Download citation
Download citation
link to html
The environment of the U atom in the title compound, (C4H12N)4[UO2(CO3)3]·8H2O, presents a typical hexa­gonal bipyramidal geometry found in many actinide complexes. It is a model for actinide species and consists of common environmental moieties (carbonate, water and ammonia species). The structure displays a sheet-like hydrogen-bonding network formed from crystallization water mol­ecules and carbonate ligands. The compound is isomorphous with a previously described Np isolog [Grigorev et al. (1997). Radiokhimiya (Russ. Radiochem.), 39, 325-329].

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270111032641/bg3140sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270111032641/bg3140Isup2.hkl
Contains datablock I

CCDC reference: 846629

Comment top

The total amount of uranium resource in seawater is about 4.5 billion tons ([U] ~ 3 p.p.b., ocean volume ~ 1.37 × 109 km3), 1000 times the amount of uranium in terrestrial ores (Davies et al., 1964). Therefore, the ocean would virtually be a limitless reservoir as a source of uranium if the uranium could be extracted from seawater at an economically competitive cost. Because the dioxouranium(VI) tricarbonate anion, UO2(CO3)4-, is considered to be the dominant uranium species in seawater, there is great interest in revealing its structure and stability. Single crystals of the title compound were obtained in alkaline solutions in the presence of 1-hydroxyethane-1,1-diphosphonic acid (HEDPA), a ligand that forms a number of strong complexes with UO22+ in acid and basic solutions (Reed et al., 2007). The results indicate that the carbonate anions, having formed when CO2 was absorbed in the hydroxide solution, could effectively compete with HEDPA to complex UO22+. The structure of the title compound is compared with that of an isomorphous NpVI analogue previously reported (Grigorev et al., 1997).

The uranium adopts a typical distorted hexagonal bipyramidal geometry with the UO2 moiety acting as the axis (Fig. 1). Predictably, the angles formed by the O atoms of each carbonate coordinating the uranium are more constrained than the O—U—O angle formed between O atoms on adjacent carbonates. However, these angles do not deviate excessively from the ideal angle of 60°. The structure of the uranyl tricarbonate anion is otherwise comparable with the previously reported NpVI complex. The An—O [An = actinide?] equatorial distance and the OAnO angle are very similar in the two compounds (Table 2). The shorter Np—Oax distance reflects the higher charge density of Np compared with U owing to the contraction along the actinide series.

Of particular interest, with regards to the premise that this compound could be formed as a product from aqueous media (seawater), is the extensive hydrogen-bonding displayed within the structure (Fig. 2). All eight waters of crystallization are invloved in the network and all but two of the carbonate oxygen atoms (O3 and O6). The uranyl O atoms are not involved in the hydrogen-bond network, thus restricting the geometry to a planar arrangement. The tetramethylammonium cations are located between the layers formed by the water/cation hydrogen-bonding network, further bounding the hydrogen-bonding to two dimensions. This cation/anion layering is identical to that observed in the NpVI complex.

Two of the water molecules are involved in hydrogen bonding exclusively to other water molecules. O6W forms hydrogen bonds to O4W and O5W and accepts one hydrogen bond from O8W, and O8W donates hydrogen bonds to O1W and O6W as well as accepting a hydrogen bond from O7W. O3W and O4W form hydrogen bonds with carbonates on adjacent uranyl complexes, forming a hydrogen-bonded bridge. O1W, in concert with O2W, also forms a bridge between carbonates of the same uranyl complexes as O3W and O4W. This hydrogen bonding extends the network along the a direction. In a similar concerted hydrogen-bonding scheme, O7W and O5W also form a hydrogen-bonded bridge between carbonates on adjacent uranyl complexes. However, this acts to extend the network along the b direction. The result of these hydrogen-bonding interactions is a two-dimensional sheet of uranyl tricarbonate anions and water molecules which extends through the lattice parallel to the a/b plane. This too is identical to that observed in the NpVI complex.

We have demonstrated that uranyl carbonate can form under mildly basic conditions in the presence of CO2, resulting in a crystalline compound that has a geometry identical to that of a previously characterized NpVI tricarbonate complex.

Related literature top

For related literature, see: Davies et al. (1964); Grigorev et al. (1997); Reed et al. (2007).

Experimental top

Crystals of the title compound were obtained by slow evaporation in air (~ 6 weeks) at room temperature and under ambient pressure from an aqueous solution (25 ml) containing uranyl 1-hydroxyethane-1,1-diphosphonate (dissolved as 0.3 g yellow solid) and tetramethylammonium hydroxide (0.2 M). Transparent yellow crystals were mounted on a glass fiber using Paratone N hydrocarbon oil for data collection.

Refinement top

Methyl H atoms were included in geometrically calculated positions with C—H bond distances restrained to 0.98 Å. Water H atoms were included in their observed positions, but were subsequently refined with an O—H bond distance restraint of 0.85 (1) Å. All water H atoms were found to form good hydrogen bonds to nearby hydrogen-bond acceptor atoms. Thermal parameters of the H atoms were tied to that of the atom to which they are bonded (1.5× for methyl, 1.2× for water).

Two of the four tetramethylammonium cations were found to exhibit positional disorder. For one molecule the disorder was a simple 50:50 split over two sites. The other, upon investigation, showed that there was some preference for one site over the other. Subesequently it was refined with site occupancies for the major and minor component summed to unity. The final occupancies are approximately 0.63:0.37. The disordered carbon atoms were refined with isotropic thermal parameters.

One reflection, [0 0 2], was omitted from the refinement. The Fobs for this reflection is significantly smaller than Fcalc, though non-zero. Presumably, this reflection was partially eclipsed by the beam-stop during data collection.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: APEX2 (Bruker, 2008); data reduction: APEX2 or SAINT? (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Sheldrick, 2008); POV-RAY (Cason, 2003); DIAMOND (Brandenburg, 2009); software used to prepare material for publication: XCIF (Sheldrick, 2008); enCIFer (Allen et al., 2004); publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, shown with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Hydrogen-bonding network depiction viewed (a) along the c axis, showing an individual [UO2(CO3)3].8H2O layer of hydrogen-bonded molecules and (b) along the b axis, including N(CH3)4 molecules depicting the layering. Blue dotted lines represent hydrogen-bond interactions.
Tetrakis(tetramethylammonium) tricarbonatodioxidouranate octahydrate top
Crystal data top
(C4H12N4)[UO2(CO3)3]·8H2OF(000) = 1800
Mr = 890.77Dx = 1.614 Mg m3
Monoclinic, P21/nSynchrotron radiation, λ = 0.7750 Å
Hall symbol: -P 2ynCell parameters from 7411 reflections
a = 10.5377 (18) Åθ = 4.8–63.0°
b = 12.358 (2) ŵ = 2.46 mm1
c = 28.533 (5) ÅT = 173 K
β = 99.343 (4)°Block, blue
V = 3666.5 (11) Å30.07 × 0.05 × 0.05 mm
Z = 4
Data collection top
Bruker Platinum 200
diffractometer
7499 independent reflections
Radiation source: ALS at Lawrence Berkeley National Laboratory, Beamline 11.3.16587 reflections with I > 2σ(I)
Channel-cut Si-<111> crystal monochromatorRint = 0.039
Detector resolution: 8.33 pixels mm-1θmax = 29.0°, θmin = 1.6°
combination of /w and /f–scansh = 1311
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
k = 1515
Tmin = 0.847, Tmax = 0.887l = 3435
26534 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.072H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0387P)2 + 2.5078P]
where P = (Fo2 + 2Fc2)/3
7499 reflections(Δ/σ)max = 0.002
429 parametersΔρmax = 1.70 e Å3
24 restraintsΔρmin = 0.79 e Å3
Crystal data top
(C4H12N4)[UO2(CO3)3]·8H2OV = 3666.5 (11) Å3
Mr = 890.77Z = 4
Monoclinic, P21/nSynchrotron radiation, λ = 0.7750 Å
a = 10.5377 (18) ŵ = 2.46 mm1
b = 12.358 (2) ÅT = 173 K
c = 28.533 (5) Å0.07 × 0.05 × 0.05 mm
β = 99.343 (4)°
Data collection top
Bruker Platinum 200
diffractometer
7499 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
6587 reflections with I > 2σ(I)
Tmin = 0.847, Tmax = 0.887Rint = 0.039
26534 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02724 restraints
wR(F2) = 0.072H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 1.70 e Å3
7499 reflectionsΔρmin = 0.79 e Å3
429 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
U10.442060 (11)0.646195 (9)0.122533 (4)0.02233 (6)
O10.4361 (3)0.6351 (2)0.05922 (9)0.0338 (6)
O20.4470 (3)0.6572 (2)0.18619 (9)0.0354 (6)
O30.2580 (2)0.5261 (2)0.11497 (9)0.0338 (6)
O40.2150 (2)0.6989 (2)0.11117 (10)0.0361 (6)
O50.0520 (3)0.5805 (2)0.10326 (11)0.0443 (7)
O60.4107 (3)0.8393 (2)0.11343 (12)0.0441 (7)
O70.6086 (3)0.7827 (2)0.12703 (10)0.0394 (6)
O80.5722 (3)0.9577 (2)0.11260 (15)0.0658 (10)
O90.6603 (2)0.5727 (2)0.13418 (9)0.0339 (6)
O100.5045 (2)0.4572 (2)0.13426 (10)0.0369 (6)
O110.7073 (3)0.3960 (2)0.14452 (12)0.0473 (7)
C10.1703 (3)0.6006 (3)0.10967 (12)0.0298 (8)
C20.5313 (4)0.8639 (3)0.11778 (16)0.0398 (10)
C30.6274 (4)0.4708 (3)0.13763 (12)0.0316 (8)
N110.2254 (4)0.4390 (4)0.26529 (13)0.0587 (11)
C110.2467 (18)0.4810 (15)0.3103 (6)0.143 (7)*0.646 (13)
H11A0.19900.43870.33070.214*0.646 (13)
H11B0.21750.55640.30940.214*0.646 (13)
H11C0.33880.47800.32300.214*0.646 (13)
C120.2691 (13)0.4941 (10)0.2280 (4)0.097 (4)*0.646 (13)
H12A0.24270.45470.19830.146*0.646 (13)
H12B0.36320.49910.23460.146*0.646 (13)
H12C0.23220.56700.22520.146*0.646 (13)
C130.0899 (12)0.4001 (11)0.2525 (5)0.105 (4)*0.646 (13)
H13A0.06330.36480.28010.157*0.646 (13)
H13B0.08440.34830.22630.157*0.646 (13)
H13C0.03330.46180.24280.157*0.646 (13)
C140.3028 (14)0.3289 (11)0.2757 (5)0.105 (4)*0.646 (13)
H14A0.26590.28680.29930.158*0.646 (13)
H14B0.39320.34500.28790.158*0.646 (13)
H14C0.29710.28710.24620.158*0.646 (13)
C11A0.199 (2)0.5117 (18)0.3052 (7)0.079 (6)*0.354 (13)
H11D0.27480.55730.31560.118*0.354 (13)
H11E0.18160.46740.33190.118*0.354 (13)
H11F0.12480.55770.29400.118*0.354 (13)
C12A0.162 (3)0.479 (2)0.2181 (9)0.138 (11)*0.354 (13)
H12D0.21270.53800.20770.206*0.354 (13)
H12E0.07550.50570.22060.206*0.354 (13)
H12F0.15500.41990.19500.206*0.354 (13)
C13A0.180 (5)0.330 (3)0.2629 (16)0.22 (2)*0.354 (13)
H13D0.19060.29970.29490.328*0.354 (13)
H13E0.22910.28750.24320.328*0.354 (13)
H13F0.08860.32930.24880.328*0.354 (13)
C14A0.368 (3)0.453 (3)0.2635 (12)0.169 (14)*0.354 (13)
H14D0.39460.52630.27420.253*0.354 (13)
H14E0.38310.44280.23080.253*0.354 (13)
H14F0.41730.39980.28430.253*0.354 (13)
N120.7413 (4)0.1367 (3)0.02725 (12)0.0404 (8)
C210.8398 (10)0.2057 (9)0.0057 (4)0.055 (3)*0.50
H21A0.79710.23990.02370.083*0.50
H21B0.90960.15910.00140.083*0.50
H21C0.87510.26170.02840.083*0.50
C220.6521 (17)0.2096 (15)0.0418 (6)0.110 (5)*0.50
H22A0.58780.16920.05590.165*0.50
H22B0.60930.25040.01420.165*0.50
H22C0.69740.26000.06530.165*0.50
C230.8203 (12)0.0871 (10)0.0720 (4)0.067 (3)*0.50
H23A0.76460.04150.08800.100*0.50
H23B0.85700.14500.09350.100*0.50
H23C0.88990.04300.06300.100*0.50
C240.6860 (18)0.0472 (14)0.0021 (6)0.115 (5)*0.50
H24A0.62540.00790.01430.173*0.50
H24B0.75470.00190.00810.173*0.50
H24C0.64070.07510.03240.173*0.50
C21A0.8158 (11)0.1710 (9)0.0090 (4)0.055 (3)*0.50
H21D0.79160.12700.03760.083*0.50
H21E0.90770.16160.00300.083*0.50
H21F0.79810.24740.01660.083*0.50
C22A0.7055 (12)0.2275 (9)0.0583 (4)0.060 (3)*0.50
H22D0.64080.20170.07670.090*0.50
H22E0.67040.28840.03830.090*0.50
H22F0.78220.25130.08000.090*0.50
C23A0.7953 (13)0.0434 (11)0.0544 (5)0.080 (4)*0.50
H23D0.72650.00420.06650.120*0.50
H23E0.85940.06770.08120.120*0.50
H23F0.83620.00450.03400.120*0.50
C24A0.6091 (12)0.1089 (11)0.0012 (4)0.071 (3)*0.50
H24D0.56090.06480.01840.106*0.50
H24E0.62020.06840.02980.106*0.50
H24F0.56160.17590.01040.106*0.50
N130.7610 (3)0.6324 (2)0.00265 (11)0.0332 (7)
C310.6349 (5)0.6487 (4)0.02810 (18)0.0607 (14)
H31A0.56590.64150.00900.091*
H31B0.62350.59430.05340.091*
H31C0.63190.72120.04220.091*
C320.7656 (6)0.5224 (4)0.02334 (17)0.0619 (14)
H32A0.69830.51530.04320.093*
H32B0.84990.51040.04280.093*
H32C0.75150.46870.00230.093*
C330.7805 (5)0.7126 (4)0.04230 (17)0.0613 (13)
H33A0.71260.70390.06180.092*
H33B0.77700.78600.02920.092*
H33C0.86450.70060.06200.092*
C340.8651 (6)0.6436 (4)0.0272 (2)0.0700 (17)
H34A0.85140.59060.05300.105*
H34B0.94900.63090.00750.105*
H34C0.86290.71680.04050.105*
N140.7320 (3)0.6520 (2)0.27944 (11)0.0353 (7)
C410.7212 (5)0.5493 (4)0.25177 (15)0.0510 (11)
H41A0.79520.54230.23510.076*
H41B0.64170.55010.22860.076*
H41C0.71960.48790.27340.076*
C420.7290 (5)0.7468 (4)0.24735 (16)0.0557 (12)
H42A0.80270.74350.23040.083*
H42B0.73330.81350.26610.083*
H42C0.64900.74580.22440.083*
C430.6183 (6)0.6598 (4)0.3043 (2)0.0627 (14)
H43A0.53930.65870.28080.094*
H43B0.62270.72740.32240.094*
H43C0.61830.59830.32600.094*
C440.8531 (6)0.6536 (4)0.3141 (2)0.0694 (17)
H44A0.92650.64790.29710.104*
H44B0.85390.59240.33600.104*
H44C0.85880.72150.33210.104*
O1W0.0500 (4)0.8750 (3)0.09455 (15)0.0626 (10)
H1OA0.108 (4)0.836 (4)0.1105 (17)0.075*
H1OB0.012 (3)0.876 (4)0.1109 (17)0.075*
O2W0.8586 (3)0.8711 (3)0.15330 (14)0.0587 (9)
H2OA0.890 (4)0.809 (3)0.1635 (19)0.070*
H2OB0.7763 (18)0.865 (4)0.150 (2)0.070*
O3W0.9048 (3)0.6491 (3)0.16917 (12)0.0572 (9)
H3OA0.957 (3)0.631 (4)0.1522 (16)0.069*
H3OB0.829 (2)0.634 (4)0.1582 (18)0.069*
O4W0.9434 (3)0.3841 (3)0.11694 (14)0.0570 (9)
H4OA0.982 (4)0.444 (3)0.1153 (18)0.068*
H4OB0.872 (3)0.397 (4)0.1265 (18)0.068*
O5W0.3789 (3)0.2741 (3)0.15696 (12)0.0539 (8)
H5OA0.384 (5)0.231 (3)0.1350 (13)0.065*
H5OB0.411 (5)0.334 (2)0.1523 (17)0.065*
O6W0.1166 (3)0.2266 (3)0.14617 (15)0.0615 (9)
H6OA0.065 (4)0.277 (3)0.1362 (18)0.074*
H6OB0.191 (2)0.250 (4)0.1564 (18)0.074*
O7W0.3976 (4)0.1130 (3)0.08948 (15)0.0607 (9)
H7OA0.449 (3)0.062 (3)0.098 (2)0.073*
H7OB0.3203 (19)0.097 (4)0.088 (2)0.073*
O8W0.1363 (4)0.0774 (3)0.07359 (15)0.0706 (10)
H8OA0.119 (6)0.0128 (19)0.0818 (18)0.085*
H8OB0.125 (6)0.120 (3)0.0962 (15)0.085*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
U10.01976 (8)0.02310 (8)0.02412 (8)0.00029 (5)0.00349 (5)0.00004 (5)
O10.0363 (16)0.0380 (15)0.0265 (12)0.0027 (11)0.0034 (11)0.0017 (10)
O20.0344 (15)0.0451 (17)0.0261 (12)0.0011 (12)0.0030 (11)0.0042 (11)
O30.0247 (14)0.0256 (13)0.0511 (15)0.0008 (11)0.0059 (11)0.0004 (11)
O40.0217 (13)0.0288 (14)0.0570 (16)0.0012 (11)0.0038 (11)0.0005 (12)
O50.0219 (14)0.0436 (17)0.0680 (19)0.0035 (12)0.0086 (12)0.0000 (14)
O60.0295 (16)0.0290 (15)0.074 (2)0.0028 (11)0.0080 (14)0.0013 (13)
O70.0261 (14)0.0301 (14)0.0615 (17)0.0031 (12)0.0059 (12)0.0013 (13)
O80.055 (2)0.0276 (16)0.118 (3)0.0135 (15)0.023 (2)0.0063 (18)
O90.0242 (13)0.0300 (14)0.0481 (14)0.0003 (11)0.0076 (11)0.0043 (12)
O100.0223 (14)0.0277 (14)0.0603 (17)0.0031 (11)0.0056 (11)0.0058 (12)
O110.0327 (16)0.0328 (15)0.079 (2)0.0135 (13)0.0160 (14)0.0141 (15)
C10.0245 (19)0.0338 (19)0.0313 (17)0.0031 (16)0.0047 (14)0.0009 (15)
C20.034 (2)0.032 (2)0.055 (2)0.0088 (17)0.0114 (18)0.0062 (17)
C30.030 (2)0.032 (2)0.0336 (18)0.0005 (16)0.0079 (14)0.0028 (15)
N110.073 (3)0.069 (3)0.0355 (18)0.027 (2)0.0121 (17)0.0072 (19)
N120.043 (2)0.043 (2)0.0357 (17)0.0020 (16)0.0086 (14)0.0034 (14)
N130.0366 (19)0.0322 (17)0.0318 (16)0.0027 (14)0.0083 (13)0.0030 (13)
C310.053 (3)0.069 (4)0.053 (3)0.017 (2)0.010 (2)0.005 (2)
C320.085 (4)0.041 (3)0.055 (3)0.002 (3)0.000 (3)0.013 (2)
C330.077 (4)0.055 (3)0.052 (3)0.006 (3)0.010 (2)0.021 (2)
C340.065 (4)0.078 (4)0.078 (4)0.016 (3)0.043 (3)0.014 (3)
N140.042 (2)0.0348 (18)0.0279 (15)0.0042 (14)0.0018 (13)0.0019 (12)
C410.075 (3)0.035 (2)0.043 (2)0.002 (2)0.010 (2)0.0078 (18)
C420.080 (4)0.041 (3)0.045 (2)0.003 (2)0.007 (2)0.007 (2)
C430.072 (4)0.058 (3)0.065 (3)0.006 (3)0.032 (3)0.005 (2)
C440.060 (4)0.064 (4)0.071 (3)0.013 (3)0.028 (3)0.014 (3)
O1W0.057 (2)0.048 (2)0.090 (3)0.0148 (17)0.035 (2)0.0200 (18)
O2W0.0337 (18)0.076 (2)0.067 (2)0.0078 (17)0.0089 (16)0.0017 (19)
O3W0.0383 (19)0.083 (3)0.0521 (19)0.0125 (17)0.0136 (15)0.0230 (16)
O4W0.038 (2)0.0378 (17)0.098 (3)0.0048 (14)0.0186 (19)0.0078 (17)
O5W0.054 (2)0.0350 (17)0.075 (2)0.0030 (15)0.0156 (17)0.0019 (16)
O6W0.0397 (19)0.0483 (19)0.098 (3)0.0059 (15)0.0166 (19)0.0138 (19)
O7W0.056 (2)0.0438 (19)0.084 (3)0.0014 (17)0.017 (2)0.0004 (18)
O8W0.075 (3)0.044 (2)0.090 (3)0.0017 (19)0.004 (2)0.0047 (19)
Geometric parameters (Å, º) top
U1—O11.803 (3)C14A—H14E0.9800
U1—O21.814 (3)C14A—H14F0.9800
U1—O62.418 (3)C21—H21A0.9800
U1—O72.423 (3)C21—H21B0.9800
U1—O32.424 (2)C21—H21C0.9800
U1—O102.435 (3)C22—H22A0.9800
U1—O92.444 (3)C22—H22B0.9800
U1—O42.450 (3)C22—H22C0.9800
U1—C22.860 (4)C23—H23A0.9800
U1—C12.883 (4)C23—H23B0.9800
U1—C32.902 (4)C23—H23C0.9800
O3—C11.296 (4)C24—H24A0.9800
O4—C11.301 (5)C24—H24B0.9800
O5—C11.255 (4)C24—H24C0.9800
O6—C21.293 (5)C21A—H21D0.9800
O7—C21.293 (5)C21A—H21E0.9800
O8—C21.254 (5)C21A—H21F0.9800
O9—C31.313 (4)C22A—H22D0.9800
O10—C31.295 (4)C22A—H22E0.9800
O11—C31.245 (5)C22A—H22F0.9800
N11—C111.370 (17)C23A—H23D0.9800
N11—C121.402 (12)C23A—H23E0.9800
N11—C13A1.42 (4)C23A—H23F0.9800
N11—C12A1.49 (3)C24A—H24D0.9800
N11—C131.494 (13)C24A—H24E0.9800
N11—C11A1.51 (2)C24A—H24F0.9800
N11—C14A1.52 (3)C31—H31A0.9800
N11—C141.589 (14)C31—H31B0.9800
N12—C221.412 (18)C31—H31C0.9800
N12—C241.452 (16)C32—H32A0.9800
N12—C23A1.453 (13)C32—H32B0.9800
N12—C21A1.458 (11)C32—H32C0.9800
N12—C22A1.515 (12)C33—H33A0.9800
N12—C24A1.534 (12)C33—H33B0.9800
N12—C231.535 (11)C33—H33C0.9800
N12—C211.545 (11)C34—H34A0.9800
N13—C321.479 (5)C34—H34B0.9800
N13—C311.483 (6)C34—H34C0.9800
N13—C331.494 (5)C41—H41A0.9800
N13—C341.500 (6)C41—H41B0.9800
N14—C441.482 (6)C41—H41C0.9800
N14—C421.483 (5)C42—H42A0.9800
N14—C411.490 (5)C42—H42B0.9800
N14—C431.491 (6)C42—H42C0.9800
C11—H11A0.9800C43—H43A0.9800
C11—H11B0.9800C43—H43B0.9800
C11—H11C0.9800C43—H43C0.9800
C12—H12A0.9800C44—H44A0.9800
C12—H12B0.9800C44—H44B0.9800
C12—H12C0.9800C44—H44C0.9800
C13—H13A0.9800O1W—H1OA0.854 (19)
C13—H13B0.9800O1W—H1OB0.864 (19)
C13—H13C0.9800O2W—H2OA0.861 (19)
C14—H14A0.9800O2W—H2OB0.861 (19)
C14—H14B0.9800O3W—H3OA0.825 (19)
C14—H14C0.9800O3W—H3OB0.835 (19)
C11A—H11D0.9800O4W—H4OA0.850 (19)
C11A—H11E0.9800O4W—H4OB0.857 (19)
C11A—H11F0.9800O5W—H5OA0.832 (18)
C12A—H12D0.9800O5W—H5OB0.836 (19)
C12A—H12E0.9800O6W—H6OA0.839 (19)
C12A—H12F0.9800O6W—H6OB0.841 (19)
C13A—H13D0.9800O7W—H7OA0.844 (19)
C13A—H13E0.9800O7W—H7OB0.833 (19)
C13A—H13F0.9800O8W—H8OA0.859 (19)
C14A—H14D0.9800O8W—H8OB0.853 (19)
O1—U1—O2179.63 (11)N11—C14A—H14E109.5
O1—U1—O689.15 (11)H14D—C14A—H14E109.5
O2—U1—O690.85 (11)N11—C14A—H14F109.5
O1—U1—O790.75 (11)H14D—C14A—H14F109.5
O2—U1—O789.55 (11)H14E—C14A—H14F109.5
O6—U1—O753.39 (10)C22—N12—C24115.6 (11)
O1—U1—O388.11 (11)C23A—N12—C21A113.6 (7)
O2—U1—O391.57 (11)C23A—N12—C22A112.8 (7)
O6—U1—O3120.10 (9)C21A—N12—C22A114.4 (7)
O7—U1—O3173.43 (8)C23A—N12—C24A110.4 (8)
O1—U1—O1091.71 (10)C21A—N12—C24A103.7 (7)
O2—U1—O1088.34 (11)C22A—N12—C24A100.6 (7)
O6—U1—O10172.27 (9)C22—N12—C23107.9 (9)
O7—U1—O10118.91 (9)C24—N12—C23106.8 (9)
O3—U1—O1067.61 (8)C22—N12—C21106.7 (9)
O1—U1—O989.27 (11)C24—N12—C21115.0 (9)
O2—U1—O991.05 (11)C23—N12—C21104.1 (7)
O6—U1—O9119.38 (9)N12—C21—H21A109.5
O7—U1—O966.05 (9)N12—C21—H21B109.5
O3—U1—O9120.39 (8)H21A—C21—H21B109.5
O10—U1—O952.97 (8)N12—C21—H21C109.5
O1—U1—O490.73 (11)H21A—C21—H21C109.5
O2—U1—O488.93 (11)H21B—C21—H21C109.5
O6—U1—O467.04 (9)N12—C22—H22A109.5
O7—U1—O4120.38 (9)N12—C22—H22B109.5
O3—U1—O453.19 (8)H22A—C22—H22B109.5
O10—U1—O4120.61 (9)N12—C22—H22C109.5
O9—U1—O4173.57 (8)H22A—C22—H22C109.5
O1—U1—C288.97 (12)H22B—C22—H22C109.5
O2—U1—C291.20 (12)N12—C23—H23A109.5
O6—U1—C226.71 (11)N12—C23—H23B109.5
O7—U1—C226.72 (11)H23A—C23—H23B109.5
O3—U1—C2146.75 (11)N12—C23—H23C109.5
O10—U1—C2145.61 (11)H23A—C23—H23C109.5
O9—U1—C292.68 (11)H23B—C23—H23C109.5
O4—U1—C293.75 (11)N12—C24—H24A109.5
O1—U1—C189.14 (11)N12—C24—H24B109.5
O2—U1—C190.48 (11)H24A—C24—H24B109.5
O6—U1—C193.66 (11)N12—C24—H24C109.5
O7—U1—C1147.04 (10)H24A—C24—H24C109.5
O3—U1—C126.50 (10)H24B—C24—H24C109.5
O10—U1—C194.03 (10)N12—C21A—H21D109.5
O9—U1—C1146.89 (10)N12—C21A—H21E109.5
O4—U1—C126.69 (10)H21D—C21A—H21E109.5
C2—U1—C1120.36 (12)N12—C21A—H21F109.5
O1—U1—C390.31 (11)H21D—C21A—H21F109.5
O2—U1—C389.89 (11)H21E—C21A—H21F109.5
O6—U1—C3146.10 (10)N12—C22A—H22D109.5
O7—U1—C392.73 (10)N12—C22A—H22E109.5
O3—U1—C393.75 (10)H22D—C22A—H22E109.5
O10—U1—C326.25 (9)N12—C22A—H22F109.5
O9—U1—C326.72 (9)H22D—C22A—H22F109.5
O4—U1—C3146.86 (10)H22E—C22A—H22F109.5
C2—U1—C3119.39 (11)N12—C23A—H23D109.5
C1—U1—C3120.23 (11)N12—C23A—H23E109.5
C1—O3—U196.9 (2)H23D—C23A—H23E109.5
C1—O4—U195.6 (2)N12—C23A—H23F109.5
C2—O6—U196.1 (2)H23D—C23A—H23F109.5
C2—O7—U195.9 (2)H23E—C23A—H23F109.5
C3—O9—U196.5 (2)N12—C24A—H24D109.5
C3—O10—U197.5 (2)N12—C24A—H24E109.5
O5—C1—O3123.3 (3)H24D—C24A—H24E109.5
O5—C1—O4122.3 (3)N12—C24A—H24F109.5
O3—C1—O4114.3 (3)H24D—C24A—H24F109.5
O5—C1—U1178.9 (3)H24E—C24A—H24F109.5
O3—C1—U156.57 (17)C32—N13—C31109.2 (4)
O4—C1—U157.75 (17)C32—N13—C33108.4 (3)
O8—C2—O7121.7 (4)C31—N13—C33110.9 (4)
O8—C2—O6123.8 (4)C32—N13—C34109.4 (4)
O7—C2—O6114.5 (3)C31—N13—C34108.6 (4)
O8—C2—U1175.7 (3)C33—N13—C34110.2 (4)
O7—C2—U157.41 (19)N13—C31—H31A109.5
O6—C2—U157.19 (19)N13—C31—H31B109.5
O11—C3—O10123.9 (3)H31A—C31—H31B109.5
O11—C3—O9123.0 (3)N13—C31—H31C109.5
O10—C3—O9113.1 (3)H31A—C31—H31C109.5
O11—C3—U1179.4 (3)H31B—C31—H31C109.5
O10—C3—U156.28 (18)N13—C32—H32A109.5
O9—C3—U156.81 (18)N13—C32—H32B109.5
C11—N11—C12120.1 (10)H32A—C32—H32B109.5
C11—N11—C13110.9 (10)N13—C32—H32C109.5
C12—N11—C13112.9 (8)H32A—C32—H32C109.5
C13A—N11—C11A120 (2)H32B—C32—H32C109.5
C12A—N11—C11A111.9 (15)N13—C33—H33A109.5
C13A—N11—C14A116 (2)N13—C33—H33B109.5
C12A—N11—C14A103.5 (17)H33A—C33—H33B109.5
C11A—N11—C14A104.9 (16)N13—C33—H33C109.5
C11—N11—C1498.6 (10)H33A—C33—H33C109.5
C12—N11—C14109.6 (8)H33B—C33—H33C109.5
C13—N11—C14102.2 (8)N13—C34—H34A109.5
N11—C11—H11A109.5N13—C34—H34B109.5
N11—C11—H11B109.5H34A—C34—H34B109.5
H11A—C11—H11B109.5N13—C34—H34C109.5
N11—C11—H11C109.5H34A—C34—H34C109.5
H11A—C11—H11C109.5H34B—C34—H34C109.5
H11B—C11—H11C109.5C44—N14—C42109.4 (4)
N11—C12—H12A109.5C44—N14—C41110.4 (3)
N11—C12—H12B109.5C42—N14—C41110.7 (3)
H12A—C12—H12B109.5C44—N14—C43110.7 (4)
N11—C12—H12C109.5C42—N14—C43107.7 (4)
H12A—C12—H12C109.5C41—N14—C43108.0 (4)
H12B—C12—H12C109.5N14—C41—H41A109.5
N11—C13—H13A109.5N14—C41—H41B109.5
N11—C13—H13B109.5H41A—C41—H41B109.5
H13A—C13—H13B109.5N14—C41—H41C109.5
N11—C13—H13C109.5H41A—C41—H41C109.5
H13A—C13—H13C109.5H41B—C41—H41C109.5
H13B—C13—H13C109.5N14—C42—H42A109.5
N11—C14—H14A109.5N14—C42—H42B109.5
N11—C14—H14B109.5H42A—C42—H42B109.5
H14A—C14—H14B109.5N14—C42—H42C109.5
N11—C14—H14C109.5H42A—C42—H42C109.5
H14A—C14—H14C109.5H42B—C42—H42C109.5
H14B—C14—H14C109.5N14—C43—H43A109.5
N11—C11A—H11D109.5N14—C43—H43B109.5
N11—C11A—H11E109.5H43A—C43—H43B109.5
H11D—C11A—H11E109.5N14—C43—H43C109.5
N11—C11A—H11F109.5H43A—C43—H43C109.5
H11D—C11A—H11F109.5H43B—C43—H43C109.5
H11E—C11A—H11F109.5N14—C44—H44A109.5
N11—C12A—H12D109.5N14—C44—H44B109.5
N11—C12A—H12E109.5H44A—C44—H44B109.5
H12D—C12A—H12E109.5N14—C44—H44C109.5
N11—C12A—H12F109.5H44A—C44—H44C109.5
H12D—C12A—H12F109.5H44B—C44—H44C109.5
H12E—C12A—H12F109.5H1OA—O1W—H1OB105 (3)
N11—C13A—H13D109.5H2OA—O2W—H2OB106 (3)
N11—C13A—H13E109.5H3OA—O3W—H3OB115 (3)
H13D—C13A—H13E109.5H4OA—O4W—H4OB108 (3)
N11—C13A—H13F109.5H5OA—O5W—H5OB112 (3)
H13D—C13A—H13F109.5H6OA—O6W—H6OB112 (3)
H13E—C13A—H13F109.5H7OA—O7W—H7OB114 (3)
N11—C14A—H14D109.5H8OA—O8W—H8OB107 (3)
O1—U1—O3—C191.9 (2)O9—U1—C1—O30.1 (3)
O2—U1—O3—C187.9 (2)O4—U1—C1—O3179.2 (3)
O6—U1—O3—C14.0 (2)C2—U1—C1—O3175.8 (2)
O10—U1—O3—C1175.5 (2)C3—U1—C1—O32.4 (2)
O9—U1—O3—C1179.93 (19)O1—U1—C1—O493.3 (2)
O4—U1—O3—C10.45 (19)O2—U1—C1—O486.6 (2)
C2—U1—O3—C16.7 (3)O6—U1—C1—O44.2 (2)
C3—U1—O3—C1177.9 (2)O7—U1—C1—O43.3 (3)
O1—U1—O4—C186.6 (2)O3—U1—C1—O4179.2 (3)
O2—U1—O4—C193.2 (2)O10—U1—C1—O4175.0 (2)
O6—U1—O4—C1175.4 (2)O9—U1—C1—O4179.31 (18)
O7—U1—O4—C1177.93 (19)C2—U1—C1—O45.0 (2)
O3—U1—O4—C10.45 (19)C3—U1—C1—O4176.80 (19)
O10—U1—O4—C15.8 (2)U1—O7—C2—O8175.0 (4)
C2—U1—O4—C1175.7 (2)U1—O7—C2—O63.6 (4)
C3—U1—O4—C15.1 (3)U1—O6—C2—O8174.9 (4)
O1—U1—O6—C289.4 (3)U1—O6—C2—O73.6 (4)
O2—U1—O6—C291.0 (3)O1—U1—C2—O793.7 (3)
O7—U1—O6—C22.2 (2)O2—U1—C2—O786.6 (3)
O3—U1—O6—C2176.7 (2)O6—U1—C2—O7176.1 (4)
O9—U1—O6—C20.7 (3)O3—U1—C2—O7178.69 (19)
O4—U1—O6—C2179.4 (3)O10—U1—C2—O72.2 (4)
C1—U1—O6—C2178.5 (3)O9—U1—C2—O74.5 (2)
C3—U1—O6—C20.1 (4)O4—U1—C2—O7175.6 (2)
O1—U1—O7—C286.2 (3)C1—U1—C2—O7177.9 (2)
O2—U1—O7—C293.6 (3)C3—U1—C2—O73.9 (3)
O6—U1—O7—C22.2 (2)O1—U1—C2—O690.2 (3)
O10—U1—O7—C2178.6 (2)O2—U1—C2—O689.5 (3)
O9—U1—O7—C2175.1 (3)O7—U1—C2—O6176.1 (4)
O4—U1—O7—C25.1 (3)O3—U1—C2—O65.2 (4)
C1—U1—O7—C23.4 (3)O10—U1—C2—O6178.3 (2)
C3—U1—O7—C2176.6 (2)O9—U1—C2—O6179.4 (3)
O1—U1—O9—C392.1 (2)O4—U1—C2—O60.5 (3)
O2—U1—O9—C387.7 (2)C1—U1—C2—O61.8 (3)
O6—U1—O9—C3179.2 (2)C3—U1—C2—O6179.9 (2)
O7—U1—O9—C3176.7 (2)U1—O10—C3—O11179.3 (3)
O3—U1—O9—C34.8 (2)U1—O10—C3—O90.9 (3)
O10—U1—O9—C30.54 (19)U1—O9—C3—O11179.4 (3)
C2—U1—O9—C3178.9 (2)U1—O9—C3—O100.9 (3)
C1—U1—O9—C34.8 (3)O1—U1—C3—O1093.2 (2)
O1—U1—O10—C387.2 (2)O2—U1—C3—O1086.5 (2)
O2—U1—O10—C393.1 (2)O6—U1—C3—O10177.8 (2)
O7—U1—O10—C34.6 (2)O7—U1—C3—O10176.0 (2)
O3—U1—O10—C3174.5 (2)O3—U1—C3—O105.1 (2)
O9—U1—O10—C30.55 (19)O9—U1—C3—O10179.0 (3)
O4—U1—O10—C3179.1 (2)O4—U1—C3—O101.4 (3)
C2—U1—O10—C33.4 (3)C2—U1—C3—O10177.8 (2)
C1—U1—O10—C3176.5 (2)C1—U1—C3—O104.0 (2)
U1—O3—C1—O5178.7 (3)O1—U1—C3—O987.8 (2)
U1—O3—C1—O40.8 (3)O2—U1—C3—O992.6 (2)
U1—O4—C1—O5178.7 (3)O6—U1—C3—O91.2 (3)
U1—O4—C1—O30.7 (3)O7—U1—C3—O93.0 (2)
O1—U1—C1—O387.5 (2)O3—U1—C3—O9175.9 (2)
O2—U1—C1—O392.5 (2)O10—U1—C3—O9179.0 (3)
O6—U1—C1—O3176.6 (2)O4—U1—C3—O9179.58 (18)
O7—U1—C1—O3177.53 (18)C2—U1—C3—O91.2 (2)
O10—U1—C1—O34.2 (2)C1—U1—C3—O9176.95 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1OA···O40.85 (2)2.03 (3)2.778 (4)146 (5)
O1W—H1OB···O2Wi0.86 (2)1.96 (2)2.824 (6)174 (5)
O2W—H2OA···O3W0.86 (2)1.99 (3)2.810 (5)158 (5)
O2W—H2OB···O70.86 (2)2.05 (3)2.838 (4)152 (5)
O3W—H3OA···O5ii0.83 (2)1.94 (2)2.758 (4)169 (5)
O3W—H3OB···O90.84 (2)1.95 (2)2.774 (4)170 (5)
O4W—H4OA···O5ii0.85 (2)1.89 (2)2.738 (5)172 (5)
O4W—H4OB···O110.86 (2)1.89 (2)2.733 (4)169 (5)
O5W—H5OA···O7W0.83 (2)1.97 (2)2.799 (5)173 (5)
O5W—H5OB···O100.84 (2)1.93 (2)2.751 (4)169 (5)
O6W—H6OA···O4Wi0.84 (2)1.87 (2)2.705 (5)176 (5)
O6W—H6OB···O5W0.84 (2)2.00 (3)2.794 (5)157 (5)
O7W—H7OA···O8iii0.84 (2)1.83 (2)2.666 (5)172 (5)
O7W—H7OB···O8W0.83 (2)1.93 (2)2.752 (6)169 (5)
O8W—H8OA···O1Wiii0.86 (2)1.91 (2)2.760 (5)170 (6)
O8W—H8OB···O6W0.85 (2)1.96 (2)2.806 (6)173 (6)
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z; (iii) x, y1, z.

Experimental details

Crystal data
Chemical formula(C4H12N4)[UO2(CO3)3]·8H2O
Mr890.77
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)10.5377 (18), 12.358 (2), 28.533 (5)
β (°) 99.343 (4)
V3)3666.5 (11)
Z4
Radiation typeSynchrotron, λ = 0.7750 Å
µ (mm1)2.46
Crystal size (mm)0.07 × 0.05 × 0.05
Data collection
DiffractometerBruker Platinum 200
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008)
Tmin, Tmax0.847, 0.887
No. of measured, independent and
observed [I > 2σ(I)] reflections
26534, 7499, 6587
Rint0.039
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.072, 1.06
No. of reflections7499
No. of parameters429
No. of restraints24
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.70, 0.79

Computer programs: APEX2 (Bruker, 2008), APEX2 (Bruker, 2008), APEX2 or SAINT? (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Sheldrick, 2008); POV-RAY (Cason, 2003); DIAMOND (Brandenburg, 2009), XCIF (Sheldrick, 2008); enCIFer (Allen et al., 2004); publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1OA···O40.854 (19)2.03 (3)2.778 (4)146 (5)
O1W—H1OB···O2Wi0.864 (19)1.96 (2)2.824 (6)174 (5)
O2W—H2OA···O3W0.861 (19)1.99 (3)2.810 (5)158 (5)
O2W—H2OB···O70.861 (19)2.05 (3)2.838 (4)152 (5)
O3W—H3OA···O5ii0.825 (19)1.94 (2)2.758 (4)169 (5)
O3W—H3OB···O90.835 (19)1.95 (2)2.774 (4)170 (5)
O4W—H4OA···O5ii0.850 (19)1.89 (2)2.738 (5)172 (5)
O4W—H4OB···O110.857 (19)1.887 (19)2.733 (4)169 (5)
O5W—H5OA···O7W0.832 (18)1.972 (19)2.799 (5)173 (5)
O5W—H5OB···O100.836 (19)1.93 (2)2.751 (4)169 (5)
O6W—H6OA···O4Wi0.839 (19)1.867 (19)2.705 (5)176 (5)
O6W—H6OB···O5W0.841 (19)2.00 (3)2.794 (5)157 (5)
O7W—H7OA···O8iii0.844 (19)1.826 (19)2.666 (5)172 (5)
O7W—H7OB···O8W0.833 (19)1.93 (2)2.752 (6)169 (5)
O8W—H8OA···O1Wiii0.859 (19)1.91 (2)2.760 (5)170 (6)
O8W—H8OB···O6W0.853 (19)1.96 (2)2.806 (6)173 (6)
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z; (iii) x, y1, z.
Comparison of selected interatomic distances (Å) and angles (°) between the isomorphous compounds of tricarbonato UVI (this work) and NpVI (Grigorev et al., 1997) top
[N(CH3)4]4[UO2(CO3)3](H2O)8[N(CH3)4]4[NpO2(CO3)3](H2O)8
An—Oaxial1.803 (3), 1.814 (3)1.774 (3), 1.773 (3)
An—Ocarbonate, equatorial2.418 (3), 2.423 (3)2.429 (3), 2.442 (3)
2.424 (3), 2.450 (3)2.400 (3), 2.419 (3)
2.435 (3), 2.444 (3)2.442 (3), 2.413 (3)
OUO angle179.63 (11)179.8 (1)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds