Download citation
Download citation
link to html
In the title compound, C22H18N4O4·2H2O, the hydrazine mol­ecule lies across a twofold rotation axis, the mean planes of the two quinoline ring systems forming a dihedral angle of 64.1 (2)°. The hydrazine mol­ecules and two water mol­ecules are linked into infinite chains by O—H...O, O—H...N and N—H...O hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680705667X/bi2254sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680705667X/bi2254Isup2.hkl
Contains datablock I

CCDC reference: 672903

Key indicators

  • Single-crystal X-ray study
  • T = 295 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.039
  • wR factor = 0.088
  • Data-to-parameter ratio = 12.5

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 0.99
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 1 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

8-Hydroxyquinoline and its derivatives are amongst the most extensively investigated ligands in coordination chemistry (Chen & Shi, 1998). In the course of our studies on 8-hydroxyquinoline derivatives, the title compound was synthesized and its crystal structure determined.

In the crystal, the hydrazine molecule lies across a twofold rotation axis (Fig. 1). The mean planes of the two quinoline rings make a dihedral angle of 64.1 (2)°. The hydrazine molecules and the two water molecules are linked into infinite chains by O—H···O, O—H···N and N—H···O hydrogen bonds (Fig. 2).

Related literature top

For general literature concerning 8-hydroxyquinolines, see: Chen & Shi (1998).

Experimental top

Sodium carbonate (0.01 mol) and 2-(quinolin-8-yloxy)acetyl chloride (0.014 mol) were added to a solution of 2-(quinolin-8-yloxy)acetohydrazide (0.01 mol) in tetrahydrofuran (20 ml) and water (20 ml). The solution was stirred at 313 K for 10 h, then poured into water (100 ml). The precipitated solid was filtered and recrystallized from ethanol (m.p. 368 K). Elemental analysis calculated: C 60.26, H 5.06, N 12.77%; found: C 60.24, H 5.08, N 12.76%. Crystals suitable for single-crystal X-ray analysis were selected directly from the sample after recrystallization.

Refinement top

All H atoms were placed in idealized positions (C—H = 0.93–0.97 Å, O—H = 0.85 Å, N—H = 0.87 Å) and refined as riding atoms. For those bound to C, Uiso(H) = 1.2Ueq(C). while for those bound to O or N, an isotropic displacement parameter was refined.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL (Bruker, 1997.

Figures top
[Figure 1] Fig. 1. The molecular structure with displacement ellipsoids drawn at the 50% probability level for non-H atoms. The dashed lines indicate hydrogen bonds.
[Figure 2] Fig. 2. The structure of the infinite chains formed via hydrogen bonds (dashed lines). H atoms are omitted.
N,N'-Bis[2-(quinolin-8-yloxy)acetoyl]hydrazine dihydrate top
Crystal data top
C22H18N4O4·2H2OF(000) = 920
Mr = 438.44Dx = 1.413 Mg m3
Monoclinic, C2/cMelting point: 368 K
Hall symbol: -c 2ycMo Kα radiation, λ = 0.71073 Å
a = 21.687 (3) ÅCell parameters from 1050 reflections
b = 8.3203 (11) Åθ = 2.7–23.7°
c = 13.8618 (17) ŵ = 0.11 mm1
β = 124.528 (2)°T = 295 K
V = 2060.7 (5) Å3Block, colourless
Z = 40.29 × 0.25 × 0.22 mm
Data collection top
Bruker SMART CCD
diffractometer
1824 independent reflections
Radiation source: fine-focus sealed tube1263 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ϕ and ω scansθmax = 25.1°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2225
Tmin = 0.970, Tmax = 0.988k = 89
5251 measured reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.088 w = 1/[σ2(Fo2) + (0.0279P)2 + 1.2115P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
1824 reflectionsΔρmax = 0.17 e Å3
146 parametersΔρmin = 0.14 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0018 (4)
Crystal data top
C22H18N4O4·2H2OV = 2060.7 (5) Å3
Mr = 438.44Z = 4
Monoclinic, C2/cMo Kα radiation
a = 21.687 (3) ŵ = 0.11 mm1
b = 8.3203 (11) ÅT = 295 K
c = 13.8618 (17) Å0.29 × 0.25 × 0.22 mm
β = 124.528 (2)°
Data collection top
Bruker SMART CCD
diffractometer
1824 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1263 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 0.988Rint = 0.032
5251 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.088H-atom parameters constrained
S = 1.00Δρmax = 0.17 e Å3
1824 reflectionsΔρmin = 0.14 e Å3
146 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.24176 (8)0.20341 (19)0.30918 (12)0.0450 (4)
N20.03903 (8)0.0311 (2)0.28690 (13)0.0485 (4)
H110.06110.08080.25920.058*
O10.18629 (6)0.04914 (16)0.41376 (10)0.0442 (4)
O20.03928 (7)0.1099 (2)0.42604 (12)0.0648 (5)
O30.08291 (7)0.20984 (19)0.16292 (11)0.0654 (5)
H120.13050.21250.20740.098*
H130.07320.18210.09660.098*
C10.26269 (9)0.0511 (2)0.47287 (14)0.0371 (4)
C20.31124 (10)0.0184 (2)0.57907 (15)0.0472 (5)
H20.29280.07050.61700.057*
C30.38840 (11)0.0123 (3)0.63189 (18)0.0605 (6)
H30.42040.06100.70440.073*
C40.41744 (11)0.0627 (3)0.57978 (18)0.0604 (6)
H40.46900.06520.61610.073*
C50.36924 (10)0.1372 (2)0.47012 (16)0.0461 (5)
C60.39571 (12)0.2199 (3)0.41171 (19)0.0596 (6)
H60.44680.22520.44460.071*
C70.34666 (13)0.2913 (3)0.3079 (2)0.0623 (6)
H70.36350.34730.26900.075*
C80.27014 (12)0.2799 (3)0.25997 (18)0.0555 (6)
H80.23710.32980.18840.067*
C90.29094 (9)0.1327 (2)0.41529 (14)0.0385 (4)
C100.15646 (9)0.0393 (2)0.46586 (15)0.0426 (5)
H10A0.17360.00800.54110.051*
H10B0.17490.14880.47950.051*
C110.07242 (10)0.0411 (2)0.39007 (16)0.0439 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0467 (9)0.0482 (10)0.0398 (8)0.0047 (8)0.0243 (8)0.0014 (8)
N20.0291 (8)0.0727 (12)0.0425 (9)0.0036 (8)0.0196 (7)0.0027 (8)
O10.0308 (7)0.0596 (9)0.0409 (7)0.0028 (6)0.0196 (6)0.0066 (6)
O20.0462 (8)0.0922 (12)0.0624 (9)0.0092 (8)0.0346 (8)0.0119 (8)
O30.0474 (8)0.0945 (12)0.0508 (8)0.0049 (8)0.0257 (7)0.0052 (8)
C10.0303 (10)0.0417 (11)0.0372 (9)0.0058 (8)0.0178 (8)0.0070 (8)
C20.0395 (11)0.0552 (13)0.0417 (11)0.0051 (10)0.0198 (9)0.0028 (10)
C30.0385 (12)0.0743 (17)0.0482 (12)0.0027 (11)0.0122 (10)0.0075 (11)
C40.0320 (11)0.0773 (17)0.0592 (13)0.0040 (11)0.0182 (10)0.0008 (12)
C50.0396 (11)0.0490 (13)0.0517 (11)0.0101 (10)0.0271 (10)0.0102 (10)
C60.0516 (13)0.0716 (16)0.0660 (14)0.0215 (12)0.0397 (12)0.0167 (13)
C70.0758 (16)0.0670 (16)0.0645 (14)0.0253 (13)0.0520 (13)0.0134 (12)
C80.0706 (15)0.0541 (14)0.0480 (11)0.0118 (12)0.0373 (11)0.0014 (10)
C90.0377 (10)0.0390 (11)0.0392 (10)0.0060 (8)0.0220 (9)0.0081 (9)
C100.0388 (10)0.0505 (12)0.0402 (10)0.0041 (9)0.0233 (9)0.0007 (9)
C110.0383 (11)0.0537 (13)0.0432 (11)0.0039 (10)0.0253 (9)0.0053 (10)
Geometric parameters (Å, º) top
N1—C81.313 (2)C3—C41.351 (3)
N1—C91.367 (2)C3—H30.930
N2—C111.325 (2)C4—C51.409 (3)
N2—N2i1.396 (3)C4—H40.930
N2—H110.870C5—C61.409 (3)
O1—C11.3704 (19)C5—C91.414 (2)
O1—C101.418 (2)C6—C71.349 (3)
O2—C111.224 (2)C6—H60.930
O3—H120.850C7—C81.398 (3)
O3—H130.850C7—H70.930
C1—C21.361 (2)C8—H80.930
C1—C91.424 (2)C10—C111.502 (2)
C2—C31.396 (3)C10—H10A0.970
C2—H20.930C10—H10B0.970
C8—N1—C9117.26 (16)C7—C6—C5119.74 (19)
C11—N2—N2i119.00 (16)C7—C6—H6120.1
C11—N2—H11126.3C5—C6—H6120.1
N2i—N2—H11114.7C6—C7—C8118.9 (2)
C1—O1—C10116.58 (13)C6—C7—H7120.5
H12—O3—H13104.3C8—C7—H7120.5
C2—C1—O1125.01 (16)N1—C8—C7124.4 (2)
C2—C1—C9119.59 (16)N1—C8—H8117.8
O1—C1—C9115.40 (15)C7—C8—H8117.8
C1—C2—C3120.95 (18)N1—C9—C5122.26 (16)
C1—C2—H2119.5N1—C9—C1119.16 (15)
C3—C2—H2119.5C5—C9—C1118.58 (16)
C4—C3—C2121.31 (19)O1—C10—C11111.84 (14)
C4—C3—H3119.3O1—C10—H10A109.2
C2—C3—H3119.3C11—C10—H10A109.2
C3—C4—C5119.64 (18)O1—C10—H10B109.2
C3—C4—H4120.2C11—C10—H10B109.2
C5—C4—H4120.2H10A—C10—H10B107.9
C6—C5—C4122.68 (18)O2—C11—N2124.29 (17)
C6—C5—C9117.40 (18)O2—C11—C10118.66 (17)
C4—C5—C9119.92 (17)N2—C11—C10117.04 (16)
C10—O1—C1—C23.3 (3)C8—N1—C9—C1178.83 (17)
C10—O1—C1—C9176.44 (15)C6—C5—C9—N10.7 (3)
O1—C1—C2—C3178.99 (18)C4—C5—C9—N1179.78 (18)
C9—C1—C2—C30.8 (3)C6—C5—C9—C1179.47 (18)
C1—C2—C3—C40.2 (3)C4—C5—C9—C10.4 (3)
C2—C3—C4—C50.2 (3)C2—C1—C9—N1179.35 (17)
C3—C4—C5—C6178.9 (2)O1—C1—C9—N10.9 (2)
C3—C4—C5—C90.1 (3)C2—C1—C9—C50.9 (3)
C4—C5—C6—C7178.7 (2)O1—C1—C9—C5178.91 (16)
C9—C5—C6—C70.3 (3)C1—O1—C10—C11176.56 (15)
C5—C6—C7—C80.7 (3)N2i—N2—C11—O20.4 (3)
C9—N1—C8—C71.0 (3)N2i—N2—C11—C10179.43 (14)
C6—C7—C8—N10.0 (3)O1—C10—C11—O2178.11 (18)
C8—N1—C9—C51.4 (3)O1—C10—C11—N22.8 (2)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H13···O2ii0.852.132.9745 (19)175
O3—H12···N10.851.992.840 (1)176
N2—H11···O30.871.972.815 (2)164
Symmetry code: (ii) x, y, z1/2.

Experimental details

Crystal data
Chemical formulaC22H18N4O4·2H2O
Mr438.44
Crystal system, space groupMonoclinic, C2/c
Temperature (K)295
a, b, c (Å)21.687 (3), 8.3203 (11), 13.8618 (17)
β (°) 124.528 (2)
V3)2060.7 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.29 × 0.25 × 0.22
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.970, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
5251, 1824, 1263
Rint0.032
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.088, 1.00
No. of reflections1824
No. of parameters146
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.14

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1997), SHELXTL (Bruker, 1997.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H13···O2i0.852.132.9745 (19)175.2
O3—H12···N10.851.992.840 (1)176.2
N2—H11···O30.871.972.815 (2)164.4
Symmetry code: (i) x, y, z1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds