of the structural properties of both 2-thiophenecarboxamides and 2-thiophenecarbamates, in an attempt to elucidate the structure–activity relationships involved in their pharmacological activity (Ribeiro da Silva et al., 2007). Various ligands based on the benzo[b]thiophene molecular framework, in an appropriately substituted form, have demonstrated moderate to strong binding affinity for the oestrogen receptor (Jones et al., 1984; Pinney & Katzenellenbogen, 1991; Pinney et al., 1991; Palkowitz et al., 1997). In view of the clinical applications of these classes of compounds, single-crystal structure determinations have been performed on a series of biologically active thiophene-3-carboxamide derivatives (Vasu et al., 2003, 2004a,b, 2005, 2008). In the majority of these structures, the invariant molecular skeleton comprises the N-phenyl-2-{[(1E)-phenylmethylene]amino}-4,5,6,7-tetrahydro-1-benzothiophene-3-carboxamide unit. This molecular skeleton is divided into three parts, namely the cyclohexene fused thiophene part, the N-phenyl ring and the benzylideneamine unit. Most of the reported structure determinations involve various substituents on the N-phenyl and benzylideneamine parts. The title compounds contain a methyl group in the meta [for (I)] or ortho [for (II)] position of the N-phenyl ring, and three methoxy groups on the benzylideneamine unit.

Compounds (I) and (II) crystallize in space groups P1 and Pbca, respectively, in both cases with one molecule in the asymmetric unit. For both structures, atoms C24 and C25 of the cyclohexene ring were modelled as disordered, with refined site occupancies of 0.686 (7):0.314 (7) for the two disorder components in (I), and 0.501 (10):0.499 (10) for the two components in (II). All of the disorder components for the cyclohexene ring correspond to a half-chair conformation. The thiophene ring C1–C4/S1 is planar in both structures, with the maximum deviation from the least-squares plane being −0.007 (2) and 0.009 (2) Å for atom C4 in (I) and (II), respectively.

The bond angles C9—C10—C11 in (I) and C6—C7—C8 in (II) are 118.16 (17) and 116.98 (18)°, respectively, which deviate from the ideal value of 120° on account of the electron-releasing inductive effect of the methyl group. Similar variations in bond angles have been observed in 2-[(E)-(4-chlorophenyl)methyleneamino]-N-(X-methylphenyl)-4,5,6,7-tetrahydro-1-benzothiophene-3-carboxamide, where X = 2 or 3 (Vasu et al., 2004a), and in 2-{[(E)-(4-methoxyphenyl)methylene]amino}-N-(3-methylphenyl)-4,5,6,7-tetrahydro-1-benzothiophene-3-carboxamide and N-(4-methylphenyl)-2-{[(E)-(4-methylphenyl)methylene]amino}-4,5,6,7-tetrahydro-1-benzothiophene-3-carboxamide (Vasu et al., 2004b). Similarly, the bond angles C4—N2—C13 (around the imine N atom) and C5—N1—C6 (around the amide N atom) are 119.94 (13) and 127.79 (14)°, respectively, in (I), and 121.83 (14) and 123.96 (13)°, respectively, in (II). This implies delocalization of the lone pair of electrons on N over the thiophene and N-phenyl rings in both compounds. This is further corroborated by the fact that the bond lengths corresponding to the imine and carboxamide groups are significantly different: in (I), the C5—N1, C4—N2 and C13—N2 bond lengths are 1.351 (2), 1.3889 (18) and 1.2770 (19) Å, respectively, while in (II) the corresponding values are 1.355 (2), 1.389 (2) and 1.274 (2) Å. Similar bond lengths have been reported for analogous systems (Vasu et al., 2003, 2004a,b; Kumar et al., 2005). The dihedral angles formed by the meta-toluidine ring in (I) and ortho-toluidine ring in (II) with the plane of the thiophene ring are 11.39 (6) and 48.74 (6)° for (I) and (II), respectively. It is noteworthy that the distortion from planarity is considerably larger for (II) than for (I).

In the 2,3,4-tris-methoxyphenyl group, all bond lengths and angles are comparable with standard literature values [Standard reference?]. The C16—O4, C17—O3 and C21—O2 bond lengths suggest some double-bond character due to resonance delocalization of the O-atom lone pairs with the benzene ring. In both structures, two of the methyl groups lie essentially in the plane of the benzene ring, with the C22—O4—C16—C17 and C21—O2—C18—C17 torsion angles being 174.72 (16) and −175.55 (15)°, respectively, for (I), and 171.42 (19) and −175.88 (16)°, respectively, for (II). The third methyl group lies out of the plane of the benzene ring in both structures, with the C20—O3—C17—C18 torsion angle being −74.3 (2) and 86.6 (2)° in (I) and (II), respectively.

An intramolecular N—H···N hydrogen bond is present in both structures (Table 1; Figs. 1 and 2), in spite of the presence of the carbonyl group. The absence of any intermolecular N—H···OC hydrogen bond is based on the fact that there is restricted rotation about the C13N2 double bond. The observed E configuration places the bulky thiophene and trimethoxyphenyl groups on opposite sides of double bond, thereby placing the lone pair on atom N2 in a suitable orientation for formation of the intramolecular hydrogen bond. The hydrogen bond in (II) is significantly distorted compared with that in (I), on account of the twist of the N-phenyl ring from the plane of the remainder of the molecule. There are no primary intermolecular interactions that obviously dictate the crystal packing in (I) and (II). The structures of both compounds are essentially layered, with the molecular planes lying approximately parallel within the planes of the layers (Figs. 3 and 4). Compound (I) has a significantly higher density than (II) [1.340 cf 1.305 Mg m−3], indicating that the molecular packing in the meta isomer is overall more efficient than in the ortho isomer.

Experimental top

Compounds (I) and (II) were synthesized using a Gewald reaction (Gewald et al., 1966). meta-Cyanotoluidine [for (I)] or ortho-cyanotoluidine [for (II)] (0.04 mol) was refluxed with ethyl methyl ketone in the presence of sulfur at 313–323 K for 1 h. The products were then reacted with trimethoxybenzaldehyde in an equimolar ratio in the presence of ethanol to yield either (I) or (II), in both cases with ca 70% yield. Both compounds were recrystallized by slow evaporation from ethyl acetate to yield yellow needle-shaped crystals.

Refinement top

For both (I) and (II), atoms C24 and C25 of the cyclohexene ring were split into two components, with site-occupancy factors constrained to sum to unity. Atoms C24A and C25A belong to one disorder component, while C24B and C25B belong to the other; the refined site occupancies were 0.686 (7) and 0.314 (7), respectively, for (I), and 0.501 (10) and 0.499 (10), respectively, for (II). In both cases, the six C—C bond distances involving the disordered C atoms were restrained to 1.54 (1) Å. H atoms were placed in geometric positions on all disordered C atoms, with site-occupancy factors constrained to those of the parent C atoms and with Uiso(H) = 1.2Ueq(C). H atoms associated with atoms C23 and C26 were also modelled as disordered, in geometric positions consistent with the two disorder components. All other C-bound H atoms were positioned geometrically and refined as riding, with C—H = 0.93, 0.96 or 0.97 Å, and with Uiso(H) = 1.2 or 1.5Ueq(C). The amine H atoms were placed with N—H = 0.86 Å, and refined as riding with Uiso(H) = 1.2Ueq(N). All methyl groups were allowed to rotate about their local threefold axis.

Computing details top

For both compounds, data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and CAMERON (Watkin et al., 1993); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted, except for that involved in the intramolecular hydrogen bond, which is indicated by dashed lines.
[Figure 2] Fig. 2. The molecular structure of (II), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted, except for that involved in the intramolecular hydrogen bond, which is indicated by dashed lines.
[Figure 3] Fig. 3. A packing diagram for (I), projected approximately onto the (122) plane, depicting the layered-type structure. H atoms have been omitted.
[Figure 4] Fig. 4. A packing diagram for (II), viewed along the b axis, depicting the layered-type structure. H atoms have been omitted.
(I) N-(3-Methylphenyl)-2-{(Z)-[(2,3,4-trimethoxyphenyl)methylidene]amino}-4,5,6,7-tetrahydro-1-benzothiophene-3-carboxamide top
Crystal data top
C26H28N2O4SZ = 2
Mr = 464.57F(000) = 492
Triclinic, P1Dx = 1.340 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.7346 (17) ÅCell parameters from 677 reflections
b = 10.187 (2) Åθ = 1.4–26.4°
c = 14.253 (3) ŵ = 0.18 mm1
α = 70.790 (3)°T = 290 K
β = 76.059 (3)°Needle, yellow
γ = 78.143 (4)°0.32 × 0.12 × 0.11 mm
V = 1151.3 (4) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
4468 independent reflections
Radiation source: fine-focus sealed tube3431 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ϕ and ω scansθmax = 26.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.950, Tmax = 0.981k = 1212
9094 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0636P)2]
where P = (Fo2 + 2Fc2)/3
4468 reflections(Δ/σ)max = 0.001
321 parametersΔρmax = 0.18 e Å3
6 restraintsΔρmin = 0.20 e Å3
Crystal data top
C26H28N2O4Sγ = 78.143 (4)°
Mr = 464.57V = 1151.3 (4) Å3
Triclinic, P1Z = 2
a = 8.7346 (17) ÅMo Kα radiation
b = 10.187 (2) ŵ = 0.18 mm1
c = 14.253 (3) ÅT = 290 K
α = 70.790 (3)°0.32 × 0.12 × 0.11 mm
β = 76.059 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4468 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3431 reflections with I > 2σ(I)
Tmin = 0.950, Tmax = 0.981Rint = 0.034
9094 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0416 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 1.02Δρmax = 0.18 e Å3
4468 reflectionsΔρmin = 0.20 e Å3
321 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.09791 (5)0.51543 (5)1.12681 (3)0.05396 (17)
O10.37599 (16)0.04015 (13)1.24642 (9)0.0678 (4)
O20.40505 (16)0.87101 (13)0.59515 (9)0.0585 (4)
O30.62516 (15)0.68414 (14)0.52484 (9)0.0592 (4)
O40.70244 (15)0.42993 (13)0.64023 (8)0.0570 (3)
N10.49608 (15)0.14808 (13)1.08861 (10)0.0408 (3)
H10.49390.22661.04130.049*
N20.34346 (15)0.41569 (13)0.99614 (9)0.0381 (3)
C10.0561 (2)0.40817 (18)1.24863 (12)0.0457 (4)
C20.15290 (18)0.28338 (17)1.26339 (11)0.0395 (4)
C30.26671 (18)0.27286 (16)1.17358 (11)0.0362 (4)
C40.25236 (18)0.39208 (16)1.09304 (11)0.0381 (4)
C50.38372 (19)0.14322 (17)1.17302 (12)0.0395 (4)
C60.61650 (18)0.03984 (16)1.06873 (12)0.0372 (4)
C70.6310 (2)0.09580 (17)1.13464 (13)0.0464 (4)
H70.56120.11921.19630.056*
C80.7512 (2)0.19489 (18)1.10652 (15)0.0555 (5)
H80.76130.28581.15000.067*
C90.8558 (2)0.16263 (19)1.01625 (15)0.0541 (5)
H90.93510.23170.99920.065*
C100.84419 (19)0.02838 (19)0.95049 (13)0.0471 (4)
C110.72418 (18)0.07171 (18)0.97841 (12)0.0437 (4)
H110.71590.16290.93520.052*
C120.9593 (2)0.0052 (2)0.85165 (15)0.0662 (6)
H12A0.91370.00410.79960.099*
H12B1.05650.05840.85760.099*
H12C0.98120.09980.83450.099*
C130.31639 (19)0.53219 (17)0.92877 (12)0.0426 (4)
H130.23690.59940.94830.051*
C140.39902 (19)0.56843 (17)0.82464 (11)0.0390 (4)
C150.51463 (19)0.47337 (17)0.78672 (11)0.0413 (4)
H150.54220.38390.82850.050*
C160.5887 (2)0.51310 (18)0.68580 (12)0.0427 (4)
C170.5458 (2)0.64670 (18)0.62312 (11)0.0436 (4)
C180.4332 (2)0.74232 (17)0.66224 (12)0.0442 (4)
C190.3583 (2)0.70253 (17)0.76255 (12)0.0444 (4)
H190.28070.76550.78850.053*
C200.5353 (3)0.6985 (3)0.45040 (14)0.0894 (8)
H20A0.47530.62120.47150.134*
H20B0.60610.69900.38730.134*
H20C0.46370.78490.44210.134*
C210.3006 (3)0.97604 (19)0.63161 (15)0.0660 (6)
H21A0.19710.94680.65870.099*
H21B0.29291.06160.57720.099*
H21C0.34050.99140.68370.099*
C220.7609 (2)0.2980 (2)0.70104 (14)0.0646 (6)
H22A0.79620.31000.75610.097*
H22B0.84850.25460.66120.097*
H22C0.67770.23960.72730.097*
C230.1366 (2)0.17597 (19)1.36597 (11)0.0488 (4)
H23A0.22870.16791.39530.059*0.686 (7)
H23B0.13340.08541.35840.059*0.686 (7)
H23C0.24190.13581.38100.059*0.314 (7)
H23D0.08550.10091.36430.059*0.314 (7)
C24A0.0146 (5)0.2168 (5)1.4383 (4)0.0578 (12)0.686 (7)
H24A0.10670.19531.42220.069*0.686 (7)
H24B0.00670.16131.50730.069*0.686 (7)
C25A0.0378 (5)0.3710 (4)1.4307 (2)0.0594 (11)0.686 (7)
H25A0.12670.39141.48200.071*0.686 (7)
H25B0.05700.39501.44160.071*0.686 (7)
C24B0.0432 (10)0.2384 (13)1.4515 (7)0.061 (3)0.314 (7)
H24C0.01750.16371.51340.073*0.314 (7)
H24D0.10690.29651.46380.073*0.314 (7)
C25B0.1091 (9)0.3264 (10)1.4190 (5)0.064 (3)0.314 (7)
H25C0.17580.35751.47490.077*0.314 (7)
H25D0.16750.26961.40120.077*0.314 (7)
C260.0702 (2)0.4565 (2)1.32661 (13)0.0585 (5)
H26A0.17410.44521.31970.070*0.686 (7)
H26B0.06890.55511.31700.070*0.686 (7)
H26C0.16530.50141.29880.070*0.314 (7)
H26D0.03280.52401.34750.070*0.314 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0572 (3)0.0502 (3)0.0350 (3)0.0146 (2)0.0018 (2)0.0076 (2)
O10.0810 (9)0.0466 (7)0.0433 (8)0.0103 (7)0.0091 (7)0.0033 (6)
O20.0766 (9)0.0434 (7)0.0397 (7)0.0044 (6)0.0079 (6)0.0042 (6)
O30.0692 (8)0.0663 (9)0.0292 (6)0.0155 (7)0.0008 (6)0.0005 (6)
O40.0676 (8)0.0544 (8)0.0330 (6)0.0012 (6)0.0090 (6)0.0106 (6)
N10.0429 (8)0.0347 (7)0.0345 (7)0.0010 (6)0.0017 (6)0.0043 (6)
N20.0424 (7)0.0386 (7)0.0273 (7)0.0017 (6)0.0007 (6)0.0085 (6)
C10.0448 (9)0.0527 (10)0.0312 (9)0.0014 (8)0.0026 (7)0.0117 (8)
C20.0391 (9)0.0466 (10)0.0297 (8)0.0067 (7)0.0007 (7)0.0109 (7)
C30.0381 (8)0.0387 (9)0.0293 (8)0.0048 (7)0.0036 (7)0.0089 (7)
C40.0408 (9)0.0389 (9)0.0288 (8)0.0006 (7)0.0013 (7)0.0091 (7)
C50.0434 (9)0.0387 (9)0.0308 (8)0.0028 (7)0.0050 (7)0.0059 (7)
C60.0359 (8)0.0384 (9)0.0389 (9)0.0013 (7)0.0099 (7)0.0135 (7)
C70.0454 (9)0.0394 (9)0.0493 (10)0.0027 (7)0.0071 (8)0.0094 (8)
C80.0570 (11)0.0374 (10)0.0657 (13)0.0053 (8)0.0159 (10)0.0109 (9)
C90.0491 (10)0.0494 (11)0.0635 (13)0.0128 (8)0.0152 (9)0.0246 (10)
C100.0385 (9)0.0573 (11)0.0462 (10)0.0049 (8)0.0108 (8)0.0212 (9)
C110.0410 (9)0.0446 (10)0.0411 (9)0.0026 (7)0.0089 (8)0.0111 (8)
C120.0501 (11)0.0834 (15)0.0554 (12)0.0143 (10)0.0041 (9)0.0259 (11)
C130.0463 (9)0.0392 (9)0.0340 (9)0.0030 (7)0.0018 (7)0.0093 (7)
C140.0436 (9)0.0390 (9)0.0304 (8)0.0067 (7)0.0038 (7)0.0065 (7)
C150.0501 (10)0.0371 (9)0.0298 (8)0.0061 (7)0.0034 (7)0.0035 (7)
C160.0456 (9)0.0450 (10)0.0342 (9)0.0093 (8)0.0005 (7)0.0111 (8)
C170.0508 (10)0.0487 (10)0.0262 (8)0.0153 (8)0.0007 (7)0.0037 (7)
C180.0524 (10)0.0400 (9)0.0344 (9)0.0104 (8)0.0100 (8)0.0003 (7)
C190.0505 (10)0.0386 (9)0.0375 (9)0.0020 (8)0.0067 (8)0.0061 (8)
C200.132 (2)0.109 (2)0.0365 (11)0.0496 (17)0.0137 (13)0.0139 (12)
C210.0903 (15)0.0417 (11)0.0564 (12)0.0005 (10)0.0216 (11)0.0011 (9)
C220.0756 (14)0.0552 (12)0.0459 (11)0.0066 (10)0.0072 (10)0.0149 (10)
C230.0518 (10)0.0553 (11)0.0300 (9)0.0089 (8)0.0017 (8)0.0062 (8)
C24A0.056 (3)0.073 (2)0.0343 (19)0.015 (2)0.0065 (19)0.0096 (16)
C25A0.054 (2)0.084 (3)0.0356 (16)0.0101 (18)0.0113 (15)0.0249 (16)
C24B0.049 (5)0.089 (7)0.035 (4)0.006 (5)0.002 (4)0.012 (4)
C25B0.043 (4)0.102 (7)0.037 (4)0.003 (4)0.000 (3)0.016 (4)
C260.0521 (11)0.0696 (13)0.0432 (10)0.0034 (9)0.0076 (9)0.0214 (10)
Geometric parameters (Å, º) top
S1—C11.7182 (17)C15—C161.388 (2)
S1—C41.7376 (16)C15—H150.9300
O1—C51.2141 (18)C16—C171.394 (2)
O2—C181.3600 (19)C17—C181.388 (2)
O2—C211.408 (2)C18—C191.383 (2)
O3—C171.3700 (18)C19—H190.9300
O3—C201.420 (2)C20—H20A0.9600
O4—C161.354 (2)C20—H20B0.9600
O4—C221.408 (2)C20—H20C0.9600
N1—C51.351 (2)C21—H21A0.9600
N1—C61.4099 (19)C21—H21B0.9600
N1—H10.8600C21—H21C0.9600
N2—C131.2770 (19)C22—H22A0.9600
N2—C41.3889 (18)C22—H22B0.9600
C1—C21.358 (2)C22—H22C0.9600
C1—C261.497 (2)C23—C24B1.541 (8)
C2—C31.439 (2)C23—C24A1.543 (4)
C2—C231.505 (2)C23—H23A0.9699
C3—C41.378 (2)C23—H23B0.9700
C3—C51.496 (2)C23—H23C0.9700
C6—C111.384 (2)C23—H23D0.9700
C6—C71.393 (2)C24A—C25A1.513 (5)
C7—C81.382 (2)C24A—H24A0.9700
C7—H70.9300C24A—H24B0.9700
C8—C91.370 (2)C25A—C261.513 (4)
C8—H80.9300C25A—H25A0.9700
C9—C101.380 (2)C25A—H25B0.9700
C9—H90.9300C24B—C25B1.523 (8)
C10—C111.387 (2)C24B—H24C0.9700
C10—C121.501 (3)C24B—H24D0.9700
C11—H110.9300C25B—C261.558 (7)
C12—H12A0.9600C25B—H25C0.9700
C12—H12B0.9600C25B—H25D0.9700
C12—H12C0.9600C26—H26A0.9700
C13—C141.447 (2)C26—H26B0.9700
C13—H130.9300C26—H26C0.9700
C14—C151.389 (2)C26—H26D0.9700
C14—C191.390 (2)
C1—S1—C491.96 (8)O3—C20—H20A109.5
C18—O2—C21117.93 (14)O3—C20—H20B109.5
C17—O3—C20115.75 (15)H20A—C20—H20B109.5
C16—O4—C22117.93 (13)O3—C20—H20C109.5
C5—N1—C6127.79 (14)H20A—C20—H20C109.5
C5—N1—H1116.1H20B—C20—H20C109.5
C6—N1—H1116.1O2—C21—H21A109.5
C13—N2—C4119.94 (13)O2—C21—H21B109.5
C2—C1—C26126.59 (16)H21A—C21—H21B109.5
C2—C1—S1112.29 (12)O2—C21—H21C109.5
C26—C1—S1121.08 (13)H21A—C21—H21C109.5
C1—C2—C3112.47 (14)H21B—C21—H21C109.5
C1—C2—C23120.23 (15)O4—C22—H22A109.5
C3—C2—C23127.29 (15)O4—C22—H22B109.5
C4—C3—C2112.49 (14)H22A—C22—H22B109.5
C4—C3—C5126.32 (14)O4—C22—H22C109.5
C2—C3—C5121.19 (14)H22A—C22—H22C109.5
C3—C4—N2126.91 (14)H22B—C22—H22C109.5
C3—C4—S1110.80 (11)C2—C23—C24B113.0 (5)
N2—C4—S1122.28 (11)C2—C23—C24A111.6 (2)
O1—C5—N1122.85 (15)C2—C23—H23A109.5
O1—C5—C3120.19 (14)C24A—C23—H23A108.7
N1—C5—C3116.96 (14)C2—C23—H23B109.1
C11—C6—C7119.14 (15)C24A—C23—H23B109.9
C11—C6—N1117.46 (14)H23A—C23—H23B108.0
C7—C6—N1123.40 (15)C2—C23—H23C109.1
C8—C7—C6118.65 (16)C24B—C23—H23C107.6
C8—C7—H7120.7C2—C23—H23D108.9
C6—C7—H7120.7C24B—C23—H23D110.3
C9—C8—C7121.70 (17)H23A—C23—H23D127.9
C9—C8—H8119.2H23C—C23—H23D107.9
C7—C8—H8119.2C25A—C24A—C23111.8 (3)
C8—C9—C10120.43 (16)C25A—C24A—H24A109.3
C8—C9—H9119.8C23—C24A—H24A109.3
C10—C9—H9119.8C25A—C24A—H24B109.3
C9—C10—C11118.16 (17)C23—C24A—H24B109.3
C9—C10—C12119.82 (17)H24A—C24A—H24B107.9
C11—C10—C12122.01 (17)C26—C25A—C24A108.9 (4)
C6—C11—C10121.91 (16)C26—C25A—H25A109.9
C6—C11—H11119.0C24A—C25A—H25A109.9
C10—C11—H11119.0C26—C25A—H25B109.9
C10—C12—H12A109.5C24A—C25A—H25B109.9
C10—C12—H12B109.5H25A—C25A—H25B108.3
H12A—C12—H12B109.5C25B—C24B—C23108.1 (7)
C10—C12—H12C109.5C25B—C24B—H24C110.1
H12A—C12—H12C109.5C23—C24B—H24C110.1
H12B—C12—H12C109.5C25B—C24B—H24D110.1
N2—C13—C14125.47 (15)C23—C24B—H24D110.1
N2—C13—H13117.3H24C—C24B—H24D108.4
C14—C13—H13117.3C24B—C25B—C26110.7 (8)
C15—C14—C19120.48 (14)C24B—C25B—H25C109.5
C15—C14—C13121.80 (14)C26—C25B—H25C109.5
C19—C14—C13117.73 (15)C24B—C25B—H25D109.5
C16—C15—C14119.38 (15)C26—C25B—H25D109.5
C16—C15—H15120.3H25C—C25B—H25D108.1
C14—C15—H15120.3C1—C26—C25A108.99 (18)
O4—C16—C15124.81 (15)C1—C26—C25B108.5 (3)
O4—C16—C17115.05 (14)C1—C26—H26A109.9
C15—C16—C17120.13 (16)C25A—C26—H26A110.2
O3—C17—C18121.14 (15)C1—C26—H26B109.6
O3—C17—C16118.59 (15)C25A—C26—H26B109.7
C18—C17—C16120.10 (14)H26A—C26—H26B108.4
O2—C18—C19125.17 (16)C1—C26—H26C110.1
O2—C18—C17115.04 (15)C25B—C26—H26C109.8
C19—C18—C17119.79 (15)C1—C26—H26D109.9
C18—C19—C14120.06 (16)C25B—C26—H26D110.1
C18—C19—H19120.0H26C—C26—H26D108.4
C14—C19—H19120.0
C4—S1—C1—C20.82 (14)C19—C14—C15—C160.5 (2)
C4—S1—C1—C26176.92 (15)C13—C14—C15—C16179.13 (15)
C26—C1—C2—C3177.15 (16)C22—O4—C16—C156.1 (3)
S1—C1—C2—C30.44 (19)C22—O4—C16—C17174.72 (16)
C26—C1—C2—C231.4 (3)C14—C15—C16—O4179.86 (15)
S1—C1—C2—C23178.94 (12)C14—C15—C16—C170.7 (2)
C1—C2—C3—C40.3 (2)C20—O3—C17—C1874.3 (2)
C23—C2—C3—C4178.04 (15)C20—O3—C17—C16110.4 (2)
C1—C2—C3—C5179.36 (14)O4—C16—C17—O33.0 (2)
C23—C2—C3—C52.3 (2)C15—C16—C17—O3177.76 (14)
C2—C3—C4—N2179.98 (14)O4—C16—C17—C18178.36 (14)
C5—C3—C4—N20.3 (3)C15—C16—C17—C182.4 (3)
C2—C3—C4—S10.92 (18)C21—O2—C18—C195.1 (3)
C5—C3—C4—S1178.75 (12)C21—O2—C18—C17175.55 (15)
C13—N2—C4—C3179.96 (16)O3—C17—C18—O22.4 (2)
C13—N2—C4—S11.1 (2)C16—C17—C18—O2177.65 (15)
C1—S1—C4—C30.99 (13)O3—C17—C18—C19178.19 (15)
C1—S1—C4—N2179.90 (14)C16—C17—C18—C192.9 (3)
C6—N1—C5—O12.0 (3)O2—C18—C19—C14178.86 (15)
C6—N1—C5—C3178.52 (13)C17—C18—C19—C141.8 (3)
C4—C3—C5—O1173.70 (16)C15—C14—C19—C180.1 (2)
C2—C3—C5—O15.9 (2)C13—C14—C19—C18179.70 (15)
C4—C3—C5—N16.8 (2)C1—C2—C23—C24B17.4 (5)
C2—C3—C5—N1173.54 (14)C3—C2—C23—C24B160.9 (4)
C5—N1—C6—C11176.58 (14)C1—C2—C23—C24A10.0 (3)
C5—N1—C6—C73.8 (2)C3—C2—C23—C24A171.7 (2)
C11—C6—C7—C81.2 (2)C2—C23—C24A—C25A43.2 (5)
N1—C6—C7—C8178.38 (14)C23—C24A—C25A—C2665.8 (6)
C6—C7—C8—C90.3 (3)C2—C23—C24B—C25B48.5 (11)
C7—C8—C9—C100.4 (3)C23—C24B—C25B—C2666.0 (13)
C8—C9—C10—C110.1 (3)C2—C1—C26—C25A19.8 (3)
C8—C9—C10—C12179.75 (17)S1—C1—C26—C25A157.6 (2)
C7—C6—C11—C101.5 (2)C2—C1—C26—C25B16.8 (5)
N1—C6—C11—C10178.13 (14)S1—C1—C26—C25B165.8 (4)
C9—C10—C11—C60.8 (2)C24A—C25A—C26—C151.2 (4)
C12—C10—C11—C6178.82 (15)C24A—C25A—C26—C25B44.1 (5)
C4—N2—C13—C14178.07 (15)C24B—C25B—C26—C148.8 (9)
N2—C13—C14—C152.9 (3)C24B—C25B—C26—C25A48.1 (7)
N2—C13—C14—C19177.44 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N20.862.102.8169 (18)141
(II) N-(2-Methylphenyl)-2-{(Z)-[(2,3,4-trimethoxyphenyl)methylidene]amino}-4,5,6,7-tetrahydro-1-benzothiophene-3-carboxamide top
Crystal data top
C26H28N2O4SF(000) = 1968
Mr = 464.56Dx = 1.305 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 953 reflections
a = 13.437 (5) Åθ = 1.6–25.4°
b = 12.993 (5) ŵ = 0.17 mm1
c = 27.088 (10) ÅT = 290 K
V = 4729 (3) Å3Plate, yellow
Z = 80.20 × 0.10 × 0.02 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
4639 independent reflections
Radiation source: fine-focus sealed tube3186 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.105
ϕ and ω scansθmax = 26.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1616
Tmin = 0.991, Tmax = 0.997k = 1616
34929 measured reflectionsl = 3333
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H-atom parameters constrained
S = 0.94 w = 1/[σ2(Fo2) + (0.0779P)2]
where P = (Fo2 + 2Fc2)/3
4639 reflections(Δ/σ)max = 0.001
321 parametersΔρmax = 0.25 e Å3
6 restraintsΔρmin = 0.21 e Å3
Crystal data top
C26H28N2O4SV = 4729 (3) Å3
Mr = 464.56Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 13.437 (5) ŵ = 0.17 mm1
b = 12.993 (5) ÅT = 290 K
c = 27.088 (10) Å0.20 × 0.10 × 0.02 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
4639 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3186 reflections with I > 2σ(I)
Tmin = 0.991, Tmax = 0.997Rint = 0.105
34929 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0456 restraints
wR(F2) = 0.123H-atom parameters constrained
S = 0.94Δρmax = 0.25 e Å3
4639 reflectionsΔρmin = 0.21 e Å3
321 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.14272 (4)0.00513 (3)1.074313 (16)0.05282 (16)
O10.12602 (12)0.33596 (10)0.99466 (5)0.0741 (4)
O20.16017 (11)0.39749 (9)0.87262 (5)0.0648 (4)
O30.17610 (11)0.28899 (10)0.78908 (5)0.0665 (4)
O40.14553 (12)0.08710 (10)0.78690 (5)0.0736 (4)
N10.05707 (11)0.21285 (10)0.94742 (5)0.0494 (4)
H10.03610.15030.94680.059*
N20.11737 (10)0.01441 (10)0.97348 (5)0.0425 (3)
C10.14862 (13)0.10822 (14)1.10742 (6)0.0506 (4)
C20.13757 (12)0.19242 (13)1.07856 (6)0.0443 (4)
C30.12155 (12)0.16633 (12)1.02753 (6)0.0406 (4)
C40.12432 (11)0.06153 (12)1.01937 (6)0.0411 (4)
C50.10361 (12)0.24629 (12)0.98878 (6)0.0446 (4)
C60.04076 (13)0.27504 (12)0.90481 (6)0.0452 (4)
C70.03079 (14)0.35203 (13)0.90469 (7)0.0523 (4)
C80.04259 (18)0.40738 (15)0.86111 (8)0.0711 (6)
H80.08950.46000.86000.085*
C90.0127 (2)0.38679 (19)0.81985 (8)0.0838 (7)
H90.00270.42470.79110.101*
C100.0828 (2)0.3103 (2)0.82086 (8)0.0823 (7)
H100.12090.29630.79300.099*
C110.09637 (15)0.25484 (16)0.86316 (7)0.0626 (5)
H110.14380.20270.86390.075*
C120.09230 (18)0.37620 (18)0.94946 (9)0.0823 (7)
H12A0.12870.31600.95930.123*
H12B0.13810.43060.94180.123*
H12C0.04950.39740.97590.123*
C130.12594 (12)0.08263 (12)0.96839 (6)0.0453 (4)
H130.13100.12260.99670.054*
C140.12833 (12)0.13450 (12)0.92091 (6)0.0440 (4)
C150.12869 (13)0.08025 (13)0.87659 (6)0.0489 (4)
H150.12080.00910.87660.059*
C160.14085 (14)0.13244 (14)0.83260 (6)0.0513 (4)
C170.15145 (13)0.23933 (13)0.83244 (6)0.0498 (4)
C180.14773 (13)0.29353 (13)0.87641 (7)0.0491 (4)
C190.13699 (13)0.24112 (13)0.92072 (6)0.0480 (4)
H190.13560.27730.95030.058*
C200.09857 (19)0.3362 (2)0.76310 (9)0.0974 (8)
H20A0.06640.38580.78400.146*
H20B0.12490.37010.73450.146*
H20C0.05120.28500.75310.146*
C210.15016 (15)0.45680 (14)0.91664 (7)0.0586 (5)
H21A0.20070.43690.93980.088*
H21B0.15730.52850.90890.088*
H21C0.08570.44490.93080.088*
C220.1492 (2)0.01910 (18)0.78447 (8)0.0942 (9)
H22A0.08970.04740.79870.141*
H22B0.15430.04020.75060.141*
H22C0.20600.04350.80240.141*
C230.14303 (15)0.29924 (14)1.10008 (7)0.0579 (5)
H23A0.07640.32651.10430.069*0.501 (10)
H23B0.17890.34401.07760.069*0.501 (10)
H23C0.08720.33931.08800.069*0.499 (10)
H23D0.20380.33241.08910.069*0.499 (10)
C24A0.1968 (7)0.2971 (5)1.1504 (2)0.074 (2)0.501 (10)
H24A0.26710.28411.14520.089*0.501 (10)
H24B0.19020.36371.16620.089*0.501 (10)
C25A0.1542 (8)0.2146 (5)1.1839 (3)0.086 (2)0.501 (10)
H25A0.18730.21771.21570.103*0.501 (10)
H25B0.08390.22781.18920.103*0.501 (10)
C24B0.1398 (7)0.2975 (6)1.15622 (19)0.0722 (19)0.499 (10)
H24C0.16100.36381.16890.087*0.499 (10)
H24D0.07200.28561.16710.087*0.499 (10)
C25B0.2067 (6)0.2140 (4)1.1768 (3)0.071 (2)0.499 (10)
H25C0.20920.21941.21250.085*0.499 (10)
H25D0.27360.22281.16410.085*0.499 (10)
C260.16727 (18)0.10818 (17)1.16209 (7)0.0701 (6)
H26A0.23470.08501.16840.084*0.501 (10)
H26B0.12180.06031.17780.084*0.501 (10)
H26C0.21630.05591.17000.084*0.499 (10)
H26D0.10610.09241.17950.084*0.499 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0641 (3)0.0496 (3)0.0448 (3)0.0031 (2)0.0041 (2)0.00924 (19)
O10.1141 (13)0.0475 (8)0.0606 (9)0.0191 (7)0.0286 (8)0.0074 (6)
O20.0942 (11)0.0411 (7)0.0590 (9)0.0063 (6)0.0090 (7)0.0034 (6)
O30.0791 (10)0.0693 (9)0.0510 (8)0.0074 (7)0.0082 (7)0.0138 (7)
O40.1202 (13)0.0595 (8)0.0411 (8)0.0155 (8)0.0132 (7)0.0031 (6)
N10.0650 (10)0.0374 (7)0.0458 (8)0.0037 (6)0.0135 (7)0.0053 (6)
N20.0442 (8)0.0405 (7)0.0429 (8)0.0015 (6)0.0013 (6)0.0000 (6)
C10.0477 (10)0.0635 (11)0.0404 (10)0.0026 (8)0.0012 (8)0.0028 (8)
C20.0399 (9)0.0525 (10)0.0406 (9)0.0009 (7)0.0017 (7)0.0022 (7)
C30.0393 (9)0.0433 (9)0.0393 (9)0.0007 (7)0.0003 (7)0.0008 (7)
C40.0387 (9)0.0462 (9)0.0384 (9)0.0003 (7)0.0019 (7)0.0019 (7)
C50.0488 (10)0.0405 (9)0.0444 (10)0.0035 (8)0.0036 (7)0.0014 (7)
C60.0519 (10)0.0425 (9)0.0411 (9)0.0056 (7)0.0101 (8)0.0025 (7)
C70.0520 (11)0.0493 (10)0.0556 (11)0.0007 (8)0.0105 (9)0.0071 (8)
C80.0787 (15)0.0615 (12)0.0730 (14)0.0068 (11)0.0267 (12)0.0134 (10)
C90.114 (2)0.0845 (16)0.0529 (13)0.0178 (15)0.0250 (13)0.0245 (11)
C100.0979 (19)0.1030 (18)0.0459 (12)0.0064 (15)0.0030 (12)0.0048 (11)
C110.0684 (13)0.0700 (12)0.0492 (11)0.0058 (10)0.0043 (9)0.0021 (9)
C120.0724 (15)0.0916 (16)0.0828 (16)0.0263 (13)0.0059 (13)0.0062 (13)
C130.0499 (10)0.0428 (9)0.0430 (10)0.0038 (7)0.0027 (7)0.0053 (7)
C140.0446 (10)0.0416 (9)0.0458 (9)0.0044 (7)0.0013 (7)0.0003 (7)
C150.0584 (11)0.0384 (9)0.0501 (10)0.0043 (8)0.0064 (8)0.0013 (7)
C160.0614 (12)0.0511 (10)0.0414 (10)0.0097 (8)0.0085 (8)0.0033 (8)
C170.0548 (11)0.0492 (10)0.0454 (10)0.0047 (8)0.0017 (8)0.0069 (8)
C180.0529 (11)0.0408 (9)0.0536 (11)0.0014 (7)0.0043 (8)0.0015 (8)
C190.0561 (11)0.0424 (9)0.0455 (10)0.0022 (8)0.0066 (8)0.0032 (7)
C200.0954 (19)0.120 (2)0.0770 (16)0.0041 (15)0.0131 (14)0.0419 (15)
C210.0637 (12)0.0428 (10)0.0692 (13)0.0036 (8)0.0026 (9)0.0030 (9)
C220.157 (3)0.0728 (15)0.0530 (13)0.0317 (15)0.0195 (14)0.0193 (11)
C230.0668 (13)0.0595 (12)0.0474 (11)0.0010 (9)0.0067 (9)0.0103 (8)
C24A0.089 (5)0.082 (4)0.050 (3)0.009 (4)0.013 (3)0.014 (2)
C25A0.100 (6)0.110 (5)0.047 (3)0.010 (4)0.004 (4)0.010 (3)
C24B0.075 (4)0.087 (4)0.054 (3)0.004 (4)0.001 (3)0.026 (3)
C25B0.086 (5)0.088 (4)0.039 (3)0.000 (3)0.014 (3)0.009 (3)
C260.0812 (15)0.0904 (16)0.0388 (11)0.0041 (12)0.0020 (9)0.0068 (10)
Geometric parameters (Å, º) top
S1—C11.7259 (19)C15—C161.381 (2)
S1—C41.7397 (17)C15—H150.930
O1—C51.214 (2)C16—C171.396 (3)
O2—C181.365 (2)C17—C181.385 (2)
O2—C211.426 (2)C18—C191.387 (2)
O3—C171.381 (2)C19—H190.930
O3—C201.399 (3)C20—H20A0.960
O4—C161.373 (2)C20—H20B0.960
O4—C221.382 (3)C20—H20C0.960
N1—C51.355 (2)C21—H21A0.960
N1—C61.426 (2)C21—H21B0.960
N1—H10.860C21—H21C0.960
N2—C131.274 (2)C22—H22A0.960
N2—C41.389 (2)C22—H22B0.960
C1—C21.353 (2)C22—H22C0.960
C1—C261.502 (2)C23—C24B1.522 (5)
C2—C31.440 (2)C23—C24A1.543 (6)
C2—C231.507 (2)C23—H23A0.970
C3—C41.380 (2)C23—H23B0.970
C3—C51.496 (2)C23—H23C0.970
C6—C111.378 (2)C23—H23D0.970
C6—C71.387 (2)C24A—C25A1.517 (8)
C7—C81.391 (2)C24A—H24A0.970
C7—C121.501 (3)C24A—H24B0.970
C8—C91.369 (3)C25A—C261.514 (6)
C8—H80.930C25A—H25A0.970
C9—C101.369 (3)C25A—H25B0.970
C9—H90.930C24B—C25B1.514 (7)
C10—C111.366 (3)C24B—H24C0.970
C10—H100.930C24B—H24D0.970
C11—H110.930C25B—C261.526 (6)
C12—H12A0.960C25B—H25C0.970
C12—H12B0.960C25B—H25D0.970
C12—H12C0.960C26—H26A0.970
C13—C141.452 (2)C26—H26B0.970
C13—H130.9300C26—H26C0.970
C14—C191.390 (2)C26—H26D0.970
C14—C151.392 (2)
C1—S1—C491.51 (8)C14—C19—H19120.0
C18—O2—C21117.40 (14)O3—C20—H20A109.5
C17—O3—C20117.02 (16)O3—C20—H20B109.5
C16—O4—C22118.23 (16)H20A—C20—H20B109.5
C5—N1—C6123.96 (13)O3—C20—H20C109.5
C5—N1—H1118.0H20A—C20—H20C109.5
C6—N1—H1118.0H20B—C20—H20C109.5
C13—N2—C4121.83 (14)O2—C21—H21A109.5
C2—C1—C26126.04 (17)O2—C21—H21B109.5
C2—C1—S1112.63 (13)H21A—C21—H21B109.5
C26—C1—S1121.31 (14)O2—C21—H21C109.5
C1—C2—C3112.39 (15)H21A—C21—H21C109.5
C1—C2—C23121.06 (16)H21B—C21—H21C109.5
C3—C2—C23126.55 (15)O4—C22—H22A109.5
C4—C3—C2112.47 (14)O4—C22—H22B109.5
C4—C3—C5125.25 (15)H22A—C22—H22B109.5
C2—C3—C5122.29 (14)O4—C22—H22C109.5
C3—C4—N2125.21 (14)H22A—C22—H22C109.5
C3—C4—S1110.98 (12)H22B—C22—H22C109.5
N2—C4—S1123.77 (12)C2—C23—C24B111.8 (3)
O1—C5—N1122.07 (15)C2—C23—C24A110.4 (3)
O1—C5—C3122.30 (15)C2—C23—H23A109.7
N1—C5—C3115.58 (14)C24A—C23—H23A109.6
C11—C6—C7120.72 (16)C2—C23—H23B109.5
C11—C6—N1118.12 (16)C24A—C23—H23B109.4
C7—C6—N1121.13 (16)H23A—C23—H23B108.3
C6—C7—C8116.98 (18)C2—C23—H23C109.0
C6—C7—C12122.04 (16)C24B—C23—H23C108.9
C8—C7—C12120.97 (18)C2—C23—H23D109.3
C9—C8—C7122.0 (2)C24B—C23—H23D109.8
C9—C8—H8119.0H23C—C23—H23D108.0
C7—C8—H8119.0C25A—C24A—C23111.4 (6)
C8—C9—C10119.9 (2)C25A—C24A—H24A109.3
C8—C9—H9120.0C23—C24A—H24A109.3
C10—C9—H9120.0C25A—C24A—H24B109.3
C11—C10—C9119.4 (2)C23—C24A—H24B109.3
C11—C10—H10120.3H24A—C24A—H24B108.0
C9—C10—H10120.3C26—C25A—C24A111.6 (6)
C10—C11—C6120.9 (2)C26—C25A—H25A109.3
C10—C11—H11119.5C24A—C25A—H25A109.3
C6—C11—H11119.5C26—C25A—H25B109.3
C7—C12—H12A109.5C24A—C25A—H25B109.3
C7—C12—H12B109.5H25A—C25A—H25B108.0
H12A—C12—H12B109.5C25B—C24B—C23111.2 (5)
C7—C12—H12C109.5C25B—C24B—H24C109.4
H12A—C12—H12C109.5C23—C24B—H24C109.4
H12B—C12—H12C109.5C25B—C24B—H24D109.4
N2—C13—C14123.87 (15)C23—C24B—H24D109.4
N2—C13—H13118.1H24C—C24B—H24D108.0
C14—C13—H13118.1C24B—C25B—C26110.1 (6)
C19—C14—C15120.08 (15)C24B—C25B—H25C109.6
C19—C14—C13117.87 (15)C26—C25B—H25C109.6
C15—C14—C13121.92 (15)C24B—C25B—H25D109.6
C16—C15—C14119.73 (16)C26—C25B—H25D109.6
C16—C15—H15120.1H25C—C25B—H25D108.2
C14—C15—H15120.1C1—C26—C25A111.4 (4)
O4—C16—C15124.96 (17)C1—C26—C25B108.3 (3)
O4—C16—C17114.80 (16)C1—C26—H26A109.2
C15—C16—C17120.22 (16)C25A—C26—H26A108.9
O3—C17—C18120.19 (16)C1—C26—H26B109.2
O3—C17—C16119.48 (16)C25A—C26—H26B109.9
C18—C17—C16119.97 (16)H26A—C26—H26B108.2
O2—C18—C17115.73 (16)C1—C26—H26C109.4
O2—C18—C19124.30 (16)C25B—C26—H26C109.7
C17—C18—C19119.89 (16)C1—C26—H26D109.8
C18—C19—C14120.06 (15)C25B—C26—H26D110.9
C18—C19—H19120.0H26C—C26—H26D108.7
C4—S1—C1—C20.16 (14)N2—C13—C14—C154.8 (3)
C4—S1—C1—C26178.47 (16)C19—C14—C15—C162.0 (3)
C26—C1—C2—C3179.42 (17)C13—C14—C15—C16173.65 (16)
S1—C1—C2—C31.21 (19)C22—O4—C16—C157.4 (3)
C26—C1—C2—C230.2 (3)C22—O4—C16—C17171.42 (19)
S1—C1—C2—C23178.41 (14)C14—C15—C16—O4177.88 (17)
C1—C2—C3—C42.0 (2)C14—C15—C16—C170.8 (3)
C23—C2—C3—C4177.63 (16)C20—O3—C17—C1886.6 (2)
C1—C2—C3—C5177.74 (14)C20—O3—C17—C16100.2 (2)
C23—C2—C3—C52.7 (3)O4—C16—C17—O37.0 (2)
C2—C3—C4—N2175.86 (14)C15—C16—C17—O3171.82 (16)
C5—C3—C4—N24.5 (3)O4—C16—C17—C18179.83 (16)
C2—C3—C4—S11.80 (17)C15—C16—C17—C181.3 (3)
C5—C3—C4—S1177.89 (12)C21—O2—C18—C17175.88 (16)
C13—N2—C4—C3176.09 (16)C21—O2—C18—C197.4 (3)
C13—N2—C4—S11.3 (2)O3—C17—C18—O26.1 (2)
C1—S1—C4—C30.96 (13)C16—C17—C18—O2179.15 (16)
C1—S1—C4—N2176.74 (14)O3—C17—C18—C19170.83 (16)
C6—N1—C5—O17.9 (3)C16—C17—C18—C192.3 (3)
C6—N1—C5—C3174.59 (15)O2—C18—C19—C14177.65 (17)
C4—C3—C5—O1161.09 (18)C17—C18—C19—C141.1 (3)
C2—C3—C5—O119.3 (3)C15—C14—C19—C181.1 (3)
C4—C3—C5—N121.4 (2)C13—C14—C19—C18174.76 (16)
C2—C3—C5—N1158.22 (15)C1—C2—C23—C24B12.0 (4)
C5—N1—C6—C11107.9 (2)C3—C2—C23—C24B168.5 (4)
C5—N1—C6—C773.8 (2)C1—C2—C23—C24A19.8 (4)
C11—C6—C7—C80.5 (3)C3—C2—C23—C24A159.8 (4)
N1—C6—C7—C8178.81 (16)C2—C23—C24A—C25A49.7 (9)
C11—C6—C7—C12179.77 (18)C23—C24A—C25A—C2661.9 (12)
N1—C6—C7—C121.9 (3)C2—C23—C24B—C25B44.0 (9)
C6—C7—C8—C90.7 (3)C23—C24B—C25B—C2665.7 (11)
C12—C7—C8—C9179.9 (2)C2—C1—C26—C25A10.3 (5)
C7—C8—C9—C100.6 (3)S1—C1—C26—C25A171.7 (4)
C8—C9—C10—C110.4 (4)C2—C1—C26—C25B19.2 (4)
C9—C10—C11—C60.2 (3)S1—C1—C26—C25B158.9 (3)
C7—C6—C11—C100.3 (3)C24A—C25A—C26—C140.1 (10)
N1—C6—C11—C10178.67 (19)C24A—C25A—C26—C25B48.7 (8)
C4—N2—C13—C14174.16 (14)C24B—C25B—C26—C150.3 (8)
N2—C13—C14—C19179.37 (16)C24B—C25B—C26—C25A51.1 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N20.862.202.793 (2)126

Experimental details

(I)(II)
Crystal data
Chemical formulaC26H28N2O4SC26H28N2O4S
Mr464.57464.56
Crystal system, space groupTriclinic, P1Orthorhombic, Pbca
Temperature (K)290290
a, b, c (Å)8.7346 (17), 10.187 (2), 14.253 (3)13.437 (5), 12.993 (5), 27.088 (10)
α, β, γ (°)70.790 (3), 76.059 (3), 78.143 (4)90, 90, 90
V3)1151.3 (4)4729 (3)
Z28
Radiation typeMo KαMo Kα
µ (mm1)0.180.17
Crystal size (mm)0.32 × 0.12 × 0.110.20 × 0.10 × 0.02
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Bruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Multi-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.950, 0.9810.991, 0.997
No. of measured, independent and
observed [I > 2σ(I)] reflections
9094, 4468, 3431 34929, 4639, 3186
Rint0.0340.105
(sin θ/λ)max1)0.6170.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.115, 1.02 0.045, 0.123, 0.94
No. of reflections44684639
No. of parameters321321
No. of restraints66
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.200.25, 0.21

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and CAMERON (Watkin et al., 1993), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N20.862.102.8169 (18)140.7
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N20.862.202.793 (2)126.1
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds