organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages o514-o515

Di­ethyl 2-{[2-(tri­fluoro­meth­yl)anil­ino]methyl­­idene}propane­dioate

aNational Institute of Technology-Karnataka, Department of Chemistry – Organic Electronics Division, Surathkal, Mangalore 575 025, India, bNational Institute of Technology-Karnataka, Department of Physics, Surathkal, Mangalore 575 025, India, and cNelson Mandela Metropolitan University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth 6031, South Africa
*Correspondence e-mail: richard.betz@webmail.co.za

(Received 14 December 2011; accepted 20 January 2012; online 25 January 2012)

The title compound, C15H16F3NO4, is an N-substituted derivative of ortho-trifluoro­methyl­aniline featuring a twofold Michael system. The least-squares planes defined by the atoms of the phenyl ring and the atoms of the Michael system enclose an angle of 15.52 (5)°. Apart from classical intra­molecular N—H⋯O and N—H⋯F hydrogen bonds, inter­molecular C—H⋯O contacts are observed, the latter connecting the mol­ecules into chains along [110]. The shortest inter­centroid distance between two aromatic systems is 3.6875 (9) Å.

Related literature

For the crystal structure of another ortho-trifluoro­methyl aniline derivative featuring a Michael system as substituent, see: Schweinfurth et al. (2011[Schweinfurth, D., Das, H. S., Weisser, F., Bubrin, D. & Sakar, B. (2011). Inorg. Chem. 50, 1150-1159.]). For general information on Michael systems, see: McMurry (1992[McMurry, J. (1992). Organic Chemistry, 3rd ed. Belmont: Wadsworth.]). For general pharmaceutical background to derivatives of the title compound, see: Kaur et al. (2010[Kaur, K., Jain, M., Reddy, R. P. & Jain, R. (2010). Eur. J. Med. Chem. 45, 3245-3264.]); Eswaran et al. (2010[Eswaran, S., Adhikari, A. V., Chowdhury, I. H., Pal, N. K. & Thomas, K. D. (2010). Eur. J. Med. Chem. 45, 3374-3383.]); Chou et al. (2010[Chou, L. C., Tsai, M. T., Hsu, M. H., Wang, S. H., Way, T. D., Huang, C. H., Lin, H. Y., Qian, K., Dong, Y., Lee, K. H., Huang, L. J. & Kuo, S. C. (2010). J. Med. Chem. 53, 8047-8058.]); Chen et al. (2004[Chen, Y. L., Hung, H. M., Lu, C. M., Li, K. C. & Tzeng, C. C. (2004). Bioorg. Med. Chem. 12, 6539-6546.]); Shingalapur et al. (2009[Shingalapur, R. V., Hosamani, K. M. & Keri, R. S. (2009). Eur. J. Med. Chem. 44, 4244-4248.]). For the preparation of the title compound, see: Eswaran et al. (2009[Eswaran, S., Adhikari, A. V. & Shetty, N. S. (2009). Eur. J. Med. Chem. 44, 4637-4647.]) For the graph-set analysis of hydrogen bonds, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C15H16F3NO4

  • Mr = 331.29

  • Triclinic, [P \overline 1]

  • a = 7.8080 (2) Å

  • b = 10.1485 (3) Å

  • c = 10.5265 (3) Å

  • α = 95.193 (1)°

  • β = 109.183 (1)°

  • γ = 99.405 (1)°

  • V = 767.84 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 200 K

  • 0.55 × 0.39 × 0.09 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS. Bruker Inc., Madison, Wisconsin, USA.]) Tmin = 0.946, Tmax = 1.000

  • 13616 measured reflections

  • 3825 independent reflections

  • 3240 reflections with I > 2σ(I)

  • Rint = 0.014

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.128

  • S = 1.05

  • 3825 reflections

  • 210 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯F2 0.88 2.35 2.9330 (15) 124
N1—H1⋯F3 0.88 2.45 2.9242 (15) 114
N1—H1⋯O3 0.88 1.99 2.6399 (14) 130
C4—H4⋯O1i 0.95 2.60 3.2766 (17) 129
Symmetry code: (i) x-1, y-1, z.

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Esters of trifluoroaniline are very important intermediates to synthesize 8-fluoroquinoline derivatives, this moiety is of great importance to chemists as well as biologists as it is one of the key building elements for many naturally occurring compounds. Members of this family have a wide range of applications in pharmaceuticals as antimalarial (Kaur et al., 2010), anti-tuberculosis (Eswaran et al., 2010), antitumor (Chou et al., 2010), anticancer (Chen et al., 2004) and antiviral (Shingalapur et al., 2009) agents. In view of the biological importance, we have synthesized the title compound to study its crystal structure.

Resonance between the aromatic system and the N-bonded twofold Michael system (an α,β-unsaturated carbonyl compound moiety, see for instance, McMurry, 1992) renders the carbon–nitrogen backbone of the molecule nearly planar, with the least-sqaures planes defined by the carbon atoms of the phenyl ring on the one hand and the non-hydrogen atoms of the twofold Michael system on the other hand enclosing an angle of only 15.52 (5) ° (Fig. 1). In the crystal, classical intramolecular hydrogen bridges of the N–H···O and N–H···F type can be observed between the secondary amine group and two of the fluorine atoms of the trifluoromethyl group and one of the double-bonded oxygen atoms. In addition, an intramolecular C–H···F contact (dC···F: 2.6805 (19) Å) involving one of the hydrogen atoms on the aromatic systems is obvious that explains the in-plane conformation of one of the trifluoromethyl group's fluorine atoms with the plane defined by the carbon atoms of the phenyl group. Intermolecular C–H···O contacts whose range falls by more than 0.1 Å below the sum of van-der-Waals radii of the atoms participating in them are present in the crystal structure. In terms of graph-set analysis (Etter et al., 1990; Bernstein et al., 1995), the descriptor for the latter type of contacts is C11(10) on the unitary level. In total, the molecules are connected to infinite chains along [1 1 0]. Information about metrical parameters of these interactions can be found in Table 1. The shortest intercentroid distance between two aromatic systems was measured at 3.6875 (9) Å (Fig. 2).

Related literature top

For the crystal structure of another ortho-trifluoromethyl aniline derivative featuring a Michael system as substituent, see: Schweinfurth et al. (2011). For general information on Michael systems, see: McMurry (1992). For general pharmaceutical background to derivatives of the title compound, see: Kaur et al. (2010); Eswaran et al. (2010); Chou et al. (2010); Chen et al. (2004); Shingalapur et al. (2009). For the preparation of the title compound, see: Eswaran et al. (2009) For the graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995).

Experimental top

A suspension of 2-(trifluoromethyl) aniline (1.0 g, 0.0062 mol) and diethyl(ethoxymethylene) malonate (4.02 g, 0.0186 mol) was heated to 110 °C for 4 h. The reaction mixture was cooled. The solid product obtained was filtered, washed with pet ether and recrystallized using ethanol. Yield: 1.81 g, 88.29%, m. p. 357–358 K, (Eswaran et al., 2009).

Refinement top

Carbon-bound H atoms were placed in calculated positions (C—H 0.95 Å for aromatic and vinylic C atoms, C—H 0.99 Å for methylene groups) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C). The H atoms of the methyl groups were allowed to rotate with a fixed angle around the C–C bond to best fit the experimental electron density (HFIX 137 in the SHELX program suite (Sheldrick, 2008)), with U(H) set to 1.5Ueq(C). The nitrogen-bound H atom was placed in a calculated position (N—H 0.88 Å) and was included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(N)

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level).
[Figure 2] Fig. 2. Intermolecular C–H···O contacts, viewed along [-1 0 0]. Symmetry operators: i x - 1, y - 1, z; ii x + 1, y + 1, z.
Diethyl 2-{[2-(trifluoromethyl)anilino]methylidene}propanedioate top
Crystal data top
C15H16F3NO4Z = 2
Mr = 331.29F(000) = 344
Triclinic, P1Dx = 1.433 Mg m3
Hall symbol: -P 1Melting point: 357(1) K
a = 7.8080 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.1485 (3) ÅCell parameters from 7916 reflections
c = 10.5265 (3) Åθ = 2.8–28.3°
α = 95.193 (1)°µ = 0.13 mm1
β = 109.183 (1)°T = 200 K
γ = 99.405 (1)°Platelet, colourless
V = 767.84 (4) Å30.55 × 0.39 × 0.09 mm
Data collection top
Bruker APEXII CCD
diffractometer
3825 independent reflections
Radiation source: fine-focus sealed tube3240 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
ϕ and ω scansθmax = 28.4°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1010
Tmin = 0.946, Tmax = 1.000k = 1313
13616 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0646P)2 + 0.2686P]
where P = (Fo2 + 2Fc2)/3
3825 reflections(Δ/σ)max < 0.001
210 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C15H16F3NO4γ = 99.405 (1)°
Mr = 331.29V = 767.84 (4) Å3
Triclinic, P1Z = 2
a = 7.8080 (2) ÅMo Kα radiation
b = 10.1485 (3) ŵ = 0.13 mm1
c = 10.5265 (3) ÅT = 200 K
α = 95.193 (1)°0.55 × 0.39 × 0.09 mm
β = 109.183 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
3825 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3240 reflections with I > 2σ(I)
Tmin = 0.946, Tmax = 1.000Rint = 0.014
13616 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.128H-atom parameters constrained
S = 1.05Δρmax = 0.39 e Å3
3825 reflectionsΔρmin = 0.34 e Å3
210 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.3636 (2)0.04352 (13)0.35986 (11)0.0857 (5)
F20.3880 (2)0.16548 (13)0.34858 (11)0.0744 (4)
F30.60489 (16)0.07240 (15)0.33735 (11)0.0755 (4)
O10.86819 (16)0.61635 (10)0.03165 (10)0.0418 (3)
O20.68442 (13)0.44254 (9)0.12584 (9)0.0335 (2)
O30.71583 (16)0.42107 (11)0.32438 (10)0.0431 (3)
O40.82996 (15)0.61975 (10)0.27787 (9)0.0374 (2)
N10.49938 (14)0.23376 (10)0.11834 (10)0.0264 (2)
H10.53780.25820.20710.032*
C10.36699 (16)0.11270 (12)0.06191 (12)0.0251 (2)
C20.32968 (18)0.02013 (13)0.14539 (13)0.0295 (3)
C30.20078 (19)0.10035 (13)0.08848 (15)0.0345 (3)
H30.17570.16210.14590.041*
C40.10908 (19)0.13115 (13)0.05021 (15)0.0360 (3)
H40.02390.21470.08900.043*
C50.1430 (2)0.03872 (15)0.13194 (15)0.0376 (3)
H50.07880.05870.22750.045*
C60.26878 (19)0.08245 (14)0.07735 (13)0.0335 (3)
H60.28820.14540.13530.040*
C70.4211 (2)0.05075 (16)0.29631 (15)0.0439 (4)
C80.57087 (16)0.31427 (12)0.04683 (12)0.0247 (2)
H80.53480.28370.04800.030*
C90.69146 (16)0.43685 (12)0.09707 (12)0.0246 (2)
C100.75905 (16)0.51016 (12)0.00254 (12)0.0263 (2)
C110.7483 (2)0.50110 (15)0.22660 (14)0.0353 (3)
H11A0.88530.51970.19520.042*
H11B0.70650.58720.24210.042*
C120.6691 (3)0.4020 (2)0.35413 (17)0.0588 (5)
H12A0.53380.38000.38100.088*
H12B0.71800.31960.33910.088*
H12C0.70300.44110.42650.088*
C130.74669 (17)0.48967 (13)0.24184 (13)0.0287 (3)
C140.8920 (2)0.67197 (15)0.42245 (14)0.0432 (4)
H14A1.00000.63510.47330.052*
H14B0.79150.64590.45880.052*
C150.9441 (4)0.82171 (18)0.43692 (19)0.0652 (6)
H15A1.03320.84590.39130.098*
H15B1.00030.86000.53370.098*
H15C0.83320.85780.39530.098*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.1160 (11)0.0754 (8)0.0410 (6)0.0340 (7)0.0158 (6)0.0275 (6)
F20.1112 (10)0.0703 (8)0.0401 (6)0.0085 (7)0.0324 (6)0.0040 (5)
F30.0501 (6)0.1190 (11)0.0426 (6)0.0030 (6)0.0001 (5)0.0263 (6)
O10.0542 (6)0.0302 (5)0.0357 (5)0.0117 (4)0.0186 (5)0.0039 (4)
O20.0392 (5)0.0344 (5)0.0256 (4)0.0053 (4)0.0160 (4)0.0038 (4)
O30.0599 (7)0.0368 (5)0.0243 (5)0.0072 (5)0.0115 (4)0.0062 (4)
O40.0508 (6)0.0286 (5)0.0254 (5)0.0056 (4)0.0111 (4)0.0000 (4)
N10.0288 (5)0.0256 (5)0.0226 (5)0.0010 (4)0.0092 (4)0.0048 (4)
C10.0255 (5)0.0230 (5)0.0274 (6)0.0017 (4)0.0115 (4)0.0046 (4)
C20.0320 (6)0.0278 (6)0.0307 (6)0.0035 (5)0.0137 (5)0.0088 (5)
C30.0378 (7)0.0252 (6)0.0434 (7)0.0022 (5)0.0186 (6)0.0106 (5)
C40.0340 (6)0.0251 (6)0.0459 (8)0.0017 (5)0.0156 (6)0.0011 (5)
C50.0372 (7)0.0377 (7)0.0313 (7)0.0039 (6)0.0108 (5)0.0015 (5)
C60.0350 (6)0.0341 (7)0.0278 (6)0.0034 (5)0.0112 (5)0.0058 (5)
C70.0511 (8)0.0435 (8)0.0324 (7)0.0059 (6)0.0140 (6)0.0135 (6)
C80.0260 (5)0.0246 (5)0.0245 (5)0.0034 (4)0.0108 (4)0.0051 (4)
C90.0265 (5)0.0236 (5)0.0239 (6)0.0030 (4)0.0098 (4)0.0050 (4)
C100.0282 (5)0.0247 (5)0.0270 (6)0.0036 (4)0.0111 (5)0.0061 (4)
C110.0411 (7)0.0387 (7)0.0315 (7)0.0042 (6)0.0197 (6)0.0133 (5)
C120.0817 (13)0.0610 (11)0.0340 (8)0.0048 (9)0.0308 (9)0.0038 (7)
C130.0301 (6)0.0277 (6)0.0254 (6)0.0014 (5)0.0080 (5)0.0046 (5)
C140.0556 (9)0.0387 (8)0.0251 (6)0.0028 (6)0.0083 (6)0.0011 (5)
C150.1017 (16)0.0404 (9)0.0358 (8)0.0061 (9)0.0137 (9)0.0067 (7)
Geometric parameters (Å, º) top
F1—C71.3179 (16)C5—C61.3832 (18)
F2—C71.342 (2)C5—H50.9500
F3—C71.329 (2)C6—H60.9500
O1—C101.2042 (15)C8—C91.3728 (16)
O2—C101.3492 (15)C8—H80.9500
O2—C111.4464 (14)C9—C131.4630 (17)
O3—C131.2207 (16)C9—C101.4741 (16)
O4—C131.3327 (15)C11—C121.484 (2)
O4—C141.4551 (16)C11—H11A0.9900
N1—C81.3357 (14)C11—H11B0.9900
N1—C11.4071 (15)C12—H12A0.9800
N1—H10.8800C12—H12B0.9800
C1—C61.3908 (17)C12—H12C0.9800
C1—C21.4029 (16)C14—C151.488 (2)
C2—C31.3913 (18)C14—H14A0.9900
C2—C71.4909 (19)C14—H14B0.9900
C3—C41.378 (2)C15—H15A0.9800
C3—H30.9500C15—H15B0.9800
C4—C51.380 (2)C15—H15C0.9800
C4—H40.9500
C10—O2—C11116.56 (10)C8—C9—C10118.54 (11)
C13—O4—C14115.84 (10)C13—C9—C10122.74 (10)
C8—N1—C1124.71 (10)O1—C10—O2122.13 (11)
C8—N1—H1117.6O1—C10—C9126.34 (12)
C1—N1—H1117.6O2—C10—C9111.52 (10)
C6—C1—C2118.40 (11)O2—C11—C12107.34 (12)
C6—C1—N1120.99 (11)O2—C11—H11A110.2
C2—C1—N1120.61 (11)C12—C11—H11A110.2
C3—C2—C1120.22 (12)O2—C11—H11B110.2
C3—C2—C7118.76 (12)C12—C11—H11B110.2
C1—C2—C7120.98 (11)H11A—C11—H11B108.5
C4—C3—C2120.77 (12)C11—C12—H12A109.5
C4—C3—H3119.6C11—C12—H12B109.5
C2—C3—H3119.6H12A—C12—H12B109.5
C3—C4—C5118.95 (12)C11—C12—H12C109.5
C3—C4—H4120.5H12A—C12—H12C109.5
C5—C4—H4120.5H12B—C12—H12C109.5
C4—C5—C6121.24 (13)O3—C13—O4121.74 (12)
C4—C5—H5119.4O3—C13—C9122.85 (11)
C6—C5—H5119.4O4—C13—C9115.40 (10)
C5—C6—C1120.37 (12)O4—C14—C15107.04 (12)
C5—C6—H6119.8O4—C14—H14A110.3
C1—C6—H6119.8C15—C14—H14A110.3
F1—C7—F3108.38 (14)O4—C14—H14B110.3
F1—C7—F2105.40 (15)C15—C14—H14B110.3
F3—C7—F2103.63 (14)H14A—C14—H14B108.6
F1—C7—C2113.24 (13)C14—C15—H15A109.5
F3—C7—C2113.39 (13)C14—C15—H15B109.5
F2—C7—C2112.06 (13)H15A—C15—H15B109.5
N1—C8—C9126.33 (11)C14—C15—H15C109.5
N1—C8—H8116.8H15A—C15—H15C109.5
C9—C8—H8116.8H15B—C15—H15C109.5
C8—C9—C13118.72 (10)
C8—N1—C1—C614.70 (19)C1—C2—C7—F257.59 (18)
C8—N1—C1—C2165.95 (11)C1—N1—C8—C9175.78 (12)
C6—C1—C2—C31.70 (19)N1—C8—C9—C131.73 (19)
N1—C1—C2—C3178.93 (11)N1—C8—C9—C10178.62 (11)
C6—C1—C2—C7175.94 (13)C11—O2—C10—O12.65 (19)
N1—C1—C2—C73.43 (19)C11—O2—C10—C9176.71 (10)
C1—C2—C3—C40.5 (2)C8—C9—C10—O1177.98 (13)
C7—C2—C3—C4178.20 (13)C13—C9—C10—O12.4 (2)
C2—C3—C4—C51.9 (2)C8—C9—C10—O21.34 (16)
C3—C4—C5—C61.0 (2)C13—C9—C10—O2178.29 (11)
C4—C5—C6—C11.2 (2)C10—O2—C11—C12172.35 (13)
C2—C1—C6—C52.6 (2)C14—O4—C13—O33.8 (2)
N1—C1—C6—C5178.08 (12)C14—O4—C13—C9177.67 (12)
C3—C2—C7—F11.0 (2)C8—C9—C13—O312.48 (19)
C1—C2—C7—F1176.66 (14)C10—C9—C13—O3167.89 (13)
C3—C2—C7—F3123.02 (15)C8—C9—C13—O4166.01 (11)
C1—C2—C7—F359.31 (19)C10—C9—C13—O413.62 (18)
C3—C2—C7—F2120.09 (15)C13—O4—C14—C15168.58 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···F20.882.352.9330 (15)124
N1—H1···F30.882.452.9242 (15)114
N1—H1···O30.881.992.6399 (14)130
C3—H3···F10.952.332.6805 (19)101
C4—H4···O1i0.952.603.2766 (17)129
Symmetry code: (i) x1, y1, z.

Experimental details

Crystal data
Chemical formulaC15H16F3NO4
Mr331.29
Crystal system, space groupTriclinic, P1
Temperature (K)200
a, b, c (Å)7.8080 (2), 10.1485 (3), 10.5265 (3)
α, β, γ (°)95.193 (1), 109.183 (1), 99.405 (1)
V3)767.84 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.55 × 0.39 × 0.09
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.946, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
13616, 3825, 3240
Rint0.014
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.128, 1.05
No. of reflections3825
No. of parameters210
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.34

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SIR97 (Altomare et al., 1999), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···F20.882.352.9330 (15)124.1
N1—H1···F30.882.452.9242 (15)113.9
N1—H1···O30.881.992.6399 (14)130.2
C3—H3···F10.952.332.6805 (19)101.0
C4—H4···O1i0.952.603.2766 (17)128.5
Symmetry code: (i) x1, y1, z.
 

Acknowledgements

AMI is thankful to the Department of Atomic Energy, Board for Research in Nuclear Sciences, Government of India for the Young Scientist award. SMN thanks the Department of Information Technology, New Delhi, India, for financial support.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). SADABS. Bruker Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, Y. L., Hung, H. M., Lu, C. M., Li, K. C. & Tzeng, C. C. (2004). Bioorg. Med. Chem. 12, 6539–6546.  Web of Science CrossRef PubMed CAS Google Scholar
First citationChou, L. C., Tsai, M. T., Hsu, M. H., Wang, S. H., Way, T. D., Huang, C. H., Lin, H. Y., Qian, K., Dong, Y., Lee, K. H., Huang, L. J. & Kuo, S. C. (2010). J. Med. Chem. 53, 8047–8058.  Web of Science CrossRef CAS PubMed Google Scholar
First citationEswaran, S., Adhikari, A. V., Chowdhury, I. H., Pal, N. K. & Thomas, K. D. (2010). Eur. J. Med. Chem. 45, 3374–3383.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationEswaran, S., Adhikari, A. V. & Shetty, N. S. (2009). Eur. J. Med. Chem. 44, 4637–4647.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKaur, K., Jain, M., Reddy, R. P. & Jain, R. (2010). Eur. J. Med. Chem. 45, 3245–3264.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcMurry, J. (1992). Organic Chemistry, 3rd ed. Belmont: Wadsworth.  Google Scholar
First citationSchweinfurth, D., Das, H. S., Weisser, F., Bubrin, D. & Sakar, B. (2011). Inorg. Chem. 50, 1150–1159.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShingalapur, R. V., Hosamani, K. M. & Keri, R. S. (2009). Eur. J. Med. Chem. 44, 4244–4248.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages o514-o515
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds