Download citation
Download citation
link to html
The one-dimensional coordination polymer catena-poly[[[di-μ2-acetato-tetra­kis­[μ3-(pyridin-2-yl)methanol­ato]tetracopper(II)]-di-μ2-diacetamidato] aceto­nitrile monosolvate], {[Cu4(C6H6NO)4(CH3COO)2(C2N3)2]·CH3CN}n, has been pre­pared from the direct reaction of 2-(hy­droxy­methyl)pyridine with Cu(OAc)2·H2O (OAc is acetate) in a methanol–aceto­nitrile mixture. The four Cu centres are bridged by four O atoms from discrete (pyridin-2-yl)methanol­ate ligands and two acetate groups, forming a capped [Cu4O4] cubane core. Each core is doubly bridged to each of two adjacent cores by [N(CN)2] anions, resulting in one-dimensional chains. The magnetic properties of the complex were also studied.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229614016581/bg3179sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614016581/bg3179Isup2.hkl
Contains datablock I

CCDC reference: 947214

Introduction top

Since the pioneering reports of Robson and co-workers (Hoskins & Robson, 1990; Seddon & Zaworotko, 1996), much attention has focused on the field of crystal engineering. Great efforts have been focused on the assembly of coordination polymers through hydrogen bonds or coordination bonds. These complexes exhibit unique geometric characteristics (e.g. large size, high symmetry, aesthetically pleasing shapes and architectures) and fascinating physical properties (e.g. optical, magnetic, electronic and fluorescent properties) (Bagai & Christou, 2009; Gatteschi & Sessoli, 2003; Risch et al., 2009). Recently, much attention has been devoted to 2-(hy­droxy­methyl)­pyridine (Hhmp) since it contains an N-donor function forming polynuclear transition metal clusters. Several FeII, CoII/CoIII, NiII, CuII and MnII complexes have been reported based on this ligand (Christmas et al., 1993; Yang et al., 2002; Stamatatos et al., 2007; Zhang et al., 2010; Lah et al., 2006). We recently investigated a novel Mn complex, namely, [Mn4(hmp)6(dca)4(H2O)2] (dca- is the dicyanamide anion), with a linear Mn4 core and single-molecule magnet properties (Li et al., 2010). Continuing our work in this field, we report here the synthesis and structural characterization of a one-dimensional copper coordination polymer assembled from Hhmp, namely {[Cu4(hmp)4(CH3COO)2(dca)2]·CH3CN}n, (I).

Experimental top

Synthesis and crystallization top

All chemicals were of analytical grade and were obtained commercially and used without further purification. Complex (I) was synthesized by dissolving Cu(OAc)2·H2O (0.3997 g, 2 mmol), Hhmp (0.4905 g, 4.5 mmol) and Na[N(CN)2] (0.1602 g, 1.8 mmol) in a methanol–aceto­nitrile mixture (20 ml, 1:1 v/v). 25% Bu4NOH (0.9324 mg, 0.9 mmol) was added to this solution and the mixture was stirred for 5 h at room temperature. Blue crystals of (I) were obtained by diffusion in 51% yield (based on copper). Analysis, calculated for C34H33Cu4N11O8 (%): H 3.37, C 41.72, N 15.74; found: H 3.32, C 41.32, N 15.71. The formation of (I) can be represented by the reaction scheme shown in Scheme 2.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. All H atoms were positioned in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93 (aryl), 0.97 (methyl­ene) or 0.96 Å (methyl), and with Uiso(H) = Ueq(C) for methyl groups or 1.2Ueq(C) otherwise.

Results and discussion top

The title complex, (I), crystallizes in the monoclinic space group P21 and consists of [Cu4O4] cubane units connected by dicyanamidate ligands {dca-, [N(CN)2]-}, resulting in a one-dimensional coordination chain structure. As shown in Fig. 1, the core of (I) is composed of four crystallographically independent Cu2+ cations, four monodeprotonated (pyridin-2-yl)methano­late (hmp-) ligands, two κ1,κ12-acetate ligands, four κ1,κ12-dca- ligands and one aceto­nitrile solvent molecule. Table 2 shows the Cu—O/N coordination distances. Atom Cu1 is in a distorted six-coordinated o­cta­hedral coordination environment where the equatorial plane is occupied by one N atom (N8) and one O atom (O8) from one hmp- ligand, one O atom (O5) from another hmp- ligand and one N atom (N5) from a bridging dca- ligand. The O—Cu1—N and N—Cu1—N angles are in the range 80.78 (17)–95.2 (2)°. The axial positions are occupied by two O atoms (O4 and O7) from acetate and hmp- ligands, with an O4—Cu1—O7 angle of 152.08 (13)°. Atom Cu2 also adopts a distorted o­cta­hedral geometry, with atoms N2 and O6 (from one hmp- ligand), O8 (from another hmp- ligand) and O3 (from a κ1,κ12-acetate ligand) in the equatorial plane. The axial positions are occupied by atoms O5 (from one hmp- ligand) and N7 (from a κ1,κ12-dca- bridging ligand). The O—Cu2—N and O—Cu2—O angles are in the range 81.89 (17)–98.44 (16)° in the equatorial plane and the O—Cu2—N angle along the apical positions of 169.77 (16)°, indicating the distortion of the o­cta­hedron. Atoms Cu3 and Cu4 exhibit similar coordination environments to Cu2 and Cu1, respectively. The equatorial Cu—O and Cu—N bond distances for all the metal centres are in the ranges 1.935 (4)-1.973 (3) and 1.954 (5)–2.015 (5) Å, respectively, which are close to previously reported bond lengths for CuII cations (Zheng 2013; Chakraborty et al., 2012; Winter et al., 2004). However, the axial bonds are elongated [2.321 (4)–2.612 (4) Å] due to Jahn–Teller distortion (Miyasaka et al., 2004).

Four O atoms from four κ3,κ13-hmp- ligands bridge four CuII cations, resulting in a [Cu4O4] cubane core with Cu2+ cations and O atoms located at the corners. The two acetate groups adopt κ1,κ12-coordination modes, connecting Cu1 and Cu2, and Cu3 and Cu4, respectively. The Cu···Cu distances and Cu—O—Cu angles within the cubane core are in the ranges 3.107(s.u.?)–3.574(s.u.?) Å [Please supply missing s.u.s] and 86.02 (12)–113.19 (19)°, respectively, indicating that the cubane is slightly distorted (Mishtu et al., 2002).

Several Ni4, Co4, Zn4 and Cu4 complexes based on the 2-(hy­droxy­methyl)­pyridine ligand have been reported (Yang et al., 2006; Lawrence et al., 2007; Zhang et al., 2013). They are discrete cubane molecules, further connected through weak inter­actions to form one-dimensional chains. However, in complex (I) the capped cubanes are linked together through κ1,κ12-dca- ligands [symmetry code: (i) x + 1, y, z + 1], resulting in one-dimensional structures parallel to [101] (Fig. 2). The Cu···Cu distances between neighbouring capped cubanes along the chain span the range 8.553(s.u.?)–8.636(s.u.?) Å. [Please supply missing s.u.s]

The temperature dependence of the magnetic susceptibilities for (I) was measured in the temperature range 2–300 K in a constant magnetic field of 0.1 T, and the results are shown as χMT versus T plots in Fig. 3. The χMT of (I) is 1.78 cm3 mol-1 K at 300 K, somewhat higher than the spin-only value (1.50 cm3 mol-1 K) expected for magnetically isolated high-spin CuII cations with g = 2.00. Upon cooling, χMT drops slowly down to approximately 60 K. Below 60 K, there is a sharp decrease to a minimum of 0.61 cm3 mol-1 K at 2 K. This decrease in χMT suggests anti­ferromagnetic inter­actions between the CuII cations. Furthermore, the magnetic susceptibilities above 50 K can be fitted well by the Curie–Weiss law χ = C/(T - θ), obtaining C = 1.89 cm3 mol-1 K and θ = -17.23 K (Fig. 3, inset). The value of θ also indicates anti­ferromagnetic inter­actions between the four CuII centres.

In order to investigate the magnetic coupling in this complex, an isotropic Heisenberg–Dirac–van Vleck (HDVV) Hamiltonian formalism was used (Chakraborty et al., 2012), i.e. H = -2J(S1·S2 + S1·S3 + S1·S4+ S2·S3 +S2·S4 + S3·S4).

The best parameters fitted in the temperature range 10–300 K are J = -4.97 cm-1, g = 2.039 and zJ' = -0.017cm-1, with the result shown as the red line in Fig. 3. It is obvious that anti­ferromagnetic inter­actions are present between the four CuII centres, which is consistent with the results deduced from the Curie–Weiss law.

Related literature top

For related literature, see: Bagai & Christou (2009); Chakraborty et al. (2012); Christmas et al. (1993); Gatteschi & Sessoli (2003); Hoskins & Robson (1990); Lah et al. (2006); Lawrence et al. (2007); Li et al. (2010); Mishtu et al. (2002); Miyasaka et al. (2004); Risch et al. (2009); Seddon & Zaworotko (1996); Stamatatos et al. (2007); Winter et al. (2004); Yang et al. (2002, 2006); Zhang et al. (2010, 2013); Zheng (2013).

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The coordination environments of atoms Cu1, Cu2, Cu3 and Cu4 in complex (I), with part of the atom-numbering scheme; the remaining C atoms complete the sequence in an orderly manner. The acetonitrile solvent molecule and all H atoms have been omitted for clarity. [Symmetry code: (i) x + 1, y, z + 1.] [Several labels overlap with atoms which reduces clarity. Please revise with no overlap.]
[Figure 2] Fig. 2. A view of the [101] one-dimensional array in complex (I), projected along [010].
[Figure 3] Fig. 3. The temperature dependence of χMT and 1/χM (inset) for complex (I). The solid red lines indicate the best fits obtained.
catena-Poly[[[di-µ2-acetato-1:2κ2O:O';3:4κ2O:O'-tetrakis[µ3-(pyridin-2-yl)methanolato-κ2N:O]-1:2:4κ4N,O:O:O;2:3:4κ4N,O:O:O;1:2:3κ4O:O:N,O;1:3:4κ4O:O:N,O-tetracopper(II)]-di-µ2-diacetamidato-1:4'κ2N1:N5;3:2'κ2N1:N5] acetonitrile monosolvate] top
Crystal data top
[Cu4(C6H6NO)4(C2H3O2)2(C2N3)2]·C2H3NF(000) = 988
Mr = 977.87Dx = 1.696 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 5178 reflections
a = 10.316 (1) Åθ = 2.4–27.0°
b = 19.7793 (19) ŵ = 2.26 mm1
c = 10.6749 (11) ÅT = 298 K
β = 118.437 (2)°Block, blue
V = 1915.3 (3) Å30.45 × 0.38 × 0.21 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
8708 independent reflections
Radiation source: fine-focus sealed tube7116 reflections with I > 2/s(I)
Graphite monochromatorRint = 0.041
φ and ω scansθmax = 28.3°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1313
Tmin = 0.430, Tmax = 0.649k = 2526
12122 measured reflectionsl = 146
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.116 w = 1/[σ2(Fo2) + (0.0497P)2 + 0.2828P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.004
8708 reflectionsΔρmax = 0.61 e Å3
517 parametersΔρmin = 0.61 e Å3
1 restraintAbsolute structure: Flack (1983), with 3893 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.020 (15)
Crystal data top
[Cu4(C6H6NO)4(C2H3O2)2(C2N3)2]·C2H3NV = 1915.3 (3) Å3
Mr = 977.87Z = 2
Monoclinic, P21Mo Kα radiation
a = 10.316 (1) ŵ = 2.26 mm1
b = 19.7793 (19) ÅT = 298 K
c = 10.6749 (11) Å0.45 × 0.38 × 0.21 mm
β = 118.437 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
8708 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
7116 reflections with I > 2/s(I)
Tmin = 0.430, Tmax = 0.649Rint = 0.041
12122 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.116Δρmax = 0.61 e Å3
S = 1.05Δρmin = 0.61 e Å3
8708 reflectionsAbsolute structure: Flack (1983), with 3893 Friedel pairs
517 parametersAbsolute structure parameter: 0.020 (15)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.65254 (6)0.97572 (3)0.15263 (6)0.02925 (15)
Cu20.96465 (7)0.91677 (3)0.28746 (7)0.03010 (15)
Cu30.81423 (7)0.99751 (3)0.04408 (6)0.02986 (15)
Cu40.97134 (7)1.07710 (3)0.24063 (7)0.03396 (16)
N10.8496 (5)0.9119 (2)0.1243 (4)0.0313 (9)
N21.0909 (5)0.8599 (2)0.2332 (5)0.0332 (10)
N30.5790 (6)1.0192 (3)0.2445 (5)0.0523 (15)
N40.3660 (7)1.0934 (3)0.3473 (6)0.075 (2)
N50.4516 (5)0.9736 (3)0.0090 (5)0.0465 (13)
N60.2252 (6)0.9526 (5)0.2243 (6)0.089 (3)
N70.1744 (7)0.9255 (3)0.4654 (6)0.0606 (16)
N80.6019 (5)1.0352 (2)0.2743 (5)0.0334 (10)
N90.8652 (5)1.1586 (2)0.2604 (4)0.0320 (10)
N100.1541 (5)1.0938 (3)0.5835 (6)0.0505 (14)
N110.4719 (15)0.7845 (7)0.5377 (13)0.163 (6)
O10.9220 (5)1.0546 (2)0.1129 (5)0.0478 (11)
O21.0551 (6)1.1219 (3)0.0776 (6)0.0689 (15)
O30.8794 (4)0.8387 (2)0.3343 (4)0.0404 (10)
O40.6443 (5)0.8716 (2)0.2489 (5)0.0468 (10)
O50.7398 (4)0.93249 (19)0.0455 (4)0.0321 (9)
O61.0324 (3)0.98834 (19)0.2062 (4)0.0299 (8)
O70.7819 (4)1.06523 (18)0.0697 (4)0.0328 (8)
O80.8512 (4)0.98706 (19)0.3164 (3)0.0288 (8)
C10.6906 (7)0.8729 (3)0.0344 (6)0.0407 (14)
H1A0.58830.87790.10600.049*
H1B0.69740.83570.02750.049*
C20.7826 (6)0.8583 (3)0.1047 (5)0.0347 (12)
C30.7990 (9)0.7946 (3)0.1484 (7)0.0562 (18)
H30.75180.75750.13430.067*
C40.8869 (10)0.7865 (4)0.2136 (9)0.069 (2)
H40.90020.74410.24320.083*
C50.9526 (9)0.8417 (4)0.2333 (9)0.070 (2)
H51.01080.83730.27780.084*
C60.9334 (7)0.9045 (3)0.1875 (6)0.0451 (15)
H60.97960.94210.20090.054*
C71.1670 (6)0.9726 (3)0.2085 (7)0.0432 (14)
H7A1.24880.98930.29580.052*
H7B1.17090.99400.12860.052*
C81.1786 (6)0.8969 (3)0.1996 (5)0.0347 (12)
C91.2745 (7)0.8659 (4)0.1615 (7)0.0472 (15)
H91.33520.89170.13790.057*
C101.2796 (8)0.7963 (4)0.1586 (8)0.061 (2)
H101.34390.77470.13330.073*
C111.1887 (8)0.7591 (4)0.1936 (8)0.0599 (19)
H111.19030.71210.19210.072*
C121.0954 (7)0.7926 (3)0.2307 (7)0.0434 (14)
H121.03390.76770.25460.052*
C130.7119 (9)0.7621 (4)0.3446 (11)0.080 (3)
H13A0.75710.75880.44650.120*
H13B0.75000.72730.30860.120*
H13C0.60710.75700.30460.120*
C140.7455 (6)0.8299 (3)0.3043 (6)0.0373 (12)
C151.1001 (10)1.1243 (4)0.1319 (12)0.087 (3)
H15A1.15551.16440.08750.131*
H15B1.02841.13430.22840.131*
H15C1.16561.08970.13130.131*
C161.0201 (8)1.0992 (4)0.0482 (8)0.0564 (17)
C170.4765 (7)1.0514 (3)0.2992 (6)0.0402 (13)
C180.2565 (6)1.0900 (3)0.4740 (6)0.0408 (14)
C190.3495 (6)0.9626 (3)0.1144 (6)0.0403 (14)
C200.2072 (7)0.9390 (3)0.3507 (6)0.0436 (14)
C210.8434 (6)0.9978 (3)0.4428 (5)0.0378 (12)
H21A0.93141.02100.51190.045*
H21B0.83700.95480.48320.045*
C220.7104 (6)1.0395 (3)0.4098 (5)0.0345 (12)
C230.6954 (7)1.0798 (4)0.5097 (7)0.0504 (16)
H230.76961.08090.60390.060*
C240.5695 (9)1.1178 (4)0.4671 (8)0.0590 (19)
H240.55911.14600.53140.071*
C250.4575 (8)1.1134 (4)0.3261 (8)0.0553 (18)
H250.37131.13840.29560.066*
C260.4764 (7)1.0717 (3)0.2328 (7)0.0420 (13)
H260.40151.06830.13920.050*
C270.7008 (7)1.1247 (3)0.0206 (6)0.0373 (13)
H27A0.59631.11430.02600.045*
H27B0.72321.14600.04870.045*
C280.7374 (6)1.1720 (3)0.1423 (6)0.0329 (12)
C290.6479 (7)1.2253 (3)0.1385 (7)0.0479 (15)
H290.55971.23400.05650.058*
C300.6911 (8)1.2650 (3)0.2570 (8)0.0557 (18)
H300.63231.30080.25630.067*
C310.8218 (8)1.2515 (3)0.3767 (7)0.0480 (15)
H310.85361.27810.45790.058*
C320.9038 (7)1.1983 (3)0.3740 (6)0.0439 (14)
H320.99171.18900.45580.053*
C330.5351 (11)0.9057 (5)0.5091 (9)0.088 (3)
H33A0.56350.90720.43560.132*
H33B0.61510.92160.59700.132*
H33C0.45050.93400.48300.132*
C340.5005 (11)0.8391 (6)0.5265 (9)0.084 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0247 (3)0.0409 (4)0.0204 (3)0.0012 (2)0.0093 (2)0.0022 (2)
Cu20.0286 (3)0.0300 (3)0.0345 (3)0.0029 (3)0.0174 (3)0.0028 (3)
Cu30.0335 (3)0.0321 (3)0.0262 (3)0.0009 (3)0.0159 (3)0.0019 (2)
Cu40.0275 (3)0.0310 (3)0.0314 (3)0.0025 (3)0.0042 (3)0.0025 (3)
N10.030 (2)0.037 (2)0.027 (2)0.005 (2)0.0130 (18)0.0014 (19)
N20.029 (2)0.037 (3)0.034 (2)0.0032 (19)0.016 (2)0.0004 (19)
N30.043 (3)0.071 (4)0.032 (3)0.011 (3)0.008 (2)0.001 (3)
N40.060 (4)0.073 (4)0.049 (3)0.032 (3)0.009 (3)0.021 (3)
N50.034 (2)0.075 (4)0.027 (2)0.002 (3)0.011 (2)0.005 (3)
N60.034 (3)0.187 (8)0.035 (3)0.018 (4)0.007 (3)0.033 (4)
N70.068 (4)0.061 (4)0.036 (3)0.002 (3)0.012 (3)0.005 (3)
N80.031 (2)0.039 (3)0.034 (2)0.0049 (19)0.019 (2)0.0023 (19)
N90.033 (2)0.029 (2)0.027 (2)0.0008 (18)0.0085 (19)0.0018 (17)
N100.030 (3)0.049 (3)0.051 (3)0.002 (2)0.001 (2)0.009 (2)
N110.209 (13)0.149 (11)0.137 (10)0.064 (10)0.086 (10)0.025 (8)
O10.057 (3)0.049 (3)0.041 (2)0.008 (2)0.026 (2)0.001 (2)
O20.082 (4)0.055 (3)0.074 (4)0.011 (3)0.040 (3)0.002 (3)
O30.032 (2)0.038 (2)0.050 (2)0.0044 (17)0.0190 (19)0.0130 (18)
O40.041 (2)0.048 (3)0.055 (3)0.005 (2)0.026 (2)0.013 (2)
O50.031 (2)0.041 (2)0.0235 (18)0.0053 (16)0.0125 (16)0.0067 (15)
O60.0227 (16)0.033 (2)0.036 (2)0.0014 (15)0.0160 (15)0.0022 (16)
O70.033 (2)0.033 (2)0.0261 (18)0.0073 (16)0.0091 (16)0.0001 (15)
O80.0277 (17)0.039 (2)0.0195 (16)0.0022 (15)0.0110 (14)0.0009 (15)
C10.049 (4)0.042 (3)0.038 (3)0.014 (3)0.026 (3)0.017 (2)
C20.038 (3)0.038 (3)0.025 (3)0.006 (2)0.012 (2)0.012 (2)
C30.079 (5)0.039 (4)0.055 (4)0.005 (3)0.035 (4)0.007 (3)
C40.085 (6)0.055 (5)0.077 (5)0.009 (4)0.047 (5)0.021 (4)
C50.079 (6)0.074 (6)0.082 (6)0.005 (4)0.059 (5)0.023 (4)
C60.050 (4)0.054 (4)0.040 (3)0.001 (3)0.028 (3)0.012 (3)
C70.025 (3)0.045 (3)0.060 (4)0.006 (2)0.020 (3)0.007 (3)
C80.026 (3)0.046 (3)0.028 (3)0.006 (2)0.010 (2)0.000 (2)
C90.043 (4)0.057 (4)0.050 (4)0.006 (3)0.028 (3)0.002 (3)
C100.059 (5)0.066 (5)0.070 (5)0.008 (4)0.041 (4)0.018 (4)
C110.057 (4)0.048 (4)0.086 (5)0.005 (3)0.043 (4)0.022 (4)
C120.045 (3)0.036 (3)0.053 (4)0.002 (3)0.027 (3)0.007 (3)
C130.052 (5)0.064 (5)0.116 (7)0.007 (4)0.033 (5)0.038 (5)
C140.035 (3)0.041 (3)0.036 (3)0.001 (2)0.018 (2)0.009 (2)
C150.083 (6)0.070 (6)0.135 (9)0.001 (5)0.074 (7)0.017 (5)
C160.058 (4)0.045 (4)0.060 (5)0.006 (3)0.023 (4)0.004 (3)
C170.036 (3)0.052 (4)0.022 (3)0.002 (3)0.005 (2)0.006 (2)
C180.036 (3)0.038 (3)0.036 (3)0.006 (2)0.007 (3)0.006 (2)
C190.033 (3)0.058 (4)0.034 (3)0.003 (3)0.019 (3)0.000 (3)
C200.039 (3)0.048 (4)0.032 (3)0.006 (3)0.007 (3)0.004 (3)
C210.033 (3)0.058 (3)0.024 (3)0.001 (3)0.015 (2)0.006 (3)
C220.036 (3)0.043 (3)0.028 (3)0.004 (2)0.018 (2)0.004 (2)
C230.055 (4)0.063 (4)0.041 (3)0.005 (3)0.030 (3)0.014 (3)
C240.075 (5)0.058 (5)0.066 (5)0.004 (4)0.052 (4)0.013 (3)
C250.062 (5)0.056 (4)0.065 (5)0.011 (3)0.044 (4)0.006 (3)
C260.040 (3)0.046 (3)0.044 (3)0.009 (3)0.023 (3)0.005 (3)
C270.043 (3)0.035 (3)0.026 (3)0.008 (2)0.010 (2)0.006 (2)
C280.033 (3)0.029 (3)0.035 (3)0.003 (2)0.015 (2)0.004 (2)
C290.052 (4)0.041 (3)0.046 (3)0.014 (3)0.019 (3)0.008 (3)
C300.061 (4)0.044 (4)0.061 (4)0.017 (3)0.029 (4)0.008 (3)
C310.064 (4)0.040 (3)0.045 (4)0.005 (3)0.030 (3)0.013 (3)
C320.046 (4)0.039 (3)0.037 (3)0.006 (3)0.011 (3)0.010 (3)
C330.091 (7)0.088 (7)0.054 (5)0.002 (5)0.009 (5)0.017 (5)
C340.077 (6)0.108 (8)0.059 (5)0.009 (6)0.027 (5)0.012 (5)
Geometric parameters (Å, º) top
Cu1—O51.957 (4)C2—C31.381 (9)
Cu1—N51.967 (5)C3—C41.391 (11)
Cu1—O81.973 (3)C3—H30.9300
Cu1—N81.998 (5)C4—C51.352 (11)
Cu1—O42.321 (4)C4—H40.9300
Cu1—O72.612 (4)C5—C61.384 (9)
Cu2—O81.935 (4)C5—H50.9300
Cu2—O61.955 (4)C6—H60.9300
Cu2—O31.957 (4)C7—C81.508 (8)
Cu2—N22.003 (5)C7—H7A0.9700
Cu2—O52.538 (3)C7—H7B0.9700
Cu2—N7i2.497 (6)C8—C91.380 (8)
Cu3—O71.941 (4)C9—C101.378 (10)
Cu3—O11.956 (4)C9—H90.9300
Cu3—O51.964 (4)C10—C111.377 (10)
Cu3—N12.008 (4)C10—H100.9300
Cu3—N32.389 (5)C11—C121.373 (9)
Cu3—O62.551 (3)C11—H110.9300
Cu4—O71.951 (4)C12—H120.9300
Cu4—N10i1.954 (5)C13—C141.498 (9)
Cu4—O61.958 (4)C13—H13A0.9600
Cu4—N92.015 (5)C13—H13B0.9600
Cu4—O22.448 (6)C13—H13C0.9600
Cu4—O82.514 (4)C15—C161.557 (11)
N1—C61.334 (7)C15—H15A0.9600
N1—C21.336 (7)C15—H15B0.9600
N2—C121.334 (7)C15—H15C0.9600
N2—C81.339 (7)C21—C221.493 (8)
N3—C171.130 (8)C21—H21A0.9700
N4—C181.287 (7)C21—H21B0.9700
N4—C171.301 (8)C22—C231.398 (8)
N5—C191.137 (7)C23—C241.377 (10)
N6—C191.275 (8)C23—H230.9300
N6—C201.300 (8)C24—C251.397 (10)
N7—C201.136 (8)C24—H240.9300
N8—C221.345 (7)C25—C261.377 (9)
N8—C261.358 (7)C25—H250.9300
N9—C321.337 (7)C26—H260.9300
N9—C281.347 (7)C27—C281.496 (8)
N10—C181.145 (7)C27—H27A0.9700
N10—Cu4ii1.954 (5)C27—H27B0.9700
N11—C341.142 (14)C28—C291.390 (8)
O1—C161.271 (8)C29—C301.371 (9)
O2—C161.293 (9)C29—H290.9300
O3—C141.272 (7)C30—C311.372 (9)
O4—C141.238 (7)C30—H300.9300
O5—C11.400 (6)C31—C321.357 (9)
O6—C71.411 (6)C31—H310.9300
O7—C271.393 (6)C32—H320.9300
O8—C211.406 (6)C33—C341.400 (14)
C1—C21.493 (8)C33—H33A0.9600
C1—H1A0.9700C33—H33B0.9600
C1—H1B0.9700C33—H33C0.9600
O5—Cu1—N593.67 (18)N1—C2—C1115.1 (5)
O5—Cu1—O889.70 (14)C3—C2—C1123.8 (6)
N5—Cu1—O8174.6 (2)C2—C3—C4119.1 (7)
O5—Cu1—N8166.61 (17)C2—C3—H3120.4
N5—Cu1—N895.2 (2)C4—C3—H3120.4
O8—Cu1—N880.78 (17)C5—C4—C3118.7 (7)
O5—Cu1—O489.71 (16)C5—C4—H4120.6
N5—Cu1—O497.1 (2)C3—C4—H4120.6
O8—Cu1—O487.14 (15)C4—C5—C6120.2 (7)
N8—Cu1—O499.13 (18)C4—C5—H5119.9
O5—Cu1—O769.31 (13)C6—C5—H5119.9
N5—Cu1—O7102.24 (18)N1—C6—C5120.9 (6)
O8—Cu1—O774.97 (13)N1—C6—H6119.5
N8—Cu1—O798.93 (16)C5—C6—H6119.5
O4—Cu1—O7152.08 (13)O6—C7—C8109.0 (5)
O8—Cu2—O685.54 (15)O6—C7—H7A109.9
O8—Cu2—O398.44 (16)C8—C7—H7A109.9
O6—Cu2—O3169.77 (16)O6—C7—H7B109.9
O8—Cu2—N2167.28 (17)C8—C7—H7B109.9
O6—Cu2—N281.89 (17)H7A—C7—H7B108.3
O3—Cu2—N293.66 (18)N2—C8—C9120.5 (6)
O8—Cu2—O575.24 (12)N2—C8—C7116.1 (5)
O6—Cu2—O578.84 (13)C9—C8—C7123.4 (6)
O3—Cu2—O593.00 (14)C10—C9—C8119.4 (7)
N2—Cu2—O5100.34 (15)C10—C9—H9120.3
O7—Cu3—O197.74 (17)C8—C9—H9120.3
O7—Cu3—O585.61 (15)C9—C10—C11119.3 (6)
O1—Cu3—O5169.88 (18)C9—C10—H10120.3
O7—Cu3—N1165.76 (17)C11—C10—H10120.3
O1—Cu3—N194.31 (19)C12—C11—C10118.8 (7)
O5—Cu3—N181.26 (17)C12—C11—H11120.6
O7—Cu3—N391.84 (18)C10—C11—H11120.6
O1—Cu3—N394.4 (2)N2—C12—C11121.7 (6)
O5—Cu3—N395.04 (18)N2—C12—H12119.2
N1—Cu3—N394.76 (18)C11—C12—H12119.2
O7—Cu3—O673.90 (14)C14—C13—H13A109.5
O1—Cu3—O693.35 (15)C14—C13—H13B109.5
O5—Cu3—O678.35 (13)H13A—C13—H13B109.5
N1—Cu3—O697.92 (15)C14—C13—H13C109.5
N3—Cu3—O6164.58 (16)H13A—C13—H13C109.5
O7—Cu4—N10i175.8 (2)H13B—C13—H13C109.5
O7—Cu4—O689.15 (14)O4—C14—O3126.6 (5)
N10i—Cu4—O694.75 (18)O4—C14—C13118.4 (6)
O7—Cu4—N980.91 (16)O3—C14—C13115.0 (5)
N10i—Cu4—N995.0 (2)C16—C15—H15A109.5
O6—Cu4—N9167.46 (16)C16—C15—H15B109.5
O7—Cu4—O285.08 (17)H15A—C15—H15B109.5
N10i—Cu4—O296.7 (2)C16—C15—H15C109.5
O6—Cu4—O286.37 (17)H15A—C15—H15C109.5
N9—Cu4—O2100.27 (19)H15B—C15—H15C109.5
O7—Cu4—O877.75 (13)O1—C16—O2124.1 (7)
N10i—Cu4—O8102.05 (19)O1—C16—C15114.4 (7)
O6—Cu4—O871.18 (13)O2—C16—C15121.5 (7)
N9—Cu4—O899.06 (16)N3—C17—N4172.5 (6)
O2—Cu4—O8151.68 (15)N10—C18—N4172.2 (6)
C6—N1—C2120.0 (5)N5—C19—N6172.4 (7)
C6—N1—Cu3127.0 (4)N7—C20—N6171.8 (7)
C2—N1—Cu3113.0 (3)O8—C21—C22108.8 (4)
C12—N2—C8120.3 (5)O8—C21—H21A109.9
C12—N2—Cu2126.9 (4)C22—C21—H21A109.9
C8—N2—Cu2112.7 (4)O8—C21—H21B109.9
C17—N3—Cu3150.0 (5)C22—C21—H21B109.9
C18—N4—C17123.2 (6)H21A—C21—H21B108.3
C19—N5—Cu1164.6 (5)N8—C22—C23121.3 (5)
C19—N6—C20124.8 (6)N8—C22—C21114.8 (5)
C22—N8—C26119.5 (5)C23—C22—C21123.9 (5)
C22—N8—Cu1113.3 (4)C24—C23—C22119.2 (6)
C26—N8—Cu1127.2 (4)C24—C23—H23120.4
C32—N9—C28118.0 (5)C22—C23—H23120.4
C32—N9—Cu4128.6 (4)C23—C24—C25119.2 (6)
C28—N9—Cu4113.4 (3)C23—C24—H24120.4
C18—N10—Cu4ii165.5 (5)C25—C24—H24120.4
C16—O1—Cu3130.2 (5)C26—C25—C24119.1 (7)
C16—O2—Cu4126.5 (5)C26—C25—H25120.4
C14—O3—Cu2127.6 (4)C24—C25—H25120.4
C14—O4—Cu1127.1 (4)N8—C26—C25121.6 (6)
C1—O5—Cu1126.1 (3)N8—C26—H26119.2
C1—O5—Cu3111.5 (3)C25—C26—H26119.2
Cu1—O5—Cu3113.19 (19)O7—C27—C28110.0 (4)
C1—O5—Cu2114.0 (3)O7—C27—H27A109.7
Cu1—O5—Cu284.88 (12)C28—C27—H27A109.7
Cu3—O5—Cu2101.31 (14)O7—C27—H27B109.7
C7—O6—Cu2112.9 (3)C28—C27—H27B109.7
C7—O6—Cu4126.6 (3)H27A—C27—H27B108.2
Cu2—O6—Cu4110.52 (16)N9—C28—C29121.1 (5)
C7—O6—Cu3113.8 (3)N9—C28—C27114.8 (5)
Cu2—O6—Cu3101.10 (13)C29—C28—C27124.1 (5)
Cu4—O6—Cu386.02 (12)C30—C29—C28119.3 (6)
C27—O7—Cu3126.8 (3)C30—C29—H29120.4
C27—O7—Cu4113.9 (3)C28—C29—H29120.4
Cu3—O7—Cu4105.90 (18)C31—C30—C29119.4 (6)
C27—O7—Cu1112.8 (3)C31—C30—H30120.3
Cu3—O7—Cu190.69 (14)C29—C30—H30120.3
Cu4—O7—Cu1102.15 (14)C32—C31—C30118.5 (6)
C21—O8—Cu2125.3 (3)C32—C31—H31120.7
C21—O8—Cu1111.0 (3)C30—C31—H31120.7
Cu2—O8—Cu1103.23 (16)N9—C32—C31123.7 (6)
C21—O8—Cu4117.6 (3)N9—C32—H32118.1
Cu2—O8—Cu491.67 (13)C31—C32—H32118.1
Cu1—O8—Cu4104.99 (14)C34—C33—H33A109.5
O5—C1—C2109.7 (5)C34—C33—H33B109.5
O5—C1—H1A109.7H33A—C33—H33B109.5
C2—C1—H1A109.7C34—C33—H33C109.5
O5—C1—H1B109.7H33A—C33—H33C109.5
C2—C1—H1B109.7H33B—C33—H33C109.5
H1A—C1—H1B108.2N11—C34—C33178.5 (12)
N1—C2—C3121.1 (6)
O7—Cu3—N1—C6142.2 (7)N1—Cu3—O7—C27149.5 (7)
O1—Cu3—N1—C65.6 (5)N3—Cu3—O7—C2731.8 (5)
O5—Cu3—N1—C6165.2 (5)O6—Cu3—O7—C27154.1 (5)
N3—Cu3—N1—C6100.4 (5)O1—Cu3—O7—Cu474.8 (2)
O6—Cu3—N1—C688.4 (5)O5—Cu3—O7—Cu495.63 (18)
O7—Cu3—N1—C235.5 (9)N1—Cu3—O7—Cu472.9 (8)
O1—Cu3—N1—C2176.6 (4)N3—Cu3—O7—Cu4169.5 (2)
O5—Cu3—N1—C212.5 (4)O6—Cu3—O7—Cu416.50 (14)
N3—Cu3—N1—C281.9 (4)O1—Cu3—O7—Cu1177.61 (14)
O6—Cu3—N1—C289.4 (4)O5—Cu3—O7—Cu17.21 (13)
O8—Cu2—N2—C12159.7 (6)N1—Cu3—O7—Cu130.0 (7)
O6—Cu2—N2—C12168.3 (5)N3—Cu3—O7—Cu187.70 (16)
O3—Cu2—N2—C122.4 (5)O6—Cu3—O7—Cu186.34 (12)
O5—Cu2—N2—C1291.3 (5)O6—Cu4—O7—C27164.6 (4)
O8—Cu2—N2—C821.4 (10)N9—Cu4—O7—C2723.1 (4)
O6—Cu2—N2—C812.8 (4)O2—Cu4—O7—C2778.2 (4)
O3—Cu2—N2—C8176.4 (4)O8—Cu4—O7—C27124.5 (4)
O5—Cu2—N2—C889.9 (4)O6—Cu4—O7—Cu320.83 (18)
O7—Cu3—N3—C1710.9 (11)N9—Cu4—O7—Cu3166.8 (2)
O1—Cu3—N3—C1787.0 (11)O2—Cu4—O7—Cu365.60 (19)
O5—Cu3—N3—C1796.7 (11)O8—Cu4—O7—Cu391.75 (17)
N1—Cu3—N3—C17178.3 (11)O6—Cu4—O7—Cu173.43 (15)
O6—Cu3—N3—C1733.0 (15)N9—Cu4—O7—Cu198.91 (17)
O5—Cu1—N5—C1914 (2)O2—Cu4—O7—Cu1159.85 (17)
N8—Cu1—N5—C19176 (2)O8—Cu4—O7—Cu12.51 (12)
O4—Cu1—N5—C1976 (2)O5—Cu1—O7—C27138.6 (3)
O7—Cu1—N5—C1984 (2)N5—Cu1—O7—C2749.3 (4)
O5—Cu1—N8—C2259.7 (9)O8—Cu1—O7—C27125.9 (3)
N5—Cu1—N8—C22169.1 (4)N8—Cu1—O7—C2748.1 (4)
O8—Cu1—N8—C2214.5 (4)O4—Cu1—O7—C27177.8 (3)
O4—Cu1—N8—C2271.0 (4)O5—Cu1—O7—Cu37.72 (13)
O7—Cu1—N8—C2287.6 (4)N5—Cu1—O7—Cu381.6 (2)
O5—Cu1—N8—C26117.7 (8)O8—Cu1—O7—Cu3103.20 (16)
N5—Cu1—N8—C2613.5 (5)N8—Cu1—O7—Cu3178.93 (16)
O8—Cu1—N8—C26162.8 (5)O4—Cu1—O7—Cu351.3 (3)
O4—Cu1—N8—C26111.6 (5)O5—Cu1—O7—Cu498.72 (17)
O7—Cu1—N8—C2689.8 (5)N5—Cu1—O7—Cu4171.96 (19)
O7—Cu4—N9—C32166.3 (5)O8—Cu1—O7—Cu43.23 (16)
N10i—Cu4—N9—C3212.7 (6)N8—Cu1—O7—Cu474.64 (19)
O6—Cu4—N9—C32128.4 (7)O4—Cu1—O7—Cu455.1 (3)
O2—Cu4—N9—C32110.4 (5)O6—Cu2—O8—C21133.2 (4)
O8—Cu4—N9—C3290.4 (5)O3—Cu2—O8—C2156.3 (4)
O7—Cu4—N9—C2811.8 (4)N2—Cu2—O8—C21141.8 (7)
N10i—Cu4—N9—C28169.2 (4)O5—Cu2—O8—C21147.2 (4)
O6—Cu4—N9—C2849.7 (10)O6—Cu2—O8—Cu198.70 (16)
O2—Cu4—N9—C2871.4 (4)O3—Cu2—O8—Cu171.81 (17)
O8—Cu4—N9—C2887.8 (4)N2—Cu2—O8—Cu190.2 (7)
O7—Cu3—O1—C1640.5 (6)O5—Cu2—O8—Cu119.09 (13)
O5—Cu3—O1—C1668.3 (12)O6—Cu2—O8—Cu47.12 (12)
N1—Cu3—O1—C16132.0 (6)O3—Cu2—O8—Cu4177.63 (14)
N3—Cu3—O1—C16132.9 (6)N2—Cu2—O8—Cu415.7 (8)
O6—Cu3—O1—C1633.7 (6)O5—Cu2—O8—Cu486.73 (12)
O7—Cu4—O2—C1639.1 (6)O5—Cu1—O8—C21160.7 (4)
N10i—Cu4—O2—C16144.7 (6)N8—Cu1—O8—C2128.7 (4)
O6—Cu4—O2—C1650.3 (6)O4—Cu1—O8—C2171.0 (4)
N9—Cu4—O2—C16119.0 (6)O7—Cu1—O8—C21130.6 (4)
O8—Cu4—O2—C1613.4 (8)O5—Cu1—O8—Cu224.21 (17)
O8—Cu2—O3—C1438.0 (5)N8—Cu1—O8—Cu2165.2 (2)
O6—Cu2—O3—C1474.3 (11)O4—Cu1—O8—Cu265.51 (17)
N2—Cu2—O3—C14138.1 (5)O7—Cu1—O8—Cu292.85 (16)
O5—Cu2—O3—C1437.5 (5)O5—Cu1—O8—Cu471.17 (16)
O5—Cu1—O4—C1448.7 (5)N8—Cu1—O8—Cu499.37 (18)
N5—Cu1—O4—C14142.3 (5)O4—Cu1—O8—Cu4160.90 (16)
O8—Cu1—O4—C1441.0 (5)O7—Cu1—O8—Cu42.54 (12)
N8—Cu1—O4—C14121.2 (5)O7—Cu4—O8—C21127.3 (3)
O7—Cu1—O4—C148.5 (7)N10i—Cu4—O8—C2148.4 (4)
N5—Cu1—O5—C150.3 (5)O6—Cu4—O8—C21139.4 (3)
O8—Cu1—O5—C1134.0 (4)N9—Cu4—O8—C2148.8 (3)
N8—Cu1—O5—C1178.4 (7)O2—Cu4—O8—C21178.7 (4)
O4—Cu1—O5—C146.8 (4)O7—Cu4—O8—Cu2100.81 (15)
O7—Cu1—O5—C1152.0 (5)N10i—Cu4—O8—Cu283.47 (19)
N5—Cu1—O5—Cu393.4 (2)O6—Cu4—O8—Cu27.49 (13)
O8—Cu1—O5—Cu382.33 (19)N9—Cu4—O8—Cu2179.37 (14)
N8—Cu1—O5—Cu337.9 (8)O2—Cu4—O8—Cu246.8 (4)
O4—Cu1—O5—Cu3169.47 (19)O7—Cu4—O8—Cu13.36 (16)
O7—Cu1—O5—Cu38.30 (14)N10i—Cu4—O8—Cu1172.4 (2)
N5—Cu1—O5—Cu2166.47 (19)O6—Cu4—O8—Cu196.68 (17)
O8—Cu1—O5—Cu217.79 (13)N9—Cu4—O8—Cu175.20 (18)
N8—Cu1—O5—Cu262.2 (8)O2—Cu4—O8—Cu157.3 (4)
O4—Cu1—O5—Cu269.35 (13)Cu1—O5—C1—C2177.7 (3)
O7—Cu1—O5—Cu291.82 (12)Cu3—O5—C1—C233.4 (6)
O7—Cu3—O5—C1159.6 (4)Cu2—O5—C1—C280.5 (5)
O1—Cu3—O5—C190.6 (10)C6—N1—C2—C30.3 (8)
N1—Cu3—O5—C125.9 (4)Cu3—N1—C2—C3177.6 (5)
N3—Cu3—O5—C168.1 (4)C6—N1—C2—C1179.4 (5)
O6—Cu3—O5—C1126.0 (4)Cu3—N1—C2—C12.7 (6)
O7—Cu3—O5—Cu110.51 (18)O5—C1—C2—N123.7 (7)
O1—Cu3—O5—Cu1120.3 (9)O5—C1—C2—C3156.6 (6)
N1—Cu3—O5—Cu1175.0 (2)N1—C2—C3—C40.1 (10)
N3—Cu3—O5—Cu181.0 (2)C1—C2—C3—C4179.7 (6)
O6—Cu3—O5—Cu184.96 (17)C2—C3—C4—C50.6 (12)
O7—Cu3—O5—Cu278.73 (15)C3—C4—C5—C60.8 (13)
O1—Cu3—O5—Cu231.1 (10)C2—N1—C6—C50.1 (9)
N1—Cu3—O5—Cu295.74 (16)Cu3—N1—C6—C5177.5 (5)
N3—Cu3—O5—Cu2170.20 (16)C4—C5—C6—N10.4 (12)
O6—Cu3—O5—Cu24.28 (12)Cu2—O6—C7—C829.2 (6)
O8—Cu2—O5—C1146.3 (4)Cu4—O6—C7—C8171.1 (3)
O6—Cu2—O5—C1125.5 (4)Cu3—O6—C7—C885.4 (5)
O3—Cu2—O5—C148.3 (4)C12—N2—C8—C90.2 (8)
N2—Cu2—O5—C146.0 (4)Cu2—N2—C8—C9179.1 (4)
O8—Cu2—O5—Cu118.80 (14)C12—N2—C8—C7178.9 (5)
O6—Cu2—O5—Cu1107.08 (16)Cu2—N2—C8—C70.1 (6)
O3—Cu2—O5—Cu179.14 (16)O6—C7—C8—N218.9 (7)
N2—Cu2—O5—Cu1173.42 (16)O6—C7—C8—C9162.0 (5)
O8—Cu2—O5—Cu393.86 (17)N2—C8—C9—C100.2 (9)
O6—Cu2—O5—Cu35.58 (16)C7—C8—C9—C10178.8 (6)
O3—Cu2—O5—Cu3168.20 (17)C8—C9—C10—C110.1 (11)
N2—Cu2—O5—Cu373.9 (2)C9—C10—C11—C120.1 (11)
O8—Cu2—O6—C7157.9 (4)C8—N2—C12—C110.2 (9)
O3—Cu2—O6—C788.8 (9)Cu2—N2—C12—C11179.0 (5)
N2—Cu2—O6—C724.0 (4)C10—C11—C12—N20.2 (11)
O5—Cu2—O6—C7126.3 (4)Cu1—O4—C14—O38.5 (9)
O8—Cu2—O6—Cu49.77 (16)Cu1—O4—C14—C13173.0 (5)
O3—Cu2—O6—Cu4123.1 (8)Cu2—O3—C14—O46.1 (9)
N2—Cu2—O6—Cu4172.1 (2)Cu2—O3—C14—C13175.3 (5)
O5—Cu2—O6—Cu485.59 (16)Cu3—O1—C16—O29.4 (10)
O8—Cu2—O6—Cu380.10 (14)Cu3—O1—C16—C15169.3 (5)
O3—Cu2—O6—Cu333.2 (9)Cu4—O2—C16—O18.7 (10)
N2—Cu2—O6—Cu398.00 (17)Cu4—O2—C16—C15169.9 (5)
O5—Cu2—O6—Cu34.29 (12)Cu2—O8—C21—C22161.1 (4)
O7—Cu4—O6—C7132.1 (4)Cu1—O8—C21—C2236.3 (6)
N10i—Cu4—O6—C749.5 (5)Cu4—O8—C21—C2284.6 (5)
N9—Cu4—O6—C7169.4 (7)C26—N8—C22—C231.3 (8)
O2—Cu4—O6—C746.9 (4)Cu1—N8—C22—C23178.9 (5)
O8—Cu4—O6—C7150.6 (4)C26—N8—C22—C21179.4 (5)
O7—Cu4—O6—Cu285.25 (18)Cu1—N8—C22—C211.8 (6)
N10i—Cu4—O6—Cu293.2 (2)O8—C21—C22—N825.0 (7)
N9—Cu4—O6—Cu247.9 (8)O8—C21—C22—C23155.8 (5)
O2—Cu4—O6—Cu2170.37 (19)N8—C22—C23—C242.6 (9)
O8—Cu4—O6—Cu27.91 (13)C21—C22—C23—C24178.3 (6)
O7—Cu4—O6—Cu315.12 (13)C22—C23—C24—C252.2 (10)
N10i—Cu4—O6—Cu3166.41 (19)C23—C24—C25—C260.5 (10)
N9—Cu4—O6—Cu352.5 (8)C22—N8—C26—C250.3 (9)
O2—Cu4—O6—Cu370.00 (15)Cu1—N8—C26—C25176.9 (5)
O8—Cu4—O6—Cu392.46 (11)C24—C25—C26—N80.7 (10)
O7—Cu3—O6—C7144.4 (4)Cu3—O7—C27—C28163.7 (4)
O1—Cu3—O6—C747.3 (4)Cu4—O7—C27—C2828.8 (6)
O5—Cu3—O6—C7126.9 (4)Cu1—O7—C27—C2887.0 (5)
N1—Cu3—O6—C747.6 (4)C32—N9—C28—C290.2 (8)
N3—Cu3—O6—C7167.4 (6)Cu4—N9—C28—C29178.2 (5)
O7—Cu3—O6—Cu294.31 (18)C32—N9—C28—C27179.1 (5)
O1—Cu3—O6—Cu2168.59 (18)Cu4—N9—C28—C270.7 (6)
O5—Cu3—O6—Cu25.56 (16)O7—C27—C28—N918.9 (7)
N1—Cu3—O6—Cu273.76 (18)O7—C27—C28—C29160.0 (6)
N3—Cu3—O6—Cu271.3 (7)N9—C28—C29—C300.2 (10)
O7—Cu3—O6—Cu415.83 (14)C27—C28—C29—C30179.0 (6)
O1—Cu3—O6—Cu481.26 (17)C28—C29—C30—C310.2 (11)
O5—Cu3—O6—Cu4104.59 (15)C29—C30—C31—C320.7 (11)
N1—Cu3—O6—Cu4176.09 (16)C28—N9—C32—C310.4 (9)
N3—Cu3—O6—Cu438.8 (7)Cu4—N9—C32—C31178.5 (5)
O1—Cu3—O7—C2762.8 (5)C30—C31—C32—N90.8 (10)
O5—Cu3—O7—C27126.8 (5)
Symmetry codes: (i) x+1, y, z+1; (ii) x1, y, z1.

Experimental details

Crystal data
Chemical formula[Cu4(C6H6NO)4(C2H3O2)2(C2N3)2]·C2H3N
Mr977.87
Crystal system, space groupMonoclinic, P21
Temperature (K)298
a, b, c (Å)10.316 (1), 19.7793 (19), 10.6749 (11)
β (°) 118.437 (2)
V3)1915.3 (3)
Z2
Radiation typeMo Kα
µ (mm1)2.26
Crystal size (mm)0.45 × 0.38 × 0.21
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.430, 0.649
No. of measured, independent and
observed [I > 2/s(I)] reflections
12122, 8708, 7116
Rint0.041
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.116, 1.05
No. of reflections8708
No. of parameters517
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.61, 0.61
Absolute structureFlack (1983), with 3893 Friedel pairs
Absolute structure parameter0.020 (15)

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cu1—O51.957 (4)Cu3—O71.941 (4)
Cu1—N51.967 (5)Cu3—O11.956 (4)
Cu1—O81.973 (3)Cu3—O51.964 (4)
Cu1—N81.998 (5)Cu3—N12.008 (4)
Cu1—O42.321 (4)Cu3—N32.389 (5)
Cu1—O72.612 (4)Cu3—O62.551 (3)
Cu2—O81.935 (4)Cu4—O71.951 (4)
Cu2—O61.955 (4)Cu4—N10i1.954 (5)
Cu2—O31.957 (4)Cu4—O61.958 (4)
Cu2—N22.003 (5)Cu4—N92.015 (5)
Cu2—O52.538 (3)Cu4—O22.448 (6)
Cu2—N7i2.497 (6)Cu4—O82.514 (4)
Symmetry code: (i) x+1, y, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds