Download citation
Download citation
link to html
The title complex, [CuNi(C13H16N3O3)(C10H8N2)2(H2O)]ClO4, has a cis-oxamide-bridged heterobinuclear cation, with a Cu...Ni separation of 5.3297 (6) Å, counterbalanced by a disordered perchlorate anion. The CuII and NiII cations are located in square-pyramidal and octa­hedral coordination environments, respectively. The complex mol­ecules are assembled into a three-dimensional supra­molecular structure through hydrogen bonds and π–π stacking inter­actions. The influence of the two types of metal cation on the supra­molecular structure is discussed.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270111008705/bg3135sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270111008705/bg3135Isup2.hkl
Contains datablock I

CCDC reference: 805274

Comment top

The design and synthesis of heterometal systems with two different paramagnetic centres has been an active field of research (Li, Wu et al., 2004; Tercero et al., 2002; Wang et al., 2004; Willett et al., 1985). Interest in this field is aimed at understanding the nature of electronic exchange coupling through multiatom bridging ligands, and mimicking the active sites and functions of biological substances, as well as designing and preparing new magnetic materials (Baron et al., 1996; Li, Wu et al., 2004 or Li, Yan & Guan, 2004). One of the best strategies for constructing heterobinuclear species is the `complex as ligand' approach, using a complex which contains a potential donor group capable of coordinating to another metal cation (Cronin et al., 1999; Fukita et al., 2001). (N,N'-Disubstituted oxamide)copper(II) mononuclear complexes are a very suitable type of ligand for designing heterometallic species due to their ability to coordinate to metal cations as bidentate ligands through their carbonyl O atoms (Ruiz et al., 1999). To date, several heterobinuclear complexes based on symmetric N,N'-disubstituted oxamide ligands with interesting magnetic properties have been reported (Brewer et al., 2001; Li, Wu et al., 2004; Li, Yan & Guan, 2004; Nakatani et al., 1989, 1991; Nie et al., 2010; Sun et al., 2007; Tang et al., 2002, 2003; Wang et al., 2004). In contrast, little work has been carried out on assemblies of heterobinuclear complexes containing asymmetric N,N'-disubstituted oxamides (Larionova et al., 1997; Pei et al., 1991), owing to the difficulty of their synthesis. To the best of our knowledge, no heterobinuclear copper(II)–nickel(II) complex bridged by an asymmetric N,N'-disubstituted oxamide containing a phenolate group has hitherto been reported.

Recently, Gao & Wang (2010) reported a binuclear copper(II) complex bridged by N-[3-(dimethylamino)propyl]-N'-(2-oxidophenyl)oxamidate (pdmapo) and end-capped with 1,10-phenanthroline (phen), namely [Cu(pdmapo)(H2O)Cu(phen)]NO3, (II), but in order to provide more examples of pdmapo-bridged binuclear complexes and to better understand the factors affecting the supramolecular structures of these complexes, it is necessary to synthesize a series of binuclear complexes of essentially the same structure except for the metal cations. In this paper, we have selected the mononuclear copper(II) complex, Na[Cu(pdmapo)].1.5H2O, as the bridging ligand and 2,2'-bipyridine (bpy) as the terminal ligand, to synthesize the title new heterobinuclear copper(II)–nickel(II) complex, formulated as [Cu(pdmapo)(H2O)Ni(bpy)2]ClO4, (I), and we compare the crystal structure of (I) with that of (II).

Compound (I) consists of a heterobinuclear [Cu(pdmapo)(H2O)Ni(bpy)2]+ cation and an uncoordinated perchlorate anion (Fig. 1). The complex cation can be described as a cis-oxamide-bridged binuclear CuII–NiII fragment, in which the CuII and NiII cations are at the inner and exo sites of the oxamide bridge, respectively. The Cu···Ni separation is 5.3297 (6) Å. The CuII cation has an {N3O2} square-pyramidal geometry with a τ value of 0.1 (Addison et al., 1984). The basal plane is defined by four coordination atoms from the oxamide ligand, with a maximum deviation from the least-squares plane of 0.1630 (15) Å (for atom N1). The apical position is occupied by a water molecule (O4), with a Cu—O bond length of 2.456 (3) Å (Table 1). The CuII cation is displaced 0.1976 (15) Å from the basal plane. The Cu1—N1 and Cu1—N2 bonds are shorter than Cu1—N3, which is consistent with the stronger donor abilities of N atoms in sp2 hybridization than in sp3 (Jubert et al., 2002). The NiII cation is chelated by two exo-O atoms of the oxamide group and two bpy terminal ligands, viz. in an {N4O2} octahedral environment. The equatorial plane is composed of atoms O2, N4, N6 and N7, with a maximum displacement of 0.0667 (14) Å (for atom N7), from which the NiII cation deviates by 0.0280 (14) Å.

The oxamide ligand (pdmapo3-) chelates the CuII and NiII cations with bite angles of 83.15 (10) and 81.98 (8)°, respectively. Within the bridging oxamide fragment, the C7—O2 [1.260 (4) Å], C8—O3 [1.274 (3) Å], C7—N1 [1.313 (4)Å] and C8—N2 [1.305 (4) Å] bond lengths imply partial double-bond character, similar to those in many other oxamidate complexes (Lloret et al., 1989; Real et al., 1993). The six-membered chelate ring formed by the propylenediamine fragment adopts a screw-boat conformation, with puckering parameters (Cremer & Pople, 1975) of Q = 0.649 (4) Å, θ = 108.8 (4)° and ϕ = 23.4 (3)°, while all other chelate rings around the two metal cations are almost planar. The two bpy ligands around the NiII cation are in a cis arrangement.

As shown in Fig. 2, complex cations related by the symmetry operation (-x + 1, -y + 1, -z) [symmetry code (i)] are associated into pairs by hydrogen bonds between the coordinated water molecule and phenolic O atoms (Table 2). In this arrangement, a Cu1···Cu1i separation of 5.5492 (9) Å is observed. These pairs are, in turn, joined by the disordered Cl2 perchlorate anions to result in a one-dimensional hydrogen-bonded structure parallel to the b axis.

There are also offset aromatic stacking interactions between the bpy ligands, linking the chains together (Fig. 3). The pyridine ring containing atom N4 and that at (-x, -y + 1, -z) [symmetry code (iv)] are parallel, with a centroid-to-centroid distance of 3.641 (2) Å and a slippage of 1.500 Å. The smallest separation is between atom C16iv and the reference py(N4) ring [3.315 (5) Å]. In addition, another ππ stacking interaction occurs between the bpy ligand containing atoms N6 and N7 and that at (-x + 1, -y + 1, -z + 1) [symmetry code (v)]. The N6- and N7v-containing rings have a dihedral angle of 3.9 (2)°, with a centroid-to-centroid distance of 3.770 (3) Å. The nearest separations are 3.345 (5) [C30v to py(N6)] and 3.357 (5) Å [C27v to py(N7)]. As a result, a three-dimensional supramolecular structure is completed in the crystal structure.

As already stated, the same bridging ligand, cis-pdmapo3-, has also been used in complex (II) with a binuclear copper(II) cation (Gao & Wang, 2010), in which the CuII cations at the inner and exo sites of the pdmapo3- anion are in square-planar and square-pyramidal environments, respectively. The exo CuII cation coordinates to a phen ligand and a water molecule. However, in complex (I), the coordinated water molecule is transferred to the inner CuII cation. In addition, the exo metal cation, nickel(II), uses two bpy as terminal ligands because NiII cations usually prefer six coordination to five, as is the case for the exo CuII cation in (II). These differences lead to distinct supramolecular structures. Complex (I) has a three-dimensional supramolecular structure of classical hydrogen bonding and ππ stacking interactions depicted as above. In complex (II), instead (according to our own analysis of the freely available crystallographic data), there is just a one-dimensional hydrogen-bonded chain parallel to [101]; the cations give rise to dimers through classical hydrogen bonds. The dimers and nitrate anions further build up a two-dimensional structure extending along the (010) plane by C—H···O hydrogen bonds and ππ stacking interactions. This is a clear example of how metal cations may play an important role in the way supramolecular structures are built up.

Related literature top

For related literature, see: Addison et al. (1984); Baron et al. (1996); Brewer et al. (2001); Cremer & Pople (1975); Cronin et al. (1999); Fukita et al. (2001); Gao & Wang (2010); Jubert et al. (2002); Larionova et al. (1997); Li, Wu, Yan & Zhu (2004); Li, Yan & Guan (2004); Lloret et al. (1989); Nakatani et al. (1989, 1991); Nie et al. (2010); Pei et al. (1991); Real et al. (1993); Ruiz et al. (1999); Sheldrick (2008); Sun et al. (2007); Tang et al. (2002, 2003); Tercero et al. (2002); Wang et al. (2004); Willett et al. (1985).

Experimental top

All chemicals were of analytical reagent grade. The Na[Cu(pdmapo)].1.5H2O ligand was prepared according to the method of Pei et al. (1991). The title complex was obtained as follows. A methanol (5 ml) solution of Ni(ClO4)2.6H2O (0.0183 g, 0.05 mmol) was added dropwise to an aqueous solution (5 ml) of Na[Cu(pdmapo)].1.5H2O (0.0192 g, 0.05 mmol) with continuous stirring. The mixture was stirred quickly for 0.5 h and then bpy (0.0156 g, 0.1 mmol) in methanol (5 ml) was added dropwise. The solution obtained was stirred at 333 K for 6 h and filtered. Green block-shaped crystals of (I) suitable for X-ray analysis were obtained from the filtrate by slow evaporation at room temperature for 17 d (yield 65%). Elemental analysis, calculated for C33H34ClCuN7NiO8: C 48.67, H 4.21, N 12.04%; found: C 48.93, H 4.27, N 11.51%.

Refinement top

Both perchlorate anions (Cl1 and Cl2) are disordered around inversion centres at (1/2,1/2,0) and (0,1,1/2), respectively, and correspondingly their occupancies were constrained to 0.5. The Cl—O and O—O distances were restrained by similarity conditions (SADI 0.2 in SHELXL97; Sheldrick, 2008). Water H atoms were found in a difference Fourier map and further refined with restrained distances O—H = 0.85 (1) Å and H···H = 1.35 (1) Å. The isotropic displacement parameters were refined freely. Other H atoms were placed in calculated positions, with C—H = 0.93 (aromatic), 0.96 (methyl) or 0.97 Å (methylene), and refined in riding mode, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). The methyl groups were allowed to rotate freely around the C—N bond.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. The disordered parts of the equally populated perchlorate anions have been drawn with different styles for clarity. [Symmetry code: (i) -x + 1, -y + 1, -z; (ii) -x, -y + 2, -z + 1.]
[Figure 2] Fig. 2. A view of the one-dimensional hydrogen-bonded structure of (I), parallel to the b axis. Only one of the two half-occupied perchlorate anions is drawn for clarity. [Symmetry code: (i) -x + 1, -y + 1, -z; (iii) -x + 1, -y + 2, -z.]
[Figure 3] Fig. 3. The ππ stacking interactions in (I), viewed down the a axis. H atoms and perchlorate anions have been omitted for clarity. [Symmetry codes: (iv) -x, -y + 1, -z; (v) -x + 1, -y + 1, -z + 1.]
(Aqua-2κO)bis(2,2'-bipyridine-1κ2N,N'){µ-N- [3-(dimethylamino)propyl]-N'-(2-oxidophenyl)oxamidato(3-)- 1:2κ2O,O':κ4O'',N,N',N''} copper(II)nickel(II) perchlorate top
Crystal data top
[CuNi(C13H16N3O3)(C10H8N2)2(H2O)]ClO4Z = 2
Mr = 814.37F(000) = 838
Triclinic, P1Dx = 1.528 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.4692 (5) ÅCell parameters from 3159 reflections
b = 11.8976 (5) Åθ = 2.6–23.3°
c = 15.1818 (7) ŵ = 1.27 mm1
α = 92.261 (3)°T = 296 K
β = 109.043 (3)°Block, green
γ = 112.911 (3)°0.24 × 0.15 × 0.15 mm
V = 1770.51 (15) Å3
Data collection top
Bruker APEX area-detector
diffractometer
8178 independent reflections
Radiation source: fine-focus sealed tube4749 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ϕ and ω scansθmax = 27.9°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1514
Tmin = 0.751, Tmax = 0.833k = 1515
15761 measured reflectionsl = 1916
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 0.96 w = 1/[σ2(Fo2) + (0.0597P)2]
where P = (Fo2 + 2Fc2)/3
8178 reflections(Δ/σ)max < 0.001
515 parametersΔρmax = 0.46 e Å3
45 restraintsΔρmin = 0.40 e Å3
Crystal data top
[CuNi(C13H16N3O3)(C10H8N2)2(H2O)]ClO4γ = 112.911 (3)°
Mr = 814.37V = 1770.51 (15) Å3
Triclinic, P1Z = 2
a = 11.4692 (5) ÅMo Kα radiation
b = 11.8976 (5) ŵ = 1.27 mm1
c = 15.1818 (7) ÅT = 296 K
α = 92.261 (3)°0.24 × 0.15 × 0.15 mm
β = 109.043 (3)°
Data collection top
Bruker APEX area-detector
diffractometer
8178 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
4749 reflections with I > 2σ(I)
Tmin = 0.751, Tmax = 0.833Rint = 0.044
15761 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04945 restraints
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 0.96Δρmax = 0.46 e Å3
8178 reflectionsΔρmin = 0.40 e Å3
515 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.54940 (4)0.94857 (4)0.18183 (3)0.04840 (15)
Ni10.24661 (4)0.57388 (4)0.30638 (3)0.04288 (14)
O10.4933 (3)1.0777 (2)0.13145 (18)0.0584 (6)
O20.2463 (2)0.7333 (2)0.25978 (16)0.0497 (6)
O30.4338 (2)0.63997 (19)0.29168 (15)0.0434 (5)
O40.4630 (3)0.8237 (3)0.0227 (2)0.0739 (8)
H4A0.474 (5)0.854 (3)0.025 (2)0.099 (17)*
H4B0.470 (4)0.756 (2)0.017 (3)0.078 (16)*
N10.3811 (3)0.8913 (2)0.20327 (19)0.0436 (6)
N20.5643 (2)0.8058 (2)0.23912 (19)0.0437 (6)
N30.7501 (3)1.0436 (3)0.2046 (2)0.0546 (8)
N40.1397 (3)0.4731 (2)0.1682 (2)0.0490 (7)
N50.0459 (3)0.5237 (3)0.2946 (2)0.0568 (8)
N60.2647 (3)0.4264 (3)0.36910 (19)0.0456 (7)
N70.3371 (3)0.6570 (3)0.4491 (2)0.0547 (8)
C10.3730 (4)1.0605 (3)0.1340 (2)0.0480 (8)
C20.3049 (3)0.9596 (3)0.1739 (2)0.0447 (8)
C30.1808 (4)0.9393 (3)0.1790 (3)0.0563 (9)
H30.13960.87560.20740.068*
C40.1180 (5)1.0141 (4)0.1415 (3)0.0764 (13)
H40.03250.99840.14250.092*
C50.1806 (5)1.1113 (4)0.1029 (3)0.0733 (13)
H50.13681.16070.07780.088*
C60.3075 (4)1.1369 (3)0.1008 (3)0.0628 (11)
H60.35021.20550.07700.075*
C70.3499 (3)0.7903 (3)0.2397 (2)0.0416 (8)
C80.4579 (3)0.7399 (3)0.2587 (2)0.0391 (7)
C90.6710 (3)0.7631 (3)0.2544 (3)0.0516 (9)
H9A0.63140.67720.22250.062*
H9B0.71480.76750.32170.062*
C100.7766 (4)0.8438 (3)0.2158 (3)0.0602 (10)
H10A0.85050.81840.23090.072*
H10B0.73470.83010.14720.072*
C110.8340 (3)0.9800 (3)0.2554 (3)0.0595 (10)
H11A0.84380.99000.32150.071*
H11B0.92431.02070.25330.071*
C120.7713 (4)1.0667 (4)0.1145 (3)0.0747 (12)
H12A0.74690.98920.07590.112*
H12B0.86531.12040.12810.112*
H12C0.71521.10560.08100.112*
C130.7959 (4)1.1643 (4)0.2652 (4)0.0861 (14)
H13A0.89091.21340.27830.129*
H13B0.78251.15070.32380.129*
H13C0.74421.20740.23300.129*
C140.1933 (4)0.4464 (3)0.1097 (3)0.0585 (10)
H140.28740.47450.13080.070*
C150.1143 (5)0.3782 (4)0.0183 (3)0.0731 (12)
H150.15420.36110.02180.088*
C160.0246 (6)0.3368 (4)0.0113 (4)0.0890 (17)
H160.08030.29090.07230.107*
C170.0810 (4)0.3628 (4)0.0485 (3)0.0727 (13)
H170.17510.33400.02900.087*
C180.0029 (3)0.4325 (3)0.1388 (3)0.0551 (10)
C190.0472 (3)0.4691 (3)0.2073 (3)0.0586 (10)
C200.1815 (4)0.4509 (4)0.1846 (4)0.0859 (15)
H200.24530.41270.12360.103*
C210.2191 (5)0.4885 (5)0.2510 (5)0.1000 (18)
H210.30910.47640.23570.120*
C220.1271 (5)0.5441 (5)0.3401 (5)0.1016 (17)
H220.15180.57060.38680.122*
C230.0067 (4)0.5598 (4)0.3591 (4)0.0811 (13)
H230.07120.59750.41990.097*
C240.2219 (3)0.3108 (3)0.3256 (3)0.0581 (10)
H240.18320.29220.25970.070*
C250.2319 (4)0.2170 (4)0.3734 (3)0.0714 (12)
H250.19980.13690.34050.086*
C260.2903 (4)0.2444 (4)0.4710 (3)0.0786 (13)
H260.29790.18270.50510.094*
C270.3367 (4)0.3629 (4)0.5170 (3)0.0655 (11)
H270.37820.38330.58290.079*
C280.3217 (3)0.4529 (3)0.4652 (2)0.0492 (9)
C290.3653 (3)0.5832 (4)0.5089 (2)0.0539 (9)
C300.4299 (4)0.6277 (5)0.6063 (3)0.0798 (14)
H300.45070.57640.64740.096*
C310.4626 (5)0.7498 (6)0.6408 (4)0.1030 (18)
H310.50460.78150.70580.124*
C320.4327 (5)0.8231 (5)0.5788 (4)0.0975 (16)
H320.45430.90550.60090.117*
C330.3706 (4)0.7746 (4)0.4841 (3)0.0763 (12)
H330.35090.82550.44220.092*
Cl10.0908 (3)0.8999 (3)0.47311 (18)0.0861 (7)0.50
O50.0854 (9)0.8854 (8)0.3851 (5)0.137 (3)0.50
O60.0175 (11)0.9659 (11)0.4820 (7)0.171 (4)0.50
O70.2209 (7)0.9679 (6)0.5332 (6)0.124 (3)0.50
O80.0413 (9)0.7917 (6)0.5007 (5)0.142 (3)0.50
Cl20.5093 (11)0.5178 (8)0.0044 (8)0.0829 (17)0.50
O90.4630 (19)0.3965 (10)0.0017 (13)0.261 (11)0.50
O100.5026 (8)0.5359 (9)0.0969 (5)0.119 (3)0.50
O110.6448 (8)0.5849 (12)0.0541 (6)0.150 (4)0.50
O120.4342 (8)0.5725 (9)0.0201 (6)0.106 (3)0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0455 (2)0.0406 (3)0.0570 (3)0.01421 (18)0.0200 (2)0.0231 (2)
Ni10.0399 (2)0.0375 (3)0.0431 (3)0.00924 (18)0.01359 (19)0.01315 (19)
O10.0651 (15)0.0447 (14)0.0673 (17)0.0234 (12)0.0247 (13)0.0293 (12)
O20.0443 (12)0.0434 (13)0.0650 (16)0.0180 (10)0.0244 (11)0.0213 (11)
O30.0416 (11)0.0366 (12)0.0486 (13)0.0141 (9)0.0143 (10)0.0208 (10)
O40.092 (2)0.071 (2)0.065 (2)0.0366 (18)0.0316 (17)0.0324 (16)
N10.0450 (14)0.0365 (15)0.0496 (17)0.0177 (12)0.0164 (13)0.0165 (13)
N20.0385 (14)0.0411 (16)0.0517 (17)0.0157 (12)0.0174 (13)0.0183 (13)
N30.0497 (16)0.0415 (17)0.063 (2)0.0107 (13)0.0194 (15)0.0181 (15)
N40.0478 (16)0.0383 (16)0.0497 (18)0.0126 (12)0.0102 (14)0.0172 (13)
N50.0497 (17)0.0527 (19)0.067 (2)0.0162 (14)0.0265 (17)0.0233 (16)
N60.0403 (14)0.0439 (17)0.0406 (16)0.0090 (12)0.0108 (12)0.0141 (13)
N70.0533 (17)0.0492 (19)0.0483 (18)0.0096 (14)0.0180 (14)0.0042 (15)
C10.062 (2)0.0350 (19)0.043 (2)0.0217 (16)0.0129 (17)0.0074 (15)
C20.058 (2)0.0330 (18)0.0397 (19)0.0206 (15)0.0118 (16)0.0061 (14)
C30.066 (2)0.052 (2)0.061 (2)0.0333 (19)0.0254 (19)0.0134 (18)
C40.089 (3)0.084 (3)0.082 (3)0.058 (3)0.037 (3)0.024 (3)
C50.105 (3)0.078 (3)0.065 (3)0.070 (3)0.027 (3)0.023 (2)
C60.089 (3)0.047 (2)0.059 (2)0.038 (2)0.023 (2)0.0190 (19)
C70.0406 (17)0.0362 (18)0.0395 (19)0.0123 (14)0.0093 (14)0.0084 (15)
C80.0395 (16)0.0358 (18)0.0336 (17)0.0118 (14)0.0085 (14)0.0084 (14)
C90.0502 (19)0.051 (2)0.060 (2)0.0239 (16)0.0238 (17)0.0242 (18)
C100.054 (2)0.060 (2)0.073 (3)0.0250 (18)0.0292 (19)0.026 (2)
C110.0430 (18)0.059 (2)0.065 (3)0.0119 (17)0.0176 (18)0.019 (2)
C120.068 (2)0.075 (3)0.083 (3)0.020 (2)0.040 (2)0.047 (2)
C130.065 (3)0.053 (3)0.113 (4)0.009 (2)0.022 (3)0.005 (3)
C140.070 (2)0.049 (2)0.053 (2)0.0262 (19)0.017 (2)0.0180 (18)
C150.115 (4)0.053 (3)0.046 (2)0.040 (3)0.018 (2)0.013 (2)
C160.109 (4)0.042 (3)0.062 (3)0.015 (2)0.012 (3)0.008 (2)
C170.067 (3)0.046 (2)0.070 (3)0.010 (2)0.002 (2)0.020 (2)
C180.0490 (19)0.037 (2)0.057 (2)0.0078 (15)0.0037 (18)0.0213 (17)
C190.0417 (18)0.045 (2)0.076 (3)0.0099 (16)0.015 (2)0.033 (2)
C200.052 (2)0.089 (3)0.107 (4)0.024 (2)0.022 (3)0.044 (3)
C210.060 (3)0.108 (4)0.144 (5)0.037 (3)0.047 (4)0.055 (4)
C220.080 (3)0.102 (4)0.150 (5)0.041 (3)0.073 (4)0.037 (4)
C230.069 (3)0.078 (3)0.099 (4)0.024 (2)0.044 (3)0.019 (3)
C240.055 (2)0.042 (2)0.054 (2)0.0098 (16)0.0061 (18)0.0133 (18)
C250.063 (2)0.049 (2)0.082 (3)0.0139 (19)0.013 (2)0.021 (2)
C260.071 (3)0.072 (3)0.088 (3)0.026 (2)0.025 (2)0.051 (3)
C270.057 (2)0.077 (3)0.056 (2)0.022 (2)0.0195 (19)0.035 (2)
C280.0368 (16)0.057 (2)0.044 (2)0.0104 (15)0.0131 (15)0.0178 (17)
C290.0392 (17)0.067 (3)0.040 (2)0.0088 (17)0.0134 (16)0.0077 (19)
C300.069 (3)0.103 (4)0.044 (2)0.020 (3)0.014 (2)0.005 (2)
C310.094 (4)0.115 (5)0.057 (3)0.016 (3)0.016 (3)0.027 (3)
C320.102 (4)0.080 (4)0.080 (4)0.018 (3)0.026 (3)0.021 (3)
C330.087 (3)0.056 (3)0.074 (3)0.019 (2)0.030 (3)0.003 (2)
Cl10.1021 (19)0.0856 (19)0.0669 (16)0.0447 (15)0.0207 (14)0.0172 (13)
O50.181 (8)0.161 (8)0.082 (5)0.078 (6)0.056 (5)0.025 (5)
O60.172 (9)0.243 (15)0.134 (9)0.135 (9)0.042 (7)0.041 (9)
O70.116 (6)0.094 (5)0.150 (7)0.043 (5)0.033 (6)0.047 (5)
O80.175 (8)0.090 (6)0.111 (6)0.015 (5)0.046 (6)0.002 (5)
Cl20.097 (3)0.049 (5)0.105 (2)0.032 (4)0.0374 (19)0.017 (3)
O90.41 (3)0.065 (8)0.37 (3)0.112 (14)0.20 (2)0.098 (12)
O100.121 (6)0.121 (7)0.105 (6)0.049 (5)0.034 (5)0.022 (5)
O110.102 (7)0.193 (11)0.113 (7)0.049 (7)0.007 (5)0.010 (7)
O120.102 (5)0.091 (6)0.144 (7)0.046 (5)0.061 (5)0.025 (5)
Geometric parameters (Å, º) top
Cu1—N11.924 (3)C11—H11B0.9700
Cu1—O11.975 (2)C12—H12A0.9600
Cu1—N21.980 (3)C12—H12B0.9600
Cu1—N32.030 (3)C12—H12C0.9600
Cu1—O42.456 (3)C13—H13A0.9600
Ni1—O22.051 (2)C13—H13B0.9600
Ni1—O32.071 (2)C13—H13C0.9600
Ni1—N72.077 (3)C14—C151.387 (5)
Ni1—N62.077 (3)C14—H140.9300
Ni1—N42.079 (3)C15—C161.374 (7)
Ni1—N52.083 (3)C15—H150.9300
O1—C11.329 (4)C16—C171.362 (7)
O2—C71.260 (4)C16—H160.9300
O3—C81.274 (3)C17—C181.386 (5)
O4—H4A0.85 (3)C17—H170.9300
O4—H4B0.84 (3)C18—C191.466 (6)
N1—C71.313 (4)C19—C201.388 (5)
N1—C21.397 (4)C20—C211.343 (7)
N2—C81.305 (4)C20—H200.9300
N2—C91.454 (4)C21—C221.355 (7)
N3—C131.476 (5)C21—H210.9300
N3—C121.484 (5)C22—C231.399 (6)
N3—C111.491 (4)C22—H220.9300
N4—C141.323 (5)C23—H230.9300
N4—C181.352 (4)C24—C251.376 (5)
N5—C231.322 (5)C24—H240.9300
N5—C191.338 (4)C25—C261.376 (6)
N6—C241.327 (4)C25—H250.9300
N6—C281.354 (4)C26—C271.362 (6)
N7—C331.334 (5)C26—H260.9300
N7—C291.339 (4)C27—C281.385 (5)
C1—C61.402 (5)C27—H270.9300
C1—C21.433 (5)C28—C291.480 (5)
C2—C31.376 (5)C29—C301.392 (5)
C3—C41.380 (5)C30—C311.384 (7)
C3—H30.9300C30—H300.9300
C4—C51.371 (6)C31—C321.361 (7)
C4—H40.9300C31—H310.9300
C5—C61.378 (6)C32—C331.362 (6)
C5—H50.9300C32—H320.9300
C6—H60.9300C33—H330.9300
C7—C81.528 (4)Cl1—O51.319 (7)
C9—C101.528 (5)Cl1—O81.336 (7)
C9—H9A0.9700Cl1—O71.351 (7)
C9—H9B0.9700Cl1—O61.386 (7)
C10—C111.501 (5)Cl2—O91.338 (9)
C10—H10A0.9700Cl2—O121.389 (12)
C10—H10B0.9700Cl2—O111.386 (11)
C11—H11A0.9700Cl2—O101.411 (12)
N1—Cu1—O182.82 (11)N3—C11—H11B108.6
N1—Cu1—N283.15 (10)C10—C11—H11B108.6
O1—Cu1—N2165.95 (11)H11A—C11—H11B107.6
N1—Cu1—N3160.19 (12)N3—C12—H12A109.5
O1—Cu1—N396.32 (11)N3—C12—H12B109.5
N2—Cu1—N396.68 (11)H12A—C12—H12B109.5
O2—Ni1—O381.98 (8)N3—C12—H12C109.5
O2—Ni1—N794.29 (11)H12A—C12—H12C109.5
O3—Ni1—N791.62 (10)H12B—C12—H12C109.5
O2—Ni1—N6173.02 (10)N3—C13—H13A109.5
O3—Ni1—N695.87 (9)N3—C13—H13B109.5
N7—Ni1—N679.10 (12)H13A—C13—H13B109.5
O2—Ni1—N490.57 (10)N3—C13—H13C109.5
O3—Ni1—N493.93 (10)H13A—C13—H13C109.5
N7—Ni1—N4173.09 (11)H13B—C13—H13C109.5
N6—Ni1—N496.21 (10)N4—C14—C15122.4 (4)
O2—Ni1—N587.79 (10)N4—C14—H14118.8
O3—Ni1—N5167.36 (10)C15—C14—H14118.8
N7—Ni1—N596.55 (13)C16—C15—C14118.0 (5)
N6—Ni1—N595.14 (11)C16—C15—H15121.0
N4—Ni1—N578.70 (13)C14—C15—H15121.0
C1—O1—Cu1111.8 (2)C17—C16—C15120.1 (4)
C7—O2—Ni1111.3 (2)C17—C16—H16120.0
C8—O3—Ni1111.32 (19)C15—C16—H16120.0
H4A—O4—H4B105 (4)C16—C17—C18119.5 (4)
C7—N1—C2128.4 (3)C16—C17—H17120.2
C7—N1—Cu1116.0 (2)C18—C17—H17120.2
C2—N1—Cu1115.5 (2)N4—C18—C17120.5 (4)
C8—N2—C9118.6 (3)N4—C18—C19115.7 (3)
C8—N2—Cu1112.8 (2)C17—C18—C19123.7 (4)
C9—N2—Cu1128.4 (2)N5—C19—C20121.0 (4)
C13—N3—C12108.6 (3)N5—C19—C18115.7 (3)
C13—N3—C11108.4 (3)C20—C19—C18123.3 (4)
C12—N3—C11109.6 (3)C21—C20—C19119.7 (5)
C13—N3—Cu1105.9 (2)C21—C20—H20120.1
C12—N3—Cu1111.4 (2)C19—C20—H20120.1
C11—N3—Cu1112.7 (2)C20—C21—C22120.6 (5)
C14—N4—C18119.5 (3)C20—C21—H21119.7
C14—N4—Ni1126.1 (2)C22—C21—H21119.7
C18—N4—Ni1114.4 (3)C21—C22—C23117.2 (5)
C23—N5—C19118.3 (4)C21—C22—H22121.4
C23—N5—Ni1126.0 (3)C23—C22—H22121.4
C19—N5—Ni1114.6 (3)N5—C23—C22123.2 (5)
C24—N6—C28118.1 (3)N5—C23—H23118.4
C24—N6—Ni1127.1 (2)C22—C23—H23118.4
C28—N6—Ni1114.8 (2)N6—C24—C25123.2 (4)
C33—N7—C29119.1 (3)N6—C24—H24118.4
C33—N7—Ni1126.0 (3)C25—C24—H24118.4
C29—N7—Ni1114.8 (2)C24—C25—C26118.6 (4)
O1—C1—C6123.8 (3)C24—C25—H25120.7
O1—C1—C2119.2 (3)C26—C25—H25120.7
C6—C1—C2117.0 (4)C27—C26—C25119.2 (4)
C3—C2—N1128.2 (3)C27—C26—H26120.4
C3—C2—C1121.1 (3)C25—C26—H26120.4
N1—C2—C1110.7 (3)C26—C27—C28119.5 (4)
C2—C3—C4119.6 (4)C26—C27—H27120.2
C2—C3—H3120.2C28—C27—H27120.2
C4—C3—H3120.2N6—C28—C27121.4 (3)
C5—C4—C3120.6 (4)N6—C28—C29115.1 (3)
C5—C4—H4119.7C27—C28—C29123.5 (3)
C3—C4—H4119.7N7—C29—C30121.1 (4)
C4—C5—C6120.9 (4)N7—C29—C28116.1 (3)
C4—C5—H5119.6C30—C29—C28122.8 (4)
C6—C5—H5119.6C31—C30—C29118.6 (5)
C5—C6—C1120.7 (4)C31—C30—H30120.7
C5—C6—H6119.6C29—C30—H30120.7
C1—C6—H6119.6C32—C31—C30119.3 (5)
O2—C7—N1128.8 (3)C32—C31—H31120.3
O2—C7—C8118.6 (3)C30—C31—H31120.3
N1—C7—C8112.5 (3)C31—C32—C33119.3 (5)
O3—C8—N2128.0 (3)C31—C32—H32120.3
O3—C8—C7116.6 (3)C33—C32—H32120.3
N2—C8—C7115.4 (3)N7—C33—C32122.5 (5)
N2—C9—C10110.1 (3)N7—C33—H33118.7
N2—C9—H9A109.6C32—C33—H33118.7
C10—C9—H9A109.6O5—Cl1—O8112.5 (5)
N2—C9—H9B109.6O5—Cl1—O7110.2 (5)
C10—C9—H9B109.6O8—Cl1—O7108.8 (5)
H9A—C9—H9B108.2O5—Cl1—O6110.0 (6)
C11—C10—C9112.9 (3)O8—Cl1—O6108.6 (7)
C11—C10—H10A109.0O7—Cl1—O6106.6 (6)
C9—C10—H10A109.0O9—Cl2—O12112.8 (10)
C11—C10—H10B109.0O9—Cl2—O11112.9 (10)
C9—C10—H10B109.0O12—Cl2—O11107.8 (9)
H10A—C10—H10B107.8O9—Cl2—O10110.1 (10)
N3—C11—C10114.5 (3)O12—Cl2—O10107.1 (8)
N3—C11—H11A108.6O11—Cl2—O10105.7 (8)
C10—C11—H11A108.6
N1—Cu1—O1—C11.9 (2)C3—C4—C5—C60.2 (7)
N2—Cu1—O1—C14.4 (5)C4—C5—C6—C13.0 (6)
N3—Cu1—O1—C1162.0 (2)O1—C1—C6—C5178.0 (3)
O3—Ni1—O2—C73.6 (2)C2—C1—C6—C52.8 (5)
N7—Ni1—O2—C794.7 (2)Ni1—O2—C7—N1175.9 (3)
N4—Ni1—O2—C790.3 (2)Ni1—O2—C7—C84.0 (4)
N5—Ni1—O2—C7168.9 (2)C2—N1—C7—O22.5 (6)
O2—Ni1—O3—C82.7 (2)Cu1—N1—C7—O2179.3 (3)
N7—Ni1—O3—C896.8 (2)C2—N1—C7—C8177.4 (3)
N6—Ni1—O3—C8176.0 (2)Cu1—N1—C7—C80.6 (4)
N4—Ni1—O3—C887.4 (2)Ni1—O3—C8—N2178.9 (3)
N5—Ni1—O3—C833.6 (6)Ni1—O3—C8—C71.4 (3)
O1—Cu1—N1—C7178.6 (3)C9—N2—C8—O30.9 (5)
N2—Cu1—N1—C72.1 (2)Cu1—N2—C8—O3176.6 (3)
N3—Cu1—N1—C792.7 (4)C9—N2—C8—C7179.4 (3)
O1—Cu1—N1—C21.3 (2)Cu1—N2—C8—C73.7 (3)
N2—Cu1—N1—C2179.3 (2)O2—C7—C8—O31.8 (4)
N3—Cu1—N1—C290.0 (4)N1—C7—C8—O3178.1 (3)
N1—Cu1—N2—C83.2 (2)O2—C7—C8—N2177.9 (3)
O1—Cu1—N2—C85.8 (6)N1—C7—C8—N22.2 (4)
N3—Cu1—N2—C8163.3 (2)C8—N2—C9—C10173.0 (3)
N1—Cu1—N2—C9178.4 (3)Cu1—N2—C9—C101.9 (4)
O1—Cu1—N2—C9179.1 (4)N2—C9—C10—C1154.3 (4)
N3—Cu1—N2—C921.6 (3)C13—N3—C11—C10164.4 (3)
N1—Cu1—N3—C1331.6 (5)C12—N3—C11—C1077.2 (4)
O1—Cu1—N3—C1354.7 (3)Cu1—N3—C11—C1047.5 (4)
N2—Cu1—N3—C13119.9 (3)C9—C10—C11—N384.5 (4)
N1—Cu1—N3—C12149.6 (3)C18—N4—C14—C150.3 (5)
O1—Cu1—N3—C1263.3 (3)Ni1—N4—C14—C15179.9 (3)
N2—Cu1—N3—C12122.1 (3)N4—C14—C15—C160.5 (6)
N1—Cu1—N3—C1186.7 (4)C14—C15—C16—C170.1 (6)
O1—Cu1—N3—C11173.0 (2)C15—C16—C17—C180.8 (6)
N2—Cu1—N3—C111.6 (3)C14—N4—C18—C170.5 (5)
O2—Ni1—N4—C1495.7 (3)Ni1—N4—C18—C17179.2 (3)
O3—Ni1—N4—C1413.7 (3)C14—N4—C18—C19178.5 (3)
N6—Ni1—N4—C1482.7 (3)Ni1—N4—C18—C191.9 (3)
N5—Ni1—N4—C14176.7 (3)C16—C17—C18—N41.0 (5)
O2—Ni1—N4—C1884.7 (2)C16—C17—C18—C19177.9 (4)
O3—Ni1—N4—C18166.7 (2)C23—N5—C19—C200.1 (5)
N6—Ni1—N4—C1896.9 (2)Ni1—N5—C19—C20168.3 (3)
N5—Ni1—N4—C182.9 (2)C23—N5—C19—C18179.3 (3)
O2—Ni1—N5—C2383.9 (3)Ni1—N5—C19—C1810.9 (4)
O3—Ni1—N5—C23119.8 (5)N4—C18—C19—N58.6 (4)
N7—Ni1—N5—C2310.1 (4)C17—C18—C19—N5172.5 (3)
N6—Ni1—N5—C2389.7 (3)N4—C18—C19—C20170.6 (3)
N4—Ni1—N5—C23175.0 (4)C17—C18—C19—C208.3 (5)
O2—Ni1—N5—C1983.4 (2)N5—C19—C20—C210.1 (6)
O3—Ni1—N5—C1947.5 (6)C18—C19—C20—C21179.1 (4)
N7—Ni1—N5—C19177.5 (2)C19—C20—C21—C220.1 (8)
N6—Ni1—N5—C19103.0 (2)C20—C21—C22—C230.0 (8)
N4—Ni1—N5—C197.6 (2)C19—N5—C23—C220.2 (6)
O3—Ni1—N6—C2492.3 (3)Ni1—N5—C23—C22166.7 (4)
N7—Ni1—N6—C24177.2 (3)C21—C22—C23—N50.2 (7)
N4—Ni1—N6—C242.4 (3)C28—N6—C24—C250.4 (5)
N5—Ni1—N6—C2481.5 (3)Ni1—N6—C24—C25176.5 (3)
O3—Ni1—N6—C2890.8 (2)N6—C24—C25—C260.6 (6)
N7—Ni1—N6—C280.3 (2)C24—C25—C26—C270.3 (6)
N4—Ni1—N6—C28174.6 (2)C25—C26—C27—C281.4 (6)
N5—Ni1—N6—C2895.4 (2)C24—N6—C28—C270.8 (5)
O2—Ni1—N7—C332.4 (3)Ni1—N6—C28—C27178.0 (3)
O3—Ni1—N7—C3384.4 (3)C24—N6—C28—C29179.2 (3)
N6—Ni1—N7—C33179.9 (3)Ni1—N6—C28—C291.9 (4)
N5—Ni1—N7—C3385.9 (3)C26—C27—C28—N61.7 (5)
O2—Ni1—N7—C29176.2 (2)C26—C27—C28—C29178.3 (3)
O3—Ni1—N7—C2994.1 (2)C33—N7—C29—C300.6 (5)
N6—Ni1—N7—C291.6 (2)Ni1—N7—C29—C30178.0 (3)
N5—Ni1—N7—C2995.6 (2)C33—N7—C29—C28178.3 (3)
Cu1—O1—C1—C6178.6 (3)Ni1—N7—C29—C283.1 (4)
Cu1—O1—C1—C22.2 (4)N6—C28—C29—N73.3 (4)
C7—N1—C2—C32.2 (6)C27—C28—C29—N7176.6 (3)
Cu1—N1—C2—C3179.0 (3)N6—C28—C29—C30177.7 (3)
C7—N1—C2—C1177.3 (3)C27—C28—C29—C302.3 (5)
Cu1—N1—C2—C10.5 (3)N7—C29—C30—C311.1 (6)
O1—C1—C2—C3179.2 (3)C28—C29—C30—C31177.7 (4)
C6—C1—C2—C30.0 (5)C29—C30—C31—C320.9 (7)
O1—C1—C2—N11.2 (4)C30—C31—C32—C330.3 (8)
C6—C1—C2—N1179.6 (3)C29—N7—C33—C320.1 (6)
N1—C2—C3—C4176.8 (3)Ni1—N7—C33—C32178.5 (4)
C1—C2—C3—C42.7 (5)C31—C32—C33—N70.2 (8)
C2—C3—C4—C52.7 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O1i0.85 (3)1.92 (2)2.763 (4)176 (4)
O4—H4B···O9ii0.84 (3)2.23 (2)3.087 (18)167 (4)
O4—H4B···O120.84 (3)2.07 (2)2.871 (10)160 (4)
C15—H15···O11ii0.932.363.176 (12)146
C21—H21···O10iii0.932.473.226 (10)139
C26—H26···O7iv0.932.463.322 (8)154
C27—H27···O3v0.932.493.233 (4)138
Symmetry codes: (i) x+1, y+2, z; (ii) x+1, y+1, z; (iii) x, y+1, z; (iv) x, y1, z; (v) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[CuNi(C13H16N3O3)(C10H8N2)2(H2O)]ClO4
Mr814.37
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)11.4692 (5), 11.8976 (5), 15.1818 (7)
α, β, γ (°)92.261 (3), 109.043 (3), 112.911 (3)
V3)1770.51 (15)
Z2
Radiation typeMo Kα
µ (mm1)1.27
Crystal size (mm)0.24 × 0.15 × 0.15
Data collection
DiffractometerBruker APEX area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.751, 0.833
No. of measured, independent and
observed [I > 2σ(I)] reflections
15761, 8178, 4749
Rint0.044
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.131, 0.96
No. of reflections8178
No. of parameters515
No. of restraints45
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.46, 0.40

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Siemens, 1994), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Cu1—N11.924 (3)Ni1—O32.071 (2)
Cu1—O11.975 (2)Ni1—N72.077 (3)
Cu1—N21.980 (3)Ni1—N62.077 (3)
Cu1—N32.030 (3)Ni1—N42.079 (3)
Cu1—O42.456 (3)Ni1—N52.083 (3)
Ni1—O22.051 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O1i0.85 (3)1.92 (2)2.763 (4)176 (4)
O4—H4B···O9ii0.84 (3)2.23 (2)3.087 (18)167 (4)
O4—H4B···O120.84 (3)2.07 (2)2.871 (10)160 (4)
C15—H15···O11ii0.932.363.176 (12)146.4
C21—H21···O10iii0.932.473.226 (10)138.8
C26—H26···O7iv0.932.463.322 (8)154.0
C27—H27···O3v0.932.493.233 (4)137.5
Symmetry codes: (i) x+1, y+2, z; (ii) x+1, y+1, z; (iii) x, y+1, z; (iv) x, y1, z; (v) x+1, y+1, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds