Download citation
Download citation
link to html
The asymmetric unit of the title complex, aqua­[1-cyclo­propyl-7-(4-ethyl­piperazin-1-yl)-6-fluoro-4-oxo-1,4-dihydro­quinol­ine-3-carboxyl­ato](1,10-phenanthroline)copper(II) nitrate dihydrate, [Cu(C19H21FN3O3)(C12H8N2)(H2O)]NO3·2H2O, contains one [Cu(erx)(phen)(H2O)]+ cation, one NO3- anion and two solvent water mol­ecules (erx is enrofloxacin and phen is 1,10-phenanthroline). The CuII ion adopts a slightly distorted square-pyramidal geometry, coordinated by two O atoms of the erx ligand and two N atoms of the phen ligand in the basal plane, and by a water mol­ecule in the apical position. The CuII ion deviates from the basal plane by 0.1439 (7) Å. The piperazine ring belonging to erx has a slightly twisted chair conformation. Coordinated and uncoordinated water mol­ecules participate in a hydrogen-bonding network including both cations and anions, to produce a three-dimensional supra­molecular structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807057649/bh2143sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807057649/bh2143Isup2.hkl
Contains datablock I

CCDC reference: 672667

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.008 Å
  • R factor = 0.061
  • wR factor = 0.129
  • Data-to-parameter ratio = 13.2

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for C24 PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors for N01 PLAT341_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 8 PLAT417_ALERT_2_C Short Inter D-H..H-D H2D .. H3D .. 2.12 Ang. PLAT720_ALERT_4_C Number of Unusual/Non-Standard Label(s) ........ 4
Alert level G PLAT794_ALERT_5_G Check Predicted Bond Valency for Cu1 (2) 2.17
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 5 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

The quinolones complexation with metal ions is known to enhance biological activities of the quinolone antibiotics, probably because of the higher liposolubility leading to greater intracellular accumulation (Mendoza-Díaz & Ireta-Moreno, 1994). The study of mixed-ligands coordination compounds with enrofloxacin is thus relevant, in order to improve the activity of this antibiotic used in veterinary medicine. Several fluoroquinolones-metal complexes have been isolated and their crystal structures reported (Mendoza-Díaz et al., 1987; Wallis et al., 1996; Turel et al., 1997), most of them with ciprofloxacin. As part of our studies on different bioactive antibiotics, the title compound, (I), is a mixed-ligands metal complex, which, besides enrofloxacin (erx), includes the N,N'-bidentate ligand 1,10-phenanthroline (phen). It could contribute to the development of a new type of drug with biological activity.

The asymmetric unit of (I) consists of one [Cu(erx)(phen)(H2O)]+ cation, one NO3- anion and two lattice water molecules (Fig. 1). The CuII ion is coordinated by two enrofloxacin O atoms and two N atoms of 1,10 phenanthroline in the basal plane, and by a H2O molecule in the axial position. It adopts a slightly distorted square-pyramidal geometry [trigonality index (Addison et al., 1984): τ = 0.02] with an O1—Cu—O2 angle of 92.94 (14)° and a N1—Cu—N2 angle of 82.08 (17)°. The CuII ion deviates from the basal plane by 0.1439 (7) Å. The apical site is occupied by a water molecule, with a bond length Cu1—O1w of 2.253 (4) Å and an angle of 89.69 (12)° with the best plane of four atoms at the base of the pyramid. The uncoordinated carboxylate atom O3 [Cu1···O3 = 4.020 (4) Å] lies above the basal plane of the pyramid. The trans atom system of the basal plane gives angles O1—Cu—N1 = 169.36 (16)° and O2—Cu—N2 = 170.46 (16)°.

An arrangement similar to that of (I) has been observed in [Cu(erx)(phen)Cl] (Efthimiadou et al., 2006), where the enrofloxacin and the phenanthroline occupy the four positions in the basal plane, while the apical position is occupied by a Cl- ion. Metal-to-ligand distances in (I) are also similar to those found in related compounds with cinoxacin [1-ethyl-1,4-dihydro-4-oxo-1,3-dioxolo[4,5g]cinnoline-3-carboxylic acid, cnx], namely [Cu(phen)(cnx)(H2O)]NO3.2H2O (Mendoza-Díaz et al., 1987), or ciprofloxacin [1-cyclopropyl-6-fluoro-1,4-dihydro-4-oxo-7-(1-piperazinyl)-3-quinoline carboxylic acid, cf.H] (Saha et al., 2005; Drevenšek et al., 2003) all of them presenting small trigonality indexes.

The crystal structure of (I) is dominated by layered structures. All units are connected via O—H···O hydrogen bonds (Table 1), forming an infinite one-dimensional chain along [001]. Additionally, complex cations are also connected through weak ππ interactions, completing the three-dimensional supramolecular arrangement.

Related literature top

A similar arrangement to that of (I) has been observed in [Cu(erx)(phen)Cl] (Efthimiadou et al., 2006), where erx and phen occupy the four positions in the basal plane, while the Cl atom is in the axial position. Metal-to-ligand distances are also similar to those found in related compounds with cinoxacin (Mendoza-Díaz et al., 1987) and ciprofloxacin (Saha et al., 2005; Drevenšek et al., 2003). A trigonality index may by computed for CuII (Addison et al., 1984). Quinolone–metal complexes have been studied in relation to their biological activity and structural properties (Mendoza-Díaz & Ireta-Moreno, 1994; Turel et al., 1997; Wallis et al., 1996).

Experimental top

Enrofloxacin (360 mg, 1 mmol) was dissolved in CH3CN—H2O (3:2, 15 ml) and NaOH (40 mg, 1 mmol) was added. After 20 min. of stirring, Cu(NO3)2·5H2O (240 mg, 1 mmol) in CH3CN—H2O (20 ml) and phen (180 mg, 1 mmol) in CH3CN—H2O (10 ml) were added dropwise. The reaction mixture was stirred for 50 min. The green solution was reduced in volume and left for slow evaporation. Green crystals of (I) deposited over a few days. Yield: 646 mg, 90%. A suitable green single-crystal was carefully selected out of the mother liquor and mounted with mineral oil in a glass capillary for subsequent data collection. The crystals decompose rapidly by contact with air, with probable release of water.

Refinement top

H atoms bonded to O atoms were found in a difference map and their coordinates refined with O—H bond lengths constrained to 0.84–0.88 Å and Uiso = 1.5Ueq(carrier O). H atoms attached to C atoms were placed in geometrically idealized positions, and refined as riding on their parent atoms, with C—H distances fixed to 0.93 (aromatic CH), 0.96 (methyl CH3), 0.97 (methylene CH2) or 0.98 Å (methine CH), and with Uiso = 1.5Ueq(C) for the methyl group and Uiso(H) = 1.2Ueq(C) otherwise.

Computing details top

Data collection: XSCANS (Siemens, 1993); cell refinement: XSCANS (Siemens, 1993); data reduction: XSCANS (Siemens, 1993); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms. The anion and solvent molecules were omitted for clarity.
aqua[1-cyclopropyl-7-(4-ethylpiperazin-1-yl)-6-fluoro-4-oxo-1,4- dihydroquinoline-3-carboxylato](1,10-phenanthroline)copper(II) nitrate dihydrate top
Crystal data top
[Cu(C19H21FN3O3)(C12H8N2)(H2O)]NO3·2H2OZ = 2
Mr = 718.2F(000) = 746
Triclinic, P1Dx = 1.474 Mg m3
a = 10.819 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.019 (5) ÅCell parameters from 50 reflections
c = 12.968 (6) Åθ = 3.8–23.9°
α = 76.75 (3)°µ = 0.74 mm1
β = 87.91 (3)°T = 298 K
γ = 80.37 (2)°Block, green
V = 1618.3 (12) Å30.27 × 0.24 × 0.22 mm
Data collection top
Siemens P4
diffractometer
3170 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.035
Graphite monochromatorθmax = 25.1°, θmin = 1.6°
2θ/ω scansh = 112
Absorption correction: ψ scan
(XSCANS; Siemens, 1993)
k = 1414
Tmin = 0.824, Tmax = 0.853l = 1515
6697 measured reflections3 standard reflections every 97 reflections
5711 independent reflections intensity decay: 3.6%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0373P)2 + 0.4734P]
where P = (Fo2 + 2Fc2)/3
5711 reflections(Δ/σ)max < 0.001
434 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
[Cu(C19H21FN3O3)(C12H8N2)(H2O)]NO3·2H2Oγ = 80.37 (2)°
Mr = 718.2V = 1618.3 (12) Å3
Triclinic, P1Z = 2
a = 10.819 (4) ÅMo Kα radiation
b = 12.019 (5) ŵ = 0.74 mm1
c = 12.968 (6) ÅT = 298 K
α = 76.75 (3)°0.27 × 0.24 × 0.22 mm
β = 87.91 (3)°
Data collection top
Siemens P4
diffractometer
3170 reflections with I > 2σ(I)
Absorption correction: ψ scan
(XSCANS; Siemens, 1993)
Rint = 0.035
Tmin = 0.824, Tmax = 0.8533 standard reflections every 97 reflections
6697 measured reflections intensity decay: 3.6%
5711 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.129H-atom parameters constrained
S = 1.03Δρmax = 0.29 e Å3
5711 reflectionsΔρmin = 0.30 e Å3
434 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7460 (6)0.6938 (5)0.4278 (4)0.0567 (16)
H10.81370.72180.4490.068*
C20.7685 (6)0.6165 (5)0.3609 (5)0.0646 (18)
H20.84890.5970.33560.078*
C30.6713 (6)0.5696 (5)0.3330 (4)0.0597 (17)
H30.68550.51660.290.072*
C40.5490 (6)0.6022 (4)0.3700 (4)0.0492 (15)
C50.4388 (7)0.5585 (5)0.3482 (5)0.0618 (18)
H50.44610.50440.30640.074*
C60.3262 (6)0.5939 (5)0.3867 (5)0.0626 (18)
H60.25740.56390.37040.075*
C70.3083 (5)0.6771 (5)0.4525 (4)0.0470 (14)
C80.1942 (6)0.7186 (5)0.4960 (5)0.0583 (16)
H80.12140.69260.48270.07*
C90.1895 (5)0.7977 (5)0.5584 (4)0.0537 (15)
H90.11390.82520.58730.064*
C100.2993 (5)0.8361 (4)0.5778 (4)0.0437 (13)
H100.29510.88940.62020.052*
C110.4145 (5)0.7207 (4)0.4766 (4)0.0383 (13)
C120.5349 (5)0.6835 (4)0.4353 (4)0.0399 (13)
C130.7644 (5)1.0355 (4)0.7580 (4)0.0390 (13)
H130.85151.02470.7580.047*
C140.7075 (5)0.9895 (4)0.6880 (4)0.0351 (12)
C150.5749 (5)1.0025 (4)0.6883 (4)0.0345 (12)
C160.5078 (4)1.0642 (4)0.7631 (4)0.0329 (11)
C170.5737 (5)1.1117 (4)0.8305 (4)0.0329 (12)
C180.5072 (5)1.1760 (4)0.8994 (4)0.0394 (13)
H180.55151.20640.94350.047*
C190.3777 (5)1.1947 (4)0.9025 (4)0.0376 (12)
C200.3156 (5)1.1416 (4)0.8364 (4)0.0423 (13)
C210.3771 (5)1.0788 (4)0.7702 (4)0.0403 (13)
H210.33211.04520.72930.048*
C220.7761 (5)1.1298 (5)0.9055 (4)0.0459 (14)
H220.77361.08350.97810.055*
C230.7825 (6)1.2536 (5)0.8956 (5)0.0641 (17)
H23A0.7821.28130.96030.077*
H23B0.74021.3090.83580.077*
C240.8955 (6)1.1718 (6)0.8735 (5)0.077 (2)
H24A0.92161.17790.80040.093*
H24B0.96331.15020.92480.093*
C250.7914 (5)0.9325 (4)0.6140 (4)0.0411 (13)
C260.3700 (5)1.3449 (4)1.0030 (4)0.0481 (14)
H26A0.41811.38620.94680.058*
H26B0.42761.30071.05890.058*
C270.2754 (5)1.4304 (4)1.0459 (4)0.0531 (15)
H27A0.31861.48311.07180.064*
H27B0.21911.47570.98950.064*
C280.1357 (5)1.2918 (5)1.0910 (4)0.0499 (14)
H28A0.07741.33761.03640.06*
H28B0.0881.25011.14720.06*
C290.2275 (5)1.2062 (4)1.0451 (4)0.0491 (15)
H29A0.28121.15621.10110.059*
H29B0.18161.1581.01550.059*
C300.1149 (6)1.4505 (5)1.1817 (5)0.0653 (18)
H30A0.04881.48981.13130.078*
H30B0.161.50881.19590.078*
C310.0562 (6)1.3940 (6)1.2832 (5)0.082 (2)
H31A0.00211.3481.26770.123*
H31B0.01291.45271.31680.123*
H31C0.12041.34541.32970.123*
Cu10.57945 (6)0.84081 (6)0.55762 (5)0.0410 (2)
F10.1881 (3)1.1611 (3)0.8365 (2)0.0651 (10)
N010.3156 (6)0.6901 (5)0.8300 (4)0.0649 (14)
N10.6331 (4)0.7290 (3)0.4623 (3)0.0416 (11)
N20.4095 (4)0.7998 (3)0.5383 (3)0.0380 (11)
N30.7045 (4)1.0947 (3)0.8261 (3)0.0356 (10)
N40.3054 (4)1.2660 (3)0.9618 (3)0.0397 (10)
N50.2019 (4)1.3690 (3)1.1333 (3)0.0453 (11)
O010.3491 (5)0.7816 (5)0.8383 (4)0.1054 (18)
O10.5090 (3)0.9650 (3)0.6268 (3)0.0418 (9)
O20.7439 (3)0.8813 (3)0.5512 (3)0.0485 (10)
O020.2046 (5)0.6808 (5)0.8384 (5)0.121 (2)
O1W0.6097 (4)0.7053 (3)0.7104 (3)0.0628 (11)
H1C0.66760.68920.75580.094*
H1D0.54370.69830.74540.094*
O030.3973 (5)0.6117 (5)0.8137 (4)0.1022 (17)
O30.9053 (3)0.9349 (3)0.6145 (3)0.0630 (11)
O2W0.0721 (5)0.9211 (4)0.8484 (4)0.1185 (19)
H2C0.13720.86580.85570.178*
H2D0.07770.94540.77950.178*
O3W0.0751 (4)1.0871 (4)0.6304 (3)0.0894 (15)
H3C0.11661.09380.57240.134*
H3D0.02371.04230.62540.134*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.056 (4)0.052 (4)0.064 (4)0.000 (3)0.006 (3)0.024 (3)
C20.068 (5)0.060 (4)0.067 (4)0.006 (4)0.010 (4)0.029 (4)
C30.085 (5)0.042 (3)0.050 (4)0.007 (4)0.005 (4)0.021 (3)
C40.073 (4)0.033 (3)0.041 (3)0.001 (3)0.007 (3)0.013 (3)
C50.090 (5)0.047 (4)0.055 (4)0.009 (4)0.008 (4)0.025 (3)
C60.082 (5)0.054 (4)0.062 (4)0.026 (4)0.020 (4)0.021 (3)
C70.047 (4)0.042 (3)0.051 (3)0.008 (3)0.013 (3)0.006 (3)
C80.050 (4)0.056 (4)0.070 (4)0.021 (3)0.013 (3)0.006 (3)
C90.042 (4)0.052 (4)0.065 (4)0.008 (3)0.008 (3)0.011 (3)
C100.044 (3)0.045 (3)0.043 (3)0.008 (3)0.004 (3)0.014 (3)
C110.051 (4)0.032 (3)0.032 (3)0.006 (3)0.005 (3)0.007 (2)
C120.051 (4)0.033 (3)0.034 (3)0.001 (3)0.005 (3)0.007 (2)
C130.028 (3)0.041 (3)0.050 (3)0.010 (2)0.005 (3)0.014 (3)
C140.034 (3)0.031 (3)0.041 (3)0.005 (2)0.003 (2)0.011 (2)
C150.042 (3)0.033 (3)0.030 (3)0.007 (3)0.003 (2)0.011 (2)
C160.033 (3)0.036 (3)0.032 (3)0.009 (2)0.000 (2)0.009 (2)
C170.037 (3)0.029 (3)0.034 (3)0.009 (2)0.004 (2)0.008 (2)
C180.043 (3)0.043 (3)0.038 (3)0.012 (3)0.002 (3)0.018 (3)
C190.042 (3)0.038 (3)0.035 (3)0.008 (3)0.003 (2)0.012 (2)
C200.028 (3)0.049 (3)0.056 (3)0.010 (3)0.006 (3)0.022 (3)
C210.039 (3)0.049 (3)0.041 (3)0.012 (3)0.000 (3)0.020 (3)
C220.047 (4)0.055 (4)0.042 (3)0.013 (3)0.006 (3)0.020 (3)
C230.070 (4)0.061 (4)0.073 (4)0.026 (4)0.002 (4)0.028 (3)
C240.045 (4)0.118 (6)0.097 (5)0.029 (4)0.010 (4)0.071 (5)
C250.040 (4)0.038 (3)0.048 (3)0.005 (3)0.004 (3)0.015 (3)
C260.056 (4)0.045 (3)0.052 (3)0.015 (3)0.012 (3)0.025 (3)
C270.074 (4)0.038 (3)0.051 (3)0.011 (3)0.013 (3)0.018 (3)
C280.048 (4)0.054 (4)0.052 (3)0.014 (3)0.011 (3)0.019 (3)
C290.058 (4)0.046 (3)0.048 (3)0.016 (3)0.015 (3)0.016 (3)
C300.071 (4)0.055 (4)0.073 (4)0.006 (3)0.015 (4)0.033 (3)
C310.080 (5)0.087 (5)0.084 (5)0.003 (4)0.035 (4)0.042 (4)
Cu10.0408 (4)0.0434 (4)0.0450 (4)0.0071 (3)0.0033 (3)0.0229 (3)
F10.0330 (18)0.102 (3)0.080 (2)0.0126 (18)0.0059 (16)0.060 (2)
N010.069 (4)0.072 (4)0.048 (3)0.015 (4)0.002 (3)0.002 (3)
N10.043 (3)0.040 (3)0.044 (3)0.003 (2)0.004 (2)0.018 (2)
N20.042 (3)0.036 (3)0.037 (2)0.003 (2)0.000 (2)0.012 (2)
N30.036 (3)0.037 (2)0.037 (2)0.008 (2)0.001 (2)0.016 (2)
N40.044 (3)0.039 (2)0.043 (3)0.013 (2)0.008 (2)0.019 (2)
N50.053 (3)0.037 (3)0.047 (3)0.002 (2)0.004 (2)0.017 (2)
O010.111 (4)0.079 (4)0.131 (5)0.027 (3)0.010 (3)0.024 (3)
O10.040 (2)0.045 (2)0.047 (2)0.0076 (17)0.0045 (17)0.0246 (18)
O20.039 (2)0.061 (2)0.056 (2)0.0132 (19)0.0109 (18)0.032 (2)
O020.067 (4)0.158 (6)0.128 (5)0.039 (4)0.004 (3)0.004 (4)
O1W0.061 (3)0.075 (3)0.050 (2)0.012 (2)0.002 (2)0.009 (2)
O030.106 (4)0.093 (4)0.121 (4)0.016 (3)0.025 (3)0.055 (3)
O30.035 (2)0.083 (3)0.085 (3)0.012 (2)0.010 (2)0.048 (2)
O2W0.106 (4)0.116 (4)0.122 (4)0.009 (4)0.020 (3)0.021 (4)
O3W0.094 (4)0.128 (4)0.070 (3)0.058 (3)0.019 (3)0.044 (3)
Geometric parameters (Å, º) top
C1—N11.321 (6)C23—C241.498 (8)
C1—C21.398 (7)C23—H23A0.97
C1—H10.93C23—H23B0.97
C2—C31.369 (8)C24—H24A0.97
C2—H20.93C24—H24B0.97
C3—C41.413 (8)C25—O31.238 (6)
C3—H30.93C25—O21.293 (5)
C4—C121.420 (6)C26—N41.468 (6)
C4—C51.442 (8)C26—C271.511 (6)
C5—C61.339 (8)C26—H26A0.97
C5—H50.93C26—H26B0.97
C6—C71.442 (7)C27—N51.487 (6)
C6—H60.93C27—H27A0.97
C7—C81.400 (7)C27—H27B0.97
C7—C111.413 (7)C28—N51.469 (6)
C8—C91.376 (7)C28—C291.516 (6)
C8—H80.93C28—H28A0.97
C9—C101.395 (7)C28—H28B0.97
C9—H90.93C29—N41.474 (6)
C10—N21.325 (6)C29—H29A0.97
C10—H100.93C29—H29B0.97
C11—N21.368 (6)C30—N51.473 (6)
C11—C121.432 (7)C30—C311.507 (8)
C12—N11.364 (6)C30—H30A0.97
C13—N31.341 (5)C30—H30B0.97
C13—C141.376 (6)C31—H31A0.96
C13—H130.93C31—H31B0.96
C14—C151.418 (6)C31—H31C0.96
C14—C251.498 (6)Cu1—O21.915 (3)
C15—O11.290 (5)Cu1—O11.949 (3)
C15—C161.454 (6)Cu1—N22.021 (4)
C16—C211.397 (6)Cu1—N12.029 (4)
C16—C171.417 (6)Cu1—O1W2.253 (4)
C17—N31.397 (6)N01—O021.223 (6)
C17—C181.413 (6)N01—O021.223 (6)
C18—C191.382 (7)N01—O031.230 (6)
C18—H180.93N01—O031.230 (6)
C19—N41.404 (5)N01—O011.242 (6)
C19—C201.425 (6)N01—O011.242 (6)
C20—C211.356 (6)O1W—H1C0.8422
C20—F11.360 (5)O1W—H1D0.8373
C21—H210.93O2W—H2C0.8754
C22—C241.476 (7)O2W—H2D0.8768
C22—C231.477 (7)O3W—H3C0.8564
C22—N31.484 (6)O3W—H3D0.8496
C22—H220.98
N1—C1—C2123.1 (6)O3—C25—C14119.2 (4)
N1—C1—H1118.4O2—C25—C14119.6 (5)
C2—C1—H1118.4N4—C26—C27109.9 (4)
C3—C2—C1119.4 (6)N4—C26—H26A109.7
C3—C2—H2120.3C27—C26—H26A109.7
C1—C2—H2120.3N4—C26—H26B109.7
C2—C3—C4119.7 (5)C27—C26—H26B109.7
C2—C3—H3120.2H26A—C26—H26B108.2
C4—C3—H3120.2N5—C27—C26110.6 (4)
C3—C4—C12116.8 (5)N5—C27—H27A109.5
C3—C4—C5125.5 (5)C26—C27—H27A109.5
C12—C4—C5117.7 (5)N5—C27—H27B109.5
C6—C5—C4121.7 (5)C26—C27—H27B109.5
C6—C5—H5119.2H27A—C27—H27B108.1
C4—C5—H5119.2N5—C28—C29110.8 (4)
C5—C6—C7122.1 (6)N5—C28—H28A109.5
C5—C6—H6119C29—C28—H28A109.5
C7—C6—H6119N5—C28—H28B109.5
C8—C7—C11116.4 (5)C29—C28—H28B109.5
C8—C7—C6125.8 (5)H28A—C28—H28B108.1
C11—C7—C6117.8 (5)N4—C29—C28111.3 (4)
C9—C8—C7120.2 (5)N4—C29—H29A109.4
C9—C8—H8119.9C28—C29—H29A109.4
C7—C8—H8119.9N4—C29—H29B109.4
C8—C9—C10119.4 (5)C28—C29—H29B109.4
C8—C9—H9120.3H29A—C29—H29B108
C10—C9—H9120.3N5—C30—C31113.9 (5)
N2—C10—C9122.7 (5)N5—C30—H30A108.8
N2—C10—H10118.6C31—C30—H30A108.8
C9—C10—H10118.6N5—C30—H30B108.8
N2—C11—C7123.3 (5)C31—C30—H30B108.8
N2—C11—C12116.5 (5)H30A—C30—H30B107.7
C7—C11—C12120.3 (5)C30—C31—H31A109.5
N1—C12—C4122.7 (5)C30—C31—H31B109.5
N1—C12—C11116.9 (4)H31A—C31—H31B109.5
C4—C12—C11120.4 (5)C30—C31—H31C109.5
N3—C13—C14125.4 (5)H31A—C31—H31C109.5
N3—C13—H13117.3H31B—C31—H31C109.5
C14—C13—H13117.3O2—Cu1—O192.94 (14)
C13—C14—C15118.2 (4)O2—Cu1—N2170.46 (16)
C13—C14—C25117.0 (4)O1—Cu1—N292.85 (15)
C15—C14—C25124.8 (4)O2—Cu1—N190.95 (16)
O1—C15—C14125.1 (4)O1—Cu1—N1169.36 (16)
O1—C15—C16117.4 (4)N2—Cu1—N182.08 (17)
C14—C15—C16117.5 (4)O2—Cu1—O1W96.03 (15)
C21—C16—C17118.3 (4)O1—Cu1—O1W94.13 (14)
C21—C16—C15121.2 (4)N2—Cu1—O1W91.11 (15)
C17—C16—C15120.6 (4)N1—Cu1—O1W95.31 (15)
N3—C17—C18121.2 (4)O02—N01—O03122.7 (7)
N3—C17—C16118.7 (4)O02—N01—O03122.7 (7)
C18—C17—C16120.1 (4)O02—N01—O03122.7 (7)
C19—C18—C17121.4 (4)O02—N01—O03122.7 (7)
C19—C18—H18119.3O02—N01—O01119.7 (7)
C17—C18—H18119.3O02—N01—O01119.7 (7)
C18—C19—N4124.4 (4)O03—N01—O01117.6 (6)
C18—C19—C20116.6 (4)O03—N01—O01117.6 (6)
N4—C19—C20118.9 (4)O02—N01—O01119.7 (7)
C21—C20—F1119.2 (4)O02—N01—O01119.7 (7)
C21—C20—C19123.2 (5)O03—N01—O01117.6 (6)
F1—C20—C19117.5 (4)O03—N01—O01117.6 (6)
C20—C21—C16120.4 (4)C1—N1—C12118.3 (4)
C20—C21—H21119.8C1—N1—Cu1129.6 (4)
C16—C21—H21119.8C12—N1—Cu1112.1 (3)
C24—C22—C2361.0 (4)C10—N2—C11118.0 (4)
C24—C22—N3118.9 (5)C10—N2—Cu1129.5 (3)
C23—C22—N3119.6 (5)C11—N2—Cu1112.4 (3)
C24—C22—H22115.5C13—N3—C17119.6 (4)
C23—C22—H22115.5C13—N3—C22120.4 (4)
N3—C22—H22115.5C17—N3—C22119.6 (4)
C22—C23—C2459.5 (4)C19—N4—C26116.7 (4)
C22—C23—H23A117.8C19—N4—C29115.1 (4)
C24—C23—H23A117.8C26—N4—C29110.4 (4)
C22—C23—H23B117.8C28—N5—C30111.8 (4)
C24—C23—H23B117.8C28—N5—C27108.2 (4)
H23A—C23—H23B115C30—N5—C27111.8 (4)
C22—C24—C2359.5 (3)C15—O1—Cu1122.0 (3)
C22—C24—H24A117.8C25—O2—Cu1127.3 (3)
C23—C24—H24A117.8Cu1—O1W—H1C131.2
C22—C24—H24B117.8Cu1—O1W—H1D113
C23—C24—H24B117.8H1C—O1W—H1D105.3
H24A—C24—H24B115H2C—O2W—H2D96.6
O3—C25—O2121.2 (5)H3C—O3W—H3D104.8
N1—C1—C2—C33.3 (9)O2—Cu1—N1—C18.1 (5)
C1—C2—C3—C41.6 (9)O1—Cu1—N1—C1119.6 (9)
C2—C3—C4—C5179.0 (6)N2—Cu1—N1—C1178.4 (5)
C3—C4—C5—C6179.8 (6)O1W—Cu1—N1—C188.0 (5)
C5—C6—C7—C8179.9 (6)O2—Cu1—N1—C12174.2 (3)
C6—C7—C8—C9179.6 (5)O1—Cu1—N1—C1262.7 (10)
C6—C7—C11—N2179.9 (4)N2—Cu1—N1—C120.7 (3)
C8—C7—C11—C12179.8 (5)O1W—Cu1—N1—C1289.7 (3)
C5—C4—C12—N1178.9 (5)C9—C10—N2—C110.4 (7)
C3—C4—C12—C11179.6 (5)C9—C10—N2—Cu1178.8 (4)
C5—C4—C12—C110.6 (7)C7—C11—N2—C100.6 (7)
N2—C11—C12—N10.8 (7)C12—C11—N2—C10180.0 (4)
C7—C11—C12—N1179.7 (5)C7—C11—N2—Cu1179.2 (4)
N2—C11—C12—C4179.6 (4)C12—C11—N2—Cu11.4 (5)
C7—C11—C12—C40.2 (7)O1—Cu1—N2—C109.8 (4)
N3—C13—C14—C151.5 (7)N1—Cu1—N2—C10179.6 (5)
N3—C13—C14—C25176.4 (4)O1W—Cu1—N2—C1084.3 (4)
C13—C14—C15—O1179.3 (4)O1—Cu1—N2—C11171.7 (3)
C25—C14—C15—O11.6 (8)N1—Cu1—N2—C111.1 (3)
C13—C14—C15—C160.1 (7)O1W—Cu1—N2—C1194.1 (3)
C25—C14—C15—C16177.7 (4)C14—C13—N3—C171.1 (7)
O1—C15—C16—C212.0 (7)C14—C13—N3—C22173.7 (5)
C14—C15—C16—C21178.7 (5)C18—C17—N3—C13178.4 (4)
O1—C15—C16—C17177.6 (4)C16—C17—N3—C130.8 (7)
C14—C15—C16—C171.7 (7)C18—C17—N3—C228.9 (7)
C21—C16—C17—N3178.2 (4)C16—C17—N3—C22171.8 (4)
C15—C16—C17—N32.2 (7)C24—C22—N3—C1340.1 (7)
C21—C16—C17—C182.6 (7)C23—C22—N3—C13111.2 (6)
C15—C16—C17—C18177.1 (4)C24—C22—N3—C17147.3 (5)
N3—C17—C18—C19178.8 (5)C23—C22—N3—C1776.2 (6)
C16—C17—C18—C190.4 (7)C18—C19—N4—C2614.4 (7)
C17—C18—C19—N4174.1 (4)C20—C19—N4—C26162.4 (5)
C17—C18—C19—C202.7 (7)C18—C19—N4—C29117.5 (5)
C18—C19—C20—C212.2 (8)C20—C19—N4—C2965.7 (6)
N4—C19—C20—C21174.8 (5)C27—C26—N4—C19169.1 (4)
C18—C19—C20—F1178.5 (5)C27—C26—N4—C2956.9 (5)
N4—C19—C20—F11.5 (7)C28—C29—N4—C19169.6 (4)
F1—C20—C21—C16175.5 (5)C28—C29—N4—C2655.6 (6)
C19—C20—C21—C160.7 (8)C29—C28—N5—C30178.1 (4)
C17—C16—C21—C203.1 (7)C29—C28—N5—C2758.3 (5)
C15—C16—C21—C20176.6 (5)C31—C30—N5—C2869.4 (6)
N3—C22—C23—C24108.7 (6)C31—C30—N5—C27169.0 (5)
N3—C22—C24—C23109.8 (6)C26—C27—N5—C2860.4 (5)
C13—C14—C25—O34.0 (7)C26—C27—N5—C30176.0 (5)
C15—C14—C25—O3173.8 (5)C14—C15—O1—Cu121.5 (7)
C13—C14—C25—O2175.6 (5)C16—C15—O1—Cu1159.3 (3)
C15—C14—C25—O26.7 (8)O2—Cu1—O1—C1530.0 (4)
N4—C26—C27—N560.1 (6)N2—Cu1—O1—C15157.6 (4)
N5—C28—C29—N457.1 (6)N1—Cu1—O1—C15141.3 (8)
C2—C1—N1—C123.1 (8)O1W—Cu1—O1—C1566.2 (4)
C2—C1—N1—Cu1179.3 (4)O3—C25—O2—Cu1166.3 (4)
C4—C12—N1—C11.4 (8)C14—C25—O2—Cu113.3 (7)
C11—C12—N1—C1178.1 (5)O1—Cu1—O2—C2526.9 (4)
C4—C12—N1—Cu1179.4 (4)N1—Cu1—O2—C25163.0 (4)
C11—C12—N1—Cu10.2 (5)O1W—Cu1—O2—C2567.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1D···O030.842.102.879 (7)155
O2W—H2C···O010.882.373.194 (7)157
O2W—H2C···O020.882.283.031 (8)144
O2W—H2D···O3W0.882.263.066 (7)152
O3W—H3C···O2i0.862.173.005 (5)166
O3W—H3D···O3ii0.852.002.845 (6)179
Symmetry codes: (i) x+1, y+2, z+1; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formula[Cu(C19H21FN3O3)(C12H8N2)(H2O)]NO3·2H2O
Mr718.2
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)10.819 (4), 12.019 (5), 12.968 (6)
α, β, γ (°)76.75 (3), 87.91 (3), 80.37 (2)
V3)1618.3 (12)
Z2
Radiation typeMo Kα
µ (mm1)0.74
Crystal size (mm)0.27 × 0.24 × 0.22
Data collection
DiffractometerSiemens P4
diffractometer
Absorption correctionψ scan
(XSCANS; Siemens, 1993)
Tmin, Tmax0.824, 0.853
No. of measured, independent and
observed [I > 2σ(I)] reflections
6697, 5711, 3170
Rint0.035
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.129, 1.03
No. of reflections5711
No. of parameters434
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.30

Computer programs: XSCANS (Siemens, 1993), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1D···O030.842.102.879 (7)155
O2W—H2C···O010.882.373.194 (7)156.7
O2W—H2C···O020.882.283.031 (8)143.8
O2W—H2D···O3W0.882.263.066 (7)152.3
O3W—H3C···O2i0.862.173.005 (5)166.1
O3W—H3D···O3ii0.852.002.845 (6)179.1
Symmetry codes: (i) x+1, y+2, z+1; (ii) x1, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds