Download citation
Download citation
link to html
In the title compound, [RuCl2(C2H3N)(C27H31N3)]·CH2Cl2, the RuII ion is six-coordinated in a distorted octa­hedral arrangement, with the two Cl atoms located in the apical positions, and the pyridine (py) N atom, the two imino N atoms and the acetonitrile N atom located in the basal plane. The two equatorial Ru—Nimino distances are almost equal (mean 2.087 Å) and are substanti­ally longer than the equatorial Ru—Npy bond [1.921 (4) Å]. It is observed that the NiminoM—Npy angle for the five-membered chelate rings of pyridine-2,6-diimine complexes is inversely related to the magnitude of the M—Npy bond. The title structure is stabilized by intra- and inter­molecular C—H...Cl hydrogen bonds, as well as by van der Waals inter­actions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107036669/bg3047sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107036669/bg3047Isup2.hkl
Contains datablock I

CCDC reference: 661786

Comment top

Pydim [2,6-bis(imino)pyridine] complexes of the form of (I), with a variety of Ar substituents, display a range of catalytic activities. For example, iron and cobalt complexes have been used in alkene polymerization reactions (Small et al., 1998; Tellmann et al., 2005; Bryliakov et al., 2004; Ionkin et al., 2006). Ruthenium complexes have been studied for potential applications such as optical sensors and chemical catalysis (Bianchini & Lee, 2000; Ertekin et al., 2003; Çetinkaya et al., 1999; Dayan & Çetinkaya, 2007). More recently, RuII complexes have been used for transfer hydrogenation reactions of ketones (Dayan & Çetinkaya, 2007).

While RuII–pydim complexes have been examined extensively, reports of the structural properties of these compounds are rare in the literature (Ertekin et al., 2003; Çetinkaya et al., 1999; Dayan & Çetinkaya, 2007; Özdemir et al., 2007a,b). In order to establish the coordination geometry about the metal atom and to examine the structural parameters in this case, we present here the synthesis and crystal structure of the title complex, (II).

The molecular structure of complex (II) and the atom-labelling scheme are shown in Fig. 1. Selected geometric parameters are listed in Table 1. The mononuclear pydim molecule contains an (N,N'E,N,N'E)-N,N'-[1,1'-(pyridine-2,6-diyl)bis(ethan-1-yl-1-ylidene)]bis(2,4,6-trimethylaniline) ligand with an RuII metal centre, one acetonitrile ligand and two Cl ligands. The compound crystallizes with a dichloromethane solvent molecule in the asymmetric unit and the ligand, with its two imine groups in ortho positions with respect to the pyridine (py) N atom, behaves as a symmetrical N,N',N-tridentate chelate. The five-membered chelate rings formed by atoms Ru1/N1/C1/C17/N3 and Ru1/N1/C5/C6/N2 are planar and the maximum deviations from their planes are 0.072 (3) and 0.041 (3) Å, respectively, for atom N1. These two chelate rings are nearly coplanar, subtending a small dihedral angle of 2.41 (6)°.

The local structure around the RuII ion of (II) is that of an octahedron, of which the equatorial plane (N1/N2/N3/N4) is formed by three N atoms from the pydim ligand (N1, N2 and N3) and one N atom from the acetonitrile (N4). The axial positions in the octahedron are occupied by two Cl atoms (Cl1 and Cl2). As can be seen from the trans angles, which vary from 156.97 (16) to 173.90 (5)°, and the cis angles, which vary from 78.29 (18) to 108.59 (17)°, the coordination octahedron around the RuII ion is rather deformed, the major distortion arising via the N2—Ru1—N3 angle of 156.97 (16)°. This angle is considerably smaller than the ideal angle of 180° and there is no steric barrier to coordination of a fourth ligand in the equatorial plane trans to the pyridine moiety. The N1—Ru—N4 angle, involving the acetonitrile and the pyridine N atoms, is normal, at 170.7 (2)°. The Ru—N2 and Ru—N3 bond lengths are comparable with the reported values for [RuCl2(pybox-dihydro)(C2H4)] [pybox is bis(hydrooxazolyl)pyridine; Nishiyama et al., 1995]. However, the M—Npy bond [1.921 (4) Å] is somewhat shorter than the M—Nimino and M—NMeCN bonds, with the formal double-bond character of the imino linkages N2—C6 and N3—C17 having been retained [CN = 1.322 (7) and 1.309 (6) Å, respectively]. This coordination environment is similar to that observed in [RuCl2(pydim)(CH3CN)] (with Ar = 4-MeOC6H4; Çetinkaya et al., 1999).

Complex (II) possesses approximate non-crystallographic Cs symmetry about a plane bisecting the central pyridine ring and containing the metal atom, the acetonitrile N atom and the two halogen atoms. The planes of the benzene rings substituted on the bis(imino)pyridine ligand backbone are, as usual for bis(imino)pyridine ligands, inclined almost orthogonally to the plane of the backbone [83.2 (2) and 72.5 (2)° for rings C8–C13 and C19–C24, respectively], while the dihedral angle between the two benzene planes is 89.2 (2)°. The geometries at the imino N-atom centres are both trigonal planar, the sums of the three bond angles around these centres being 359.4 and 359.9°, and neither is more than ca 0.05 Å out of its associated RuC2 plane.

There are several structures reported in the literature containing various transition metal complexes of pydim-based ligands (Britovsek et al., 1999; Dias et al., 2000; Nakayama et al., 2005; Humphries et al., 2005). Inspection of the the M—N bond distances in (II) and in these examples indicates that the two M—Nimino bonds are ca 0.1–0.2 Å longer than the corresponding M—Npy bond within each metal–tridentate chelate unit. Furthermore, it is observed that the NiminoM—Npy bond angle for the five-membered chelate rings of pydim complexes is inversely related to the magnitude of the M—Npy bond. As the M—Npy distance increases from 1.833 (3) Å for [CoMe(pydim)] (with Ar = 2,6-iPr2C6H3; Humphries et al., 2005) to 1.911 (3) Å for [RhMe(pydim)](OTf)2 (with Ar = 2,6-iPr2C6H3 and where OTf is trifluoromethanesulfonate; Dias et al., 2000) to 1.921 (4) for (II) to 2.001 (3) Å for [CrCl3(pydim)] (with Ar = C6F5; Nakayama et al., 2005) to 2.110 (6) Å for [FeCl2(pydim)] (with Ar = 2,4,6-Me3C6H2; Britovsek et al., 1999), the corresponding average inner `bite' angle decreases continually from 81.17 to 79.8 to 78.82 to 76.6 to 72.8°, respectively.

The Ru—NMeCN distance is 2.072 (4) Å and this is noticeably longer than the Ru—NMeCN distances in [Ru(C5H8)(C10H15)(C2H3N)](CF3SO3) [2.059 (3) Å; Gemel et al., 1999], [Ru(C5H5)(C2H3N)(C18H15P)2]BF4 [2.040 (3) Å; Carreón et al., 1997] and [RuCl2(C2H3N)4] [2.021 (3) and 2.020 (3) Å; Bown & Hockless, 1996]. This enlargement can be attributed to the different coodination enviroments of the metal atoms. As expected, the acetonitrile ligand is in an almost perfectly linear orientation [N4—C28—C29 = 175.7 (7)°], but with a bent coordination to the RuII ion [Ru1—N4—C28 = 164.0 (5)°]. Such coordination has been observed in [RuCl2(pydim)CH3CN] [with Ar = 4-MeOC6H4; 173.3 (9)°; Çetinkaya et al., 1999]. A bent metal–acetonitrile coordination is indeed quite common, with angles from 145.2 to 176.9°, and an average of 167°, having been reported (Agterberg et al., 1998; Begley et al., 1985; Chisholm et al., 1996; Holligan et al., 1992; Libby et al., 1993). This average is somewhat lowered by the two extremely low values for NiII (145.2°; Holligan et al., 1992) and MnIII (149.1°; Libby et al., 1993) complexes, which have been attributed to hydrogen-bonding and steric effects, respectively.

In the molecular structure of (II), three intramolecular interactions are observed between the methyl H atom substituted on the benzene rings and the Cl atoms coordinated to the metal atom (Table 2), which lead to the formation of seven-membered rings with graph-set descriptor S(7) (Bernstein et al., 1995). Examination of the structure with PLATON (Spek, 2003) reveals that there is an intermolecular interaction between atom Cl1 coordinated to the metal atom and atom H30B of the dichloromethane solvent molecule. This interaction is probably responsible for stabilizing the dichloromethane molecule in the observed position. These interactions, as well as van der Waals interactions, stabilize the molecular structure and packing. The full geometry of the intra- and intermolecular interactions is given in Table 2.

Related literature top

For related literature, see: Agterberg et al. (1998); Begley et al. (1985); Bernstein et al. (1995); Bianchini & Lee (2000); Bown & Hockless (1996); Britovsek et al. (1999); Bryliakov et al. (2004); Carreón et al. (1997); Chisholm et al. (1996); Dayan & Çetinkaya (2007); Dias et al. (2000); Ertekin et al. (2003); Gemel et al. (1999); Holligan et al. (1992); Humphries et al. (2005); Ionkin et al. (2006); Libby et al. (1993); Nakayama et al. (2005); Nishiyama et al. (1995); Sheldrick (1997); Small et al. (1998); Spek (2003); Tellmann et al. (2005); Özdemir et al. (2007a, 2007b); Çetinkaya et al. (1999).

Experimental top

The title complex was synthesized following the procedure of Dayan & Çetinkaya (2007) and X-ray quality crystals were grown from a solution in CH2Cl2–Et2O (30 ml, 1:3 v/v).

Refinement top

H atoms were positioned geometrically and treated using a riding model, fixing the bond lengths at 0.96, 0.97 and 0.93 Å for CH3, CH2 and aromatic CH groups, respectively. The displacement parameters of the H atoms were constrained at Uiso(H) = 1.2Ueq(C), or 1.5Ueq(C) for methyl H atoms. Riding methyl H atoms were allowed to rotate freely during refinement using the AFIX 137 command of SHELXL97 (Sheldrick, 1997). Examination of the refined structure using PLATON (Spek, 2003) revealed the presence of void spaces having a total volume of 110.1 Å3 (3.4%) per unit cell, the volume of the individual voids being 28 Å3. The maximum peak in the final difference Fourier map is 1.00 e Å-3 at a distance of 0.91 Å from atom Ru1, and the minimum peak is -1.08 e Å-3 at a distance of 0.88 Å from atom Cl4.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of (II), with 30% probability displacement ellipsoids and the atom-numbering scheme. Hydrogen bonds are shown as dashed lines. For clarity, only H atoms involved in hydrogen bonding have been included.
(Acetonitrile){2,6-bis[1-(2,4,6-trimethylphenylimino)ethyl]pyridine}dicholoridoruthenium(II) dichloromethane solvate top
Crystal data top
[RuCl2(C2H3N)(C27H31N3)]·CH2Cl2F(000) = 1424
Mr = 695.50Dx = 1.435 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 50986 reflections
a = 14.4002 (7) Åθ = 1.9–27.9°
b = 14.5478 (7) ŵ = 0.85 mm1
c = 21.0119 (10) ÅT = 296 K
β = 133.017 (3)°Block, black
V = 3218.4 (3) Å30.64 × 0.43 × 0.12 mm
Z = 4
Data collection top
Stoe IPDS2
diffractometer
7572 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus4762 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.090
Detector resolution: 6.67 pixels mm-1θmax = 27.8°, θmin = 1.9°
ω scansh = 1817
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 1919
Tmin = 0.526, Tmax = 0.861l = 2727
48037 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.180H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0943P)2]
where P = (Fo2 + 2Fc2)/3
7572 reflections(Δ/σ)max = 0.001
361 parametersΔρmax = 1.00 e Å3
0 restraintsΔρmin = 1.08 e Å3
Crystal data top
[RuCl2(C2H3N)(C27H31N3)]·CH2Cl2V = 3218.4 (3) Å3
Mr = 695.50Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.4002 (7) ŵ = 0.85 mm1
b = 14.5478 (7) ÅT = 296 K
c = 21.0119 (10) Å0.64 × 0.43 × 0.12 mm
β = 133.017 (3)°
Data collection top
Stoe IPDS2
diffractometer
7572 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
4762 reflections with I > 2σ(I)
Tmin = 0.526, Tmax = 0.861Rint = 0.090
48037 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.180H-atom parameters constrained
S = 1.08Δρmax = 1.00 e Å3
7572 reflectionsΔρmin = 1.08 e Å3
361 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ru10.34841 (4)0.64421 (3)0.16052 (3)0.03775 (14)
Cl10.49507 (14)0.65706 (9)0.31596 (10)0.0517 (3)
Cl20.19451 (14)0.64737 (11)0.00501 (10)0.0544 (3)
Cl30.8080 (3)0.4580 (2)0.5396 (2)0.1187 (9)
Cl40.6643 (5)0.5686 (3)0.5584 (3)0.1773 (18)
N10.2934 (4)0.5193 (3)0.1456 (3)0.0416 (10)
N20.4811 (4)0.5758 (3)0.1672 (3)0.0415 (10)
N30.2029 (4)0.6590 (3)0.1602 (3)0.0419 (10)
N40.4093 (4)0.7739 (3)0.1618 (3)0.0461 (11)
C10.1862 (5)0.5018 (4)0.1286 (4)0.0462 (13)
C20.1381 (6)0.4121 (4)0.1086 (5)0.0587 (16)
H20.06480.39920.09730.070*
C30.1999 (7)0.3448 (4)0.1062 (5)0.069 (2)
H30.16960.28480.09440.083*
C40.3073 (6)0.3631 (4)0.1207 (5)0.0589 (16)
H40.34900.31620.11860.071*
C50.3513 (5)0.4522 (4)0.1384 (4)0.0473 (13)
C60.4597 (6)0.4865 (4)0.1522 (4)0.0491 (14)
C70.5386 (7)0.4204 (4)0.1508 (5)0.0669 (19)
H7A0.59980.45390.15490.100*
H7B0.48440.38600.09750.100*
H7C0.58180.37890.19930.100*
C80.5923 (5)0.6131 (4)0.1892 (4)0.0437 (12)
C90.7105 (5)0.6039 (4)0.2745 (4)0.0480 (13)
C100.8156 (6)0.6481 (5)0.2960 (5)0.0615 (16)
H100.89370.64480.35310.074*
C110.8076 (7)0.6952 (5)0.2368 (5)0.0665 (18)
C120.6920 (7)0.6995 (5)0.1526 (5)0.0688 (19)
H120.68640.73100.11160.083*
C130.5803 (6)0.6579 (4)0.1255 (4)0.0537 (14)
C140.7280 (7)0.5492 (6)0.3430 (5)0.0696 (19)
H14A0.81690.54430.39410.104*
H14B0.69290.48890.32100.104*
H14C0.68540.57970.35750.104*
C150.9256 (8)0.7405 (7)0.2642 (7)0.106 (3)
H15A0.95380.78860.30530.160*
H15B0.90580.76610.21400.160*
H15C0.99170.69550.29060.160*
C160.4596 (7)0.6615 (6)0.0336 (5)0.078 (2)
H16A0.43940.60130.00830.117*
H16B0.46780.70340.00240.117*
H16C0.39300.68210.03020.117*
C170.1379 (5)0.5833 (4)0.1385 (4)0.0465 (13)
C180.0235 (6)0.5750 (5)0.1282 (5)0.0636 (18)
H18A0.04850.54700.17930.095*
H18B0.03980.53760.07820.095*
H18C0.01070.63500.12040.095*
C190.1786 (5)0.7357 (3)0.1920 (4)0.0419 (12)
C200.2141 (5)0.7281 (4)0.2729 (4)0.0501 (14)
C210.1906 (6)0.8021 (5)0.3009 (4)0.0565 (15)
H210.21240.79740.35390.068*
C220.1366 (6)0.8826 (4)0.2545 (5)0.0578 (16)
C230.1037 (6)0.8879 (4)0.1754 (5)0.0538 (15)
H230.06640.94160.14280.065*
C240.1247 (5)0.8155 (4)0.1426 (4)0.0452 (12)
C250.2703 (7)0.6408 (5)0.3279 (5)0.0659 (17)
H25A0.32580.65680.38830.099*
H25B0.31750.60830.31800.099*
H25C0.20300.60240.31200.099*
C260.1138 (10)0.9620 (5)0.2883 (6)0.086 (2)
H26A0.17431.00980.30780.129*
H26B0.12330.94170.33590.129*
H26C0.02940.98520.24260.129*
C270.0869 (6)0.8247 (4)0.0567 (4)0.0575 (16)
H27A0.16150.83140.06580.086*
H27B0.03370.87780.02680.086*
H27C0.04110.77080.02240.086*
C280.4551 (6)0.8338 (4)0.1570 (4)0.0489 (14)
C290.5205 (8)0.9062 (5)0.1516 (5)0.072 (2)
H29A0.60610.88720.18280.108*
H29B0.52180.96180.17680.108*
H29C0.47650.91690.09170.108*
C300.7564 (11)0.5712 (8)0.5362 (8)0.118 (4)
H30A0.82980.60990.57840.142*
H30B0.70900.59750.47890.142*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.0333 (2)0.03230 (19)0.0475 (2)0.00373 (17)0.0275 (2)0.00037 (19)
Cl10.0494 (8)0.0468 (7)0.0523 (8)0.0017 (6)0.0320 (7)0.0010 (6)
Cl20.0424 (7)0.0646 (8)0.0513 (8)0.0059 (6)0.0300 (7)0.0022 (7)
Cl30.118 (2)0.131 (2)0.118 (2)0.0112 (17)0.0845 (19)0.0057 (17)
Cl40.281 (5)0.125 (3)0.263 (5)0.042 (3)0.240 (5)0.021 (3)
N10.037 (2)0.035 (2)0.048 (3)0.0035 (17)0.027 (2)0.0002 (18)
N20.035 (2)0.043 (2)0.047 (3)0.0006 (17)0.028 (2)0.0012 (19)
N30.039 (2)0.040 (2)0.051 (3)0.0004 (17)0.033 (2)0.0008 (18)
N40.039 (3)0.040 (2)0.054 (3)0.0020 (18)0.030 (2)0.0006 (19)
C10.037 (3)0.042 (3)0.055 (3)0.007 (2)0.030 (3)0.003 (2)
C20.049 (4)0.045 (3)0.080 (5)0.008 (2)0.043 (4)0.005 (3)
C30.065 (4)0.037 (3)0.094 (5)0.015 (3)0.050 (4)0.006 (3)
C40.054 (3)0.038 (3)0.076 (4)0.009 (2)0.041 (3)0.008 (3)
C50.043 (3)0.037 (3)0.062 (4)0.001 (2)0.036 (3)0.002 (2)
C60.046 (3)0.040 (3)0.060 (4)0.002 (2)0.035 (3)0.003 (2)
C70.062 (4)0.051 (3)0.098 (5)0.002 (3)0.058 (4)0.008 (3)
C80.044 (3)0.041 (2)0.054 (3)0.005 (2)0.037 (3)0.003 (2)
C90.039 (3)0.051 (3)0.052 (3)0.000 (2)0.030 (3)0.004 (3)
C100.039 (3)0.076 (4)0.065 (4)0.003 (3)0.033 (3)0.011 (3)
C110.053 (4)0.059 (4)0.093 (5)0.010 (3)0.052 (4)0.005 (4)
C120.068 (5)0.069 (4)0.095 (6)0.000 (3)0.065 (5)0.016 (4)
C130.045 (3)0.058 (3)0.064 (4)0.003 (3)0.040 (3)0.006 (3)
C140.050 (4)0.099 (5)0.058 (4)0.017 (4)0.036 (4)0.015 (4)
C150.082 (6)0.102 (7)0.146 (9)0.030 (5)0.082 (7)0.006 (6)
C160.068 (5)0.112 (6)0.064 (5)0.003 (4)0.049 (4)0.019 (4)
C170.039 (3)0.045 (3)0.055 (3)0.003 (2)0.032 (3)0.007 (2)
C180.051 (4)0.063 (4)0.088 (5)0.011 (3)0.051 (4)0.005 (3)
C190.036 (3)0.039 (2)0.053 (3)0.001 (2)0.031 (3)0.001 (2)
C200.041 (3)0.053 (3)0.060 (4)0.003 (2)0.036 (3)0.001 (3)
C210.050 (4)0.072 (4)0.055 (4)0.009 (3)0.039 (3)0.003 (3)
C220.056 (4)0.060 (4)0.075 (5)0.011 (3)0.051 (4)0.014 (3)
C230.050 (3)0.044 (3)0.074 (4)0.001 (2)0.045 (4)0.002 (3)
C240.034 (3)0.049 (3)0.051 (3)0.004 (2)0.029 (3)0.002 (2)
C250.066 (4)0.076 (4)0.061 (4)0.006 (3)0.045 (4)0.016 (3)
C260.119 (7)0.066 (4)0.121 (7)0.005 (4)0.100 (7)0.005 (4)
C270.056 (4)0.050 (3)0.059 (4)0.008 (3)0.036 (3)0.008 (3)
C280.053 (3)0.039 (3)0.058 (4)0.002 (2)0.039 (3)0.000 (2)
C290.084 (5)0.052 (4)0.092 (5)0.016 (3)0.065 (5)0.004 (3)
C300.117 (9)0.136 (9)0.119 (9)0.002 (7)0.087 (8)0.007 (7)
Geometric parameters (Å, º) top
Ru1—N11.921 (4)C14—H14A0.9600
Ru1—N22.072 (4)C14—H14B0.9600
Ru1—N42.072 (4)C14—H14C0.9600
Ru1—N32.102 (4)C15—H15A0.9600
Ru1—Cl22.3896 (16)C15—H15B0.9600
Ru1—Cl12.3982 (16)C15—H15C0.9600
Cl3—C301.788 (12)C16—H16A0.9600
Cl4—C301.679 (11)C16—H16B0.9600
N1—C11.349 (7)C16—H16C0.9600
N1—C51.357 (7)C17—C181.511 (8)
N2—C61.322 (7)C18—H18A0.9600
N2—C81.436 (7)C18—H18B0.9600
N3—C171.309 (6)C18—H18C0.9600
N3—C191.461 (7)C19—C241.388 (8)
N4—C281.139 (7)C19—C201.406 (8)
C1—C21.401 (7)C20—C211.376 (9)
C1—C171.461 (8)C20—C251.525 (9)
C2—C31.347 (10)C21—C221.376 (9)
C2—H20.9300C21—H210.9300
C3—C41.383 (10)C22—C231.387 (9)
C3—H30.9300C22—C261.504 (9)
C4—C51.378 (7)C23—C241.400 (8)
C4—H40.9300C23—H230.9300
C5—C61.466 (8)C24—C271.492 (9)
C6—C71.504 (8)C25—H25A0.9600
C7—H7A0.9600C25—H25B0.9600
C7—H7B0.9600C25—H25C0.9600
C7—H7C0.9600C26—H26A0.9600
C8—C131.389 (8)C26—H26B0.9600
C8—C91.402 (8)C26—H26C0.9600
C9—C101.405 (9)C27—H27A0.9600
C9—C141.508 (9)C27—H27B0.9600
C10—C111.355 (10)C27—H27C0.9600
C10—H100.9300C28—C291.469 (8)
C11—C121.373 (10)C29—H29A0.9600
C11—C151.522 (9)C29—H29B0.9600
C12—C131.424 (9)C29—H29C0.9600
C12—H120.9300C30—H30A0.9700
C13—C161.474 (10)C30—H30B0.9700
N1—Ru1—N279.34 (18)H14B—C14—H14C109.5
N1—Ru1—N4170.7 (2)C11—C15—H15A109.5
N2—Ru1—N494.25 (17)C11—C15—H15B109.5
N1—Ru1—N378.29 (18)H15A—C15—H15B109.5
N2—Ru1—N3156.97 (16)C11—C15—H15C109.5
N4—Ru1—N3108.59 (17)H15A—C15—H15C109.5
N1—Ru1—Cl284.28 (14)H15B—C15—H15C109.5
N2—Ru1—Cl293.10 (13)C13—C16—H16A109.5
N4—Ru1—Cl289.43 (14)C13—C16—H16B109.5
N3—Ru1—Cl290.07 (13)H16A—C16—H16B109.5
N1—Ru1—Cl1100.26 (14)C13—C16—H16C109.5
N2—Ru1—Cl191.75 (13)H16A—C16—H16C109.5
N4—Ru1—Cl186.53 (14)H16B—C16—H16C109.5
N3—Ru1—Cl186.91 (13)N3—C17—C1115.8 (5)
Cl2—Ru1—Cl1173.90 (5)N3—C17—C18124.6 (5)
C1—N1—C5120.9 (4)C1—C17—C18119.5 (5)
C1—N1—Ru1119.4 (4)C17—C18—H18A109.5
C5—N1—Ru1118.8 (4)C17—C18—H18B109.5
C6—N2—C8118.4 (5)H18A—C18—H18B109.5
C6—N2—Ru1113.6 (4)C17—C18—H18C109.5
C8—N2—Ru1127.9 (3)H18A—C18—H18C109.5
C17—N3—C19117.7 (5)H18B—C18—H18C109.5
C17—N3—Ru1113.0 (4)C24—C19—C20121.8 (5)
C19—N3—Ru1128.7 (3)C24—C19—N3118.9 (5)
C28—N4—Ru1164.0 (5)C20—C19—N3119.3 (5)
N1—C1—C2119.8 (5)C21—C20—C19117.6 (6)
N1—C1—C17112.3 (4)C21—C20—C25119.0 (6)
C2—C1—C17127.7 (5)C19—C20—C25123.3 (6)
C3—C2—C1118.9 (6)C20—C21—C22123.2 (6)
C3—C2—H2120.5C20—C21—H21118.4
C1—C2—H2120.5C22—C21—H21118.4
C2—C3—C4121.3 (5)C21—C22—C23117.6 (6)
C2—C3—H3119.4C21—C22—C26121.3 (7)
C4—C3—H3119.4C23—C22—C26121.1 (7)
C5—C4—C3118.7 (6)C22—C23—C24122.4 (6)
C5—C4—H4120.6C22—C23—H23118.8
C3—C4—H4120.6C24—C23—H23118.8
N1—C5—C4120.1 (5)C19—C24—C23117.3 (6)
N1—C5—C6112.6 (4)C19—C24—C27122.4 (5)
C4—C5—C6127.3 (5)C23—C24—C27120.2 (5)
N2—C6—C5115.2 (5)C20—C25—H25A109.5
N2—C6—C7125.2 (5)C20—C25—H25B109.5
C5—C6—C7119.6 (5)H25A—C25—H25B109.5
C6—C7—H7A109.5C20—C25—H25C109.5
C6—C7—H7B109.5H25A—C25—H25C109.5
H7A—C7—H7B109.5H25B—C25—H25C109.5
C6—C7—H7C109.5C22—C26—H26A109.5
H7A—C7—H7C109.5C22—C26—H26B109.5
H7B—C7—H7C109.5H26A—C26—H26B109.5
C13—C8—C9121.4 (5)C22—C26—H26C109.5
C13—C8—N2119.3 (5)H26A—C26—H26C109.5
C9—C8—N2119.3 (5)H26B—C26—H26C109.5
C8—C9—C10118.0 (6)C24—C27—H27A109.5
C8—C9—C14122.5 (5)C24—C27—H27B109.5
C10—C9—C14119.5 (6)H27A—C27—H27B109.5
C11—C10—C9122.5 (6)C24—C27—H27C109.5
C11—C10—H10118.7H27A—C27—H27C109.5
C9—C10—H10118.7H27B—C27—H27C109.5
C10—C11—C12118.3 (6)N4—C28—C29175.7 (7)
C10—C11—C15119.9 (7)C28—C29—H29A109.5
C12—C11—C15121.8 (7)C28—C29—H29B109.5
C11—C12—C13122.9 (6)H29A—C29—H29B109.5
C11—C12—H12118.6C28—C29—H29C109.5
C13—C12—H12118.6H29A—C29—H29C109.5
C8—C13—C12116.7 (6)H29B—C29—H29C109.5
C8—C13—C16122.6 (6)Cl4—C30—Cl3110.6 (7)
C12—C13—C16120.6 (6)Cl4—C30—H30A109.5
C9—C14—H14A109.5Cl3—C30—H30A109.5
C9—C14—H14B109.5Cl4—C30—H30B109.5
H14A—C14—H14B109.5Cl3—C30—H30B109.5
C9—C14—H14C109.5H30A—C30—H30B108.1
H14A—C14—H14C109.5
N2—Ru1—N1—C1175.2 (5)C4—C5—C6—N2179.2 (6)
N3—Ru1—N1—C110.3 (4)N1—C5—C6—C7177.1 (6)
Cl2—Ru1—N1—C181.0 (4)C4—C5—C6—C72.3 (11)
Cl1—Ru1—N1—C194.9 (4)C6—N2—C8—C13100.7 (6)
N2—Ru1—N1—C55.8 (4)Ru1—N2—C8—C1382.2 (6)
N3—Ru1—N1—C5179.8 (5)C6—N2—C8—C979.5 (7)
Cl2—Ru1—N1—C588.5 (4)Ru1—N2—C8—C997.6 (6)
Cl1—Ru1—N1—C595.6 (4)C13—C8—C9—C105.3 (9)
N1—Ru1—N2—C64.7 (4)N2—C8—C9—C10174.4 (5)
N4—Ru1—N2—C6168.5 (4)C13—C8—C9—C14175.0 (6)
N3—Ru1—N2—C618.6 (7)N2—C8—C9—C145.2 (8)
Cl2—Ru1—N2—C678.9 (4)C8—C9—C10—C113.0 (9)
Cl1—Ru1—N2—C6104.8 (4)C14—C9—C10—C11177.3 (6)
N1—Ru1—N2—C8172.5 (5)C9—C10—C11—C120.1 (10)
N4—Ru1—N2—C814.3 (5)C9—C10—C11—C15179.3 (7)
N3—Ru1—N2—C8158.6 (5)C10—C11—C12—C131.0 (11)
Cl2—Ru1—N2—C8103.9 (4)C15—C11—C12—C13179.8 (7)
Cl1—Ru1—N2—C872.4 (4)C9—C8—C13—C124.4 (9)
N1—Ru1—N3—C179.0 (4)N2—C8—C13—C12175.4 (5)
N2—Ru1—N3—C1723.0 (7)C9—C8—C13—C16174.4 (6)
N4—Ru1—N3—C17164.6 (4)N2—C8—C13—C165.8 (9)
Cl2—Ru1—N3—C1775.2 (4)C11—C12—C13—C81.2 (10)
Cl1—Ru1—N3—C17110.1 (4)C11—C12—C13—C16177.6 (7)
N1—Ru1—N3—C19161.5 (5)C19—N3—C17—C1165.0 (5)
N2—Ru1—N3—C19147.5 (5)Ru1—N3—C17—C16.6 (6)
N4—Ru1—N3—C1924.9 (5)C19—N3—C17—C1811.8 (8)
Cl2—Ru1—N3—C19114.4 (4)Ru1—N3—C17—C18176.6 (5)
Cl1—Ru1—N3—C1960.3 (4)N1—C1—C17—N31.2 (8)
N2—Ru1—N4—C2818.5 (18)C2—C1—C17—N3177.8 (6)
N3—Ru1—N4—C28164.4 (18)N1—C1—C17—C18175.8 (5)
Cl2—Ru1—N4—C2874.6 (18)C2—C1—C17—C180.8 (10)
Cl1—Ru1—N4—C28110.0 (18)C17—N3—C19—C24114.1 (6)
C5—N1—C1—C24.1 (9)Ru1—N3—C19—C2475.8 (6)
Ru1—N1—C1—C2173.4 (5)C17—N3—C19—C2068.0 (7)
C5—N1—C1—C17179.0 (5)Ru1—N3—C19—C20102.1 (5)
Ru1—N1—C1—C179.7 (7)C24—C19—C20—C211.6 (8)
N1—C1—C2—C30.6 (10)N3—C19—C20—C21179.5 (5)
C17—C1—C2—C3176.9 (7)C24—C19—C20—C25178.4 (5)
C1—C2—C3—C41.6 (12)N3—C19—C20—C253.8 (8)
C2—C3—C4—C50.3 (12)C19—C20—C21—C221.1 (9)
C1—N1—C5—C45.5 (9)C25—C20—C21—C22177.9 (6)
Ru1—N1—C5—C4174.8 (5)C20—C21—C22—C230.6 (9)
C1—N1—C5—C6175.0 (5)C20—C21—C22—C26179.4 (7)
Ru1—N1—C5—C65.7 (7)C21—C22—C23—C240.5 (9)
C3—C4—C5—N13.2 (10)C26—C22—C23—C24179.4 (6)
C3—C4—C5—C6177.4 (7)C20—C19—C24—C231.6 (8)
C8—N2—C6—C5174.4 (5)N3—C19—C24—C23179.5 (5)
Ru1—N2—C6—C53.1 (7)C20—C19—C24—C27179.8 (6)
C8—N2—C6—C73.9 (9)N3—C19—C24—C272.0 (8)
Ru1—N2—C6—C7178.6 (5)C22—C23—C24—C191.1 (9)
N1—C5—C6—N21.4 (8)C22—C23—C24—C27179.6 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14C···Cl10.962.513.382 (7)152
C16—H16C···Cl20.962.583.442 (8)150
C25—H25B···Cl10.962.683.421 (7)134
C30—H30B···Cl10.972.753.657 (12)156

Experimental details

Crystal data
Chemical formula[RuCl2(C2H3N)(C27H31N3)]·CH2Cl2
Mr695.50
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)14.4002 (7), 14.5478 (7), 21.0119 (10)
β (°) 133.017 (3)
V3)3218.4 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.85
Crystal size (mm)0.64 × 0.43 × 0.12
Data collection
DiffractometerStoe IPDS2
diffractometer
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.526, 0.861
No. of measured, independent and
observed [I > 2σ(I)] reflections
48037, 7572, 4762
Rint0.090
(sin θ/λ)max1)0.656
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.180, 1.08
No. of reflections7572
No. of parameters361
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.00, 1.08

Computer programs: X-AREA (Stoe & Cie, 2002), X-AREA, X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

Selected bond lengths (Å) top
Ru1—N11.921 (4)Ru1—N32.102 (4)
Ru1—N22.072 (4)Ru1—Cl22.3896 (16)
Ru1—N42.072 (4)Ru1—Cl12.3982 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14C···Cl10.962.513.382 (7)151.8
C16—H16C···Cl20.962.583.442 (8)150.0
C25—H25B···Cl10.962.683.421 (7)134.2
C30—H30B···Cl10.972.753.657 (12)155.6
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds