metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di-μ-acetato-κ3O,O′:O′;κ3O:O,O′-bis­­[(acetato-κ2O,O′)bis­­(5-nitro-1,10-phenanthroline-κ2N,N′)cadmium]

aDepartment of Chemistry, Henan Normal University, Xinxiang 453007, People's Republic of China, and bDepartment of Engineering and Technology, Xinxiang Vocational and Technical College, Xinxiang 453007, People's Republic of China
*Correspondence e-mail: zhangshuxia88@yeah.net

(Received 28 July 2011; accepted 9 August 2011; online 17 August 2011)

In the binuclear title compound, [Cd2(C2H3O2)4(C12H7N3O2)2], the CdII cations are linked by carboxyl­ate O atoms into a four-membered Cd2O2 rhombic ring with a Cd⋯ Cd separation of 3.7515 (5) Å. Each CdII atom is seven-coordinated by a bidentate 5-nitro-1,10-phenanthroline (5-NO2-phen) ligand and two bidentate acetate anions, one of which also acts as a bridge linking the two Cd atoms. The crystal packing is stabilized by ππ inter­actions between the phen rings of neighboring mol­ecules, with centroid–centroid distances of 3.491 (2) (intra­molecular) and 3.598 (2) Å (inter­molecular).

Related literature

For related structures, see: Peng et al. (2008[Peng, Z.-S., Jiang, Y.-H., Jiang, W.-J., Deng, Q., Liu, J.-X., Cai, T.-J. & Huang, M.-Z. (2008). Z. Naturforsch. Teil B, 63, 503-506.]); Harvey et al. (2008[Harvey, M. A., Baggio, S., Garland, M. T. & Baggio, R. (2008). Acta Cryst. E64, m1450.]); Kruszynski et al. (2009[Kruszynski, R., Malinowska, A., Czakis-Sulikowska, D. & Lamparska, A. (2009). J. Coord. Chem. 62, 911-922.]). For our studies on transition metal complexes with 1,10-phenanthroline (phen) and its derivatives and carboxyl­ates, see: Xuan et al. (2007a[Xuan, X.-P., Zhao, P.-Z. & Zhang, S.-X. (2007a). Acta Cryst. E63, m1817.],b[Xuan, X., Zhao, P. & Zhang, S. (2007b). Acta Cryst. E63, m2813-m2814.], 2008[Xuan, X.-P., Zhao, P.-Z. & Zhang, S.-X. (2008). Acta Cryst. E64, m152-m153.]). For their applications in organic transformations, mol­ecular recognition and organization of mol­ecular solids, see: Braga et al. (1998[Braga, D., Grepioni, F. & Desiraju, G. R. (1998). Chem. Rev. 98, 1375-1406.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd2(C2H3O2)4(C12H7N3O2)2]

  • Mr = 911.39

  • Monoclinic, P 21 /c

  • a = 18.653 (3) Å

  • b = 11.2236 (16) Å

  • c = 15.510 (2) Å

  • β = 94.531 (2)°

  • V = 3236.9 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.39 mm−1

  • T = 298 K

  • 0.45 × 0.30 × 0.27 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.573, Tmax = 0.705

  • 17895 measured reflections

  • 5988 independent reflections

  • 4970 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.057

  • S = 1.02

  • 5988 reflections

  • 473 parameters

  • H-atom parameters constrained

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Selected bond lengths (Å)

Cd1—O6 2.324 (2)
Cd1—N2 2.372 (2)
Cd1—O9 2.378 (2)
Cd1—O7 2.390 (2)
Cd1—N1 2.403 (2)
Cd1—O5 2.423 (2)
Cd1—O8 2.429 (2)
Cd2—O12 2.238 (2)
Cd2—O9 2.300 (2)
Cd2—O8 2.365 (2)
Cd2—N4 2.394 (2)
Cd2—N5 2.435 (2)
Cd2—O11 2.527 (3)
Cd2—O10 2.590 (3)

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The work presented here is a continuation of our studies on transition metal complexes with 1,10-phenanthroline (phen) and its derivatives and carboxylates (Xuan et al. 2007a, 2007b, 2008), due to their applications, for example in organic transformations, molecular recognition and organization of molecular solids (Braga et al. 1998). Among such compounds, a number of dinuclear cadmium(II) compounds with 1,10-phenanthroline (phen) or its derivatives and oxygen donor ligands have been synthesized and structurally characterized (Peng et al. 2008; Harvey et al. 2008; Kruszynski et al. 2009). Recently, we obtained the title cadmium(II) complex containing two different kinds of chelating ligands, by the reaction of cadmium acetate and 5-nitro-1,10-phenanthroline (5NO2phen) in methanol/water mixtures.

The crystal structure of the title compound consists of dimeric units, made up of two Cd cations, two 5NO2phen molecules and four acetate anions (Fig. 1). Two carboxylate groups of acetate anions act as bidentate, and two as monodentate bridging and bidentate chelating ligands. Each Cd atom, in a uncommon seven-coordination environment, is chelated by the two N atoms of 5NOphen and five carbonyl oxygen atoms of three acetate anions. One carboxylate group acts as bidentate, and two as monodentate bridging and bidentate chelating ligands. All coordinating groups are bonded unsymmetrically to the central atom. The Cd—O bridging interactions form a four-membered Cd2O2 quadrilateral with a Cd—Cd separation of 3.7515 (5) Å.

The dimer crystal structure is stabilized by π-π stacking interactions between adjacent phen rings, with a centroid-centroid distance between Cg1(N1/C7—C11) and Cg4 (C4—C7C11C12) is 3.491 (2) Å (Fig.2). Another intermoleclular π-π stacking interaction exists with a centroid-centroid distance of 3.598 (2) Å between Cg2 (N2/C1—C4/C13) and Cg3 (N4/C13—C16/C24)[symmetry code: - x, -y, 1 - z], which provide additional stabilization to the crystalline networks. There are no classical hydrogen bonding interactions present in the structure.

Related literature top

For related structures, see: Peng et al. (2008); Harvey et al. (2008); Kruszynski et al. (2009). For our studies on transition metal complexes with 1,10-phenanthroline (phen) and its derivatives and carboxylates, see: Xuan et al. (2007a,b, 2008). For their applications in organic transformations, molecular recognition and organization of molecular solids, see: Braga et al. (1998).

Experimental top

A solution (6 ml) of methnol containing 5-nitro-1,10-phenanthroline (0.1130 g) was added slowly to a aqueous solution (10 ml) containing cadmium acetate dihydrate (0.1627 g). Block-like single crystals were obtained by slow evaporation of the mixture at room temperature after one month.

Refinement top

The carbon-bound H atoms were placed in calculated positions and were included in the refinement in the riding model approximation, with C—H = 0.93 Å, Uiso(H) = 1.2Ueq(C aromatic) and C—H = 0.96 Å, Uiso(H) = 1.5Ueq(C methyl), respectively. The contrast between the heavier Cd centre and much lighter coordinated O's reflected in unusually large differences in the Hirshfeld Test.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick,2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and 30% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. π-π interactions between the aromatic rings of the title compound. H atoms have been omitted for clarity.
Di-µ-acetato- κ3O,O':O';κ3O:O,O'- bis[(acetato-κ2O,O')bis(5-nitro-1,10-phenanthroline- κ2N,N')cadmium] top
Crystal data top
[Cd2(C2H3O2)4(C12H7N3O2)2]F(000) = 1808
Mr = 911.39Dx = 1.870 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7675 reflections
a = 18.653 (3) Åθ = 2.5–28.0°
b = 11.2236 (16) ŵ = 1.39 mm1
c = 15.510 (2) ÅT = 298 K
β = 94.531 (2)°Block, colourless
V = 3236.9 (8) Å30.45 × 0.30 × 0.27 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
5988 independent reflections
Radiation source: fine-focus sealed tube4970 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
phi and ω scansθmax = 25.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 2222
Tmin = 0.573, Tmax = 0.705k = 1312
17895 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.057H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0212P)2 + 2.6794P]
where P = (Fo2 + 2Fc2)/3
5988 reflections(Δ/σ)max = 0.001
473 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
[Cd2(C2H3O2)4(C12H7N3O2)2]V = 3236.9 (8) Å3
Mr = 911.39Z = 4
Monoclinic, P21/cMo Kα radiation
a = 18.653 (3) ŵ = 1.39 mm1
b = 11.2236 (16) ÅT = 298 K
c = 15.510 (2) Å0.45 × 0.30 × 0.27 mm
β = 94.531 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5988 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
4970 reflections with I > 2σ(I)
Tmin = 0.573, Tmax = 0.705Rint = 0.022
17895 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.057H-atom parameters constrained
S = 1.02Δρmax = 0.53 e Å3
5988 reflectionsΔρmin = 0.36 e Å3
473 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.153577 (11)0.216216 (18)0.355331 (13)0.03362 (6)
Cd20.338957 (11)0.11507 (2)0.311746 (14)0.03789 (7)
O10.09881 (18)0.2330 (3)0.7358 (2)0.0970 (11)
O20.20827 (17)0.1747 (3)0.73914 (19)0.0898 (10)
O30.3288 (2)0.3161 (3)0.6785 (2)0.1007 (11)
O40.38206 (17)0.2012 (3)0.77268 (17)0.0841 (9)
O50.06501 (14)0.3349 (2)0.42283 (18)0.0681 (7)
O60.13052 (13)0.4173 (2)0.33063 (17)0.0642 (7)
O70.12037 (12)0.1684 (2)0.20738 (14)0.0525 (6)
O80.21683 (11)0.0811 (2)0.26526 (13)0.0483 (6)
O90.27715 (11)0.27093 (18)0.36736 (15)0.0481 (5)
O100.37470 (13)0.3381 (2)0.31632 (16)0.0600 (6)
O110.35271 (13)0.1120 (2)0.15096 (17)0.0677 (7)
O120.42983 (13)0.0344 (3)0.24598 (15)0.0675 (7)
N10.08544 (11)0.0405 (2)0.38311 (14)0.0332 (5)
N20.18945 (11)0.1377 (2)0.49403 (14)0.0312 (5)
N30.14639 (18)0.1784 (3)0.70622 (19)0.0553 (7)
N40.31140 (12)0.0453 (2)0.40541 (15)0.0358 (6)
N50.41221 (12)0.1226 (2)0.44876 (16)0.0389 (6)
N60.35865 (17)0.2219 (3)0.6989 (2)0.0574 (8)
C10.23903 (15)0.1877 (3)0.54803 (19)0.0372 (7)
H10.26370.25340.52910.045*
C20.25597 (16)0.1468 (3)0.63140 (19)0.0419 (7)
H20.29030.18610.66770.050*
C30.22194 (16)0.0487 (3)0.65971 (19)0.0415 (7)
H3A0.23250.02110.71580.050*
C40.17054 (14)0.0108 (3)0.60346 (17)0.0330 (6)
C50.13060 (16)0.1160 (3)0.62330 (19)0.0387 (7)
C60.07871 (16)0.1638 (3)0.5686 (2)0.0406 (7)
H60.05360.23050.58540.049*
C70.06202 (14)0.1134 (2)0.48562 (19)0.0346 (6)
C80.00779 (15)0.1598 (3)0.4266 (2)0.0413 (7)
H80.01870.22580.44130.050*
C90.00546 (15)0.1073 (3)0.3480 (2)0.0446 (8)
H90.04050.13730.30790.054*
C100.03473 (15)0.0076 (3)0.32916 (19)0.0409 (7)
H100.02540.02770.27520.049*
C110.09979 (13)0.0126 (2)0.46114 (17)0.0294 (6)
C120.15494 (13)0.0393 (2)0.52054 (17)0.0284 (6)
C130.26377 (17)0.1284 (3)0.3811 (2)0.0444 (8)
H130.24110.12530.32550.053*
C140.24642 (18)0.2205 (3)0.4360 (2)0.0497 (8)
H140.21270.27770.41720.060*
C150.27917 (18)0.2260 (3)0.5171 (2)0.0479 (8)
H150.26760.28730.55390.057*
C160.33037 (15)0.1403 (3)0.54626 (19)0.0368 (7)
C170.36932 (16)0.1328 (3)0.63118 (19)0.0407 (7)
C180.41653 (16)0.0459 (3)0.6530 (2)0.0468 (8)
H180.43860.04340.70880.056*
C190.43346 (15)0.0422 (3)0.5924 (2)0.0419 (7)
C200.48556 (17)0.1302 (3)0.6119 (2)0.0522 (9)
H200.50960.13400.66670.063*
C210.50047 (18)0.2098 (3)0.5500 (2)0.0544 (9)
H210.53570.26760.56130.065*
C220.46233 (16)0.2035 (3)0.4695 (2)0.0487 (8)
H220.47260.25920.42790.058*
C230.39777 (14)0.0407 (2)0.50929 (18)0.0336 (6)
C240.34502 (14)0.0502 (2)0.48610 (18)0.0327 (6)
C250.08465 (16)0.4241 (3)0.3849 (2)0.0400 (7)
C260.05399 (19)0.5449 (3)0.4043 (2)0.0534 (9)
H26A0.00240.54150.39710.080*
H26B0.07110.60290.36530.080*
H26C0.06900.56700.46270.080*
C270.17103 (16)0.0989 (3)0.20191 (18)0.0382 (7)
C280.1775 (2)0.0289 (3)0.1205 (2)0.0625 (10)
H28A0.15860.04980.12740.094*
H28B0.22710.02370.10880.094*
H28C0.15080.06800.07310.094*
C290.32114 (16)0.3550 (3)0.35672 (19)0.0393 (7)
C300.3064 (2)0.4736 (3)0.3955 (2)0.0621 (10)
H30A0.31580.46950.45720.093*
H30B0.25690.49480.38160.093*
H30C0.33690.53270.37270.093*
C310.40692 (16)0.0530 (3)0.1693 (2)0.0455 (8)
C320.4482 (2)0.0005 (4)0.0988 (2)0.0668 (11)
H32A0.42850.07720.08310.100*
H32B0.49790.00930.11940.100*
H32C0.44460.05090.04920.100*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.03478 (11)0.03301 (12)0.03320 (12)0.00200 (9)0.00347 (8)0.00199 (9)
Cd20.03589 (12)0.04232 (14)0.03546 (13)0.00713 (10)0.00274 (9)0.00228 (10)
O10.108 (2)0.112 (3)0.072 (2)0.028 (2)0.0169 (18)0.0439 (19)
O20.090 (2)0.093 (2)0.083 (2)0.0017 (18)0.0210 (17)0.0416 (18)
O30.153 (3)0.071 (2)0.076 (2)0.020 (2)0.004 (2)0.0205 (17)
O40.110 (2)0.094 (2)0.0455 (17)0.0083 (18)0.0104 (16)0.0207 (15)
O50.0853 (19)0.0397 (14)0.0835 (19)0.0032 (13)0.0332 (15)0.0058 (13)
O60.0615 (15)0.0558 (16)0.0793 (18)0.0120 (12)0.0319 (14)0.0035 (13)
O70.0557 (14)0.0577 (15)0.0440 (13)0.0169 (12)0.0033 (11)0.0046 (11)
O80.0389 (11)0.0693 (16)0.0357 (12)0.0023 (11)0.0022 (9)0.0026 (11)
O90.0405 (12)0.0354 (13)0.0681 (16)0.0020 (10)0.0028 (11)0.0037 (11)
O100.0537 (14)0.0607 (16)0.0675 (17)0.0029 (12)0.0158 (12)0.0133 (13)
O110.0544 (15)0.0778 (19)0.0709 (18)0.0270 (14)0.0054 (13)0.0039 (14)
O120.0626 (15)0.097 (2)0.0430 (15)0.0242 (15)0.0035 (12)0.0009 (14)
N10.0309 (12)0.0358 (14)0.0329 (13)0.0005 (10)0.0028 (10)0.0028 (10)
N20.0317 (12)0.0315 (13)0.0304 (13)0.0011 (10)0.0025 (10)0.0017 (10)
N30.068 (2)0.0501 (18)0.0484 (18)0.0061 (16)0.0112 (16)0.0147 (14)
N40.0377 (13)0.0329 (14)0.0361 (14)0.0031 (11)0.0008 (10)0.0048 (11)
N50.0386 (13)0.0345 (14)0.0429 (15)0.0015 (11)0.0015 (11)0.0004 (11)
N60.0659 (19)0.056 (2)0.051 (2)0.0055 (16)0.0066 (15)0.0101 (15)
C10.0371 (15)0.0371 (17)0.0372 (17)0.0041 (13)0.0022 (13)0.0056 (13)
C20.0416 (16)0.046 (2)0.0370 (17)0.0005 (14)0.0030 (13)0.0127 (14)
C30.0447 (17)0.051 (2)0.0290 (16)0.0092 (15)0.0005 (13)0.0032 (14)
C40.0326 (14)0.0359 (16)0.0317 (15)0.0085 (12)0.0096 (12)0.0012 (12)
C50.0446 (17)0.0372 (17)0.0360 (17)0.0099 (14)0.0137 (13)0.0094 (13)
C60.0396 (16)0.0326 (17)0.052 (2)0.0020 (13)0.0179 (14)0.0054 (14)
C70.0311 (14)0.0281 (16)0.0458 (18)0.0030 (12)0.0102 (12)0.0037 (13)
C80.0318 (15)0.0306 (17)0.063 (2)0.0027 (13)0.0110 (14)0.0094 (15)
C90.0352 (16)0.0437 (19)0.054 (2)0.0011 (14)0.0021 (14)0.0171 (16)
C100.0379 (16)0.0472 (19)0.0367 (17)0.0010 (14)0.0018 (13)0.0067 (14)
C110.0255 (13)0.0278 (15)0.0354 (16)0.0037 (11)0.0063 (11)0.0040 (12)
C120.0264 (13)0.0300 (15)0.0294 (14)0.0040 (11)0.0053 (11)0.0005 (11)
C130.0512 (18)0.0377 (19)0.0435 (19)0.0017 (15)0.0005 (14)0.0115 (14)
C140.0525 (19)0.0393 (19)0.057 (2)0.0088 (15)0.0051 (16)0.0115 (16)
C150.055 (2)0.0375 (19)0.053 (2)0.0018 (15)0.0137 (16)0.0038 (15)
C160.0368 (15)0.0343 (17)0.0401 (17)0.0089 (13)0.0071 (13)0.0015 (13)
C170.0456 (17)0.0437 (19)0.0333 (16)0.0118 (15)0.0058 (13)0.0073 (14)
C180.0456 (18)0.058 (2)0.0352 (18)0.0124 (16)0.0049 (14)0.0001 (15)
C190.0371 (16)0.0456 (19)0.0421 (18)0.0085 (14)0.0029 (13)0.0019 (14)
C200.0439 (18)0.054 (2)0.056 (2)0.0041 (16)0.0159 (16)0.0109 (17)
C210.0441 (18)0.043 (2)0.073 (3)0.0032 (15)0.0115 (17)0.0049 (18)
C220.0423 (17)0.0399 (19)0.063 (2)0.0012 (15)0.0023 (16)0.0036 (16)
C230.0269 (14)0.0356 (17)0.0379 (16)0.0102 (12)0.0004 (12)0.0039 (13)
C240.0315 (14)0.0331 (16)0.0341 (16)0.0103 (12)0.0057 (12)0.0010 (12)
C250.0413 (17)0.0392 (19)0.0387 (17)0.0038 (14)0.0021 (14)0.0027 (14)
C260.068 (2)0.043 (2)0.051 (2)0.0145 (17)0.0136 (17)0.0001 (16)
C270.0400 (16)0.0423 (19)0.0325 (16)0.0068 (14)0.0047 (13)0.0020 (13)
C280.070 (2)0.070 (3)0.046 (2)0.001 (2)0.0017 (18)0.0157 (18)
C290.0422 (17)0.0385 (18)0.0357 (17)0.0014 (14)0.0054 (14)0.0044 (13)
C300.079 (3)0.041 (2)0.065 (2)0.0060 (18)0.006 (2)0.0071 (17)
C310.0398 (17)0.050 (2)0.048 (2)0.0037 (15)0.0097 (15)0.0002 (16)
C320.070 (2)0.076 (3)0.057 (2)0.013 (2)0.0203 (19)0.005 (2)
Geometric parameters (Å, º) top
Cd1—O62.324 (2)C5—C61.347 (4)
Cd1—N22.372 (2)C6—C71.419 (4)
Cd1—O92.378 (2)C6—H60.9300
Cd1—O72.390 (2)C7—C111.401 (4)
Cd1—N12.403 (2)C7—C81.410 (4)
Cd1—O52.423 (2)C8—C91.358 (4)
Cd1—O82.429 (2)C8—H80.9300
Cd1—C252.721 (3)C9—C101.391 (4)
Cd2—O122.238 (2)C9—H90.9300
Cd2—O92.300 (2)C10—H100.9300
Cd2—O82.365 (2)C11—C121.448 (4)
Cd2—N42.394 (2)C13—C141.393 (4)
Cd2—N52.435 (2)C13—H130.9300
Cd2—O112.527 (3)C14—C151.355 (5)
Cd2—O102.590 (3)C14—H140.9300
Cd2—C312.723 (3)C15—C161.405 (4)
O1—N31.199 (4)C15—H150.9300
O2—N31.225 (4)C16—C241.417 (4)
O3—N61.224 (4)C16—C171.455 (4)
O4—N61.215 (4)C17—C181.339 (4)
O5—C251.232 (4)C18—C191.416 (4)
O6—C251.249 (4)C18—H180.9300
O7—C271.233 (4)C19—C201.402 (4)
O8—C271.266 (3)C19—C231.404 (4)
O9—C291.270 (3)C20—C211.356 (5)
O10—C291.235 (4)C20—H200.9300
O11—C311.224 (4)C21—C221.389 (5)
O12—C311.248 (4)C21—H210.9300
N1—C101.327 (3)C22—H220.9300
N1—C111.356 (3)C23—C241.443 (4)
N2—C11.323 (3)C25—C261.510 (4)
N2—C121.358 (3)C26—H26A0.9600
N3—C51.473 (4)C26—H26B0.9600
N4—C131.322 (4)C26—H26C0.9600
N4—C241.356 (3)C27—C281.501 (4)
N5—C221.325 (4)C28—H28A0.9600
N5—C231.355 (4)C28—H28B0.9600
N6—C171.475 (4)C28—H28C0.9600
C1—C21.385 (4)C29—C301.495 (4)
C1—H10.9300C30—H30A0.9600
C2—C31.361 (4)C30—H30B0.9600
C2—H20.9300C30—H30C0.9600
C3—C41.413 (4)C31—C321.511 (4)
C3—H3A0.9300C32—H32A0.9600
C4—C121.413 (4)C32—H32B0.9600
C4—C51.442 (4)C32—H32C0.9600
O6—Cd1—N2123.08 (9)C4—C5—N3120.3 (3)
O6—Cd1—O985.86 (8)C5—C6—C7120.5 (3)
N2—Cd1—O979.78 (8)C5—C6—H6119.7
O6—Cd1—O791.67 (9)C7—C6—H6119.7
N2—Cd1—O7145.14 (8)C11—C7—C8118.2 (3)
O9—Cd1—O7108.02 (8)C11—C7—C6119.3 (3)
O6—Cd1—N1137.13 (8)C8—C7—C6122.5 (3)
N2—Cd1—N169.37 (7)C9—C8—C7119.6 (3)
O9—Cd1—N1136.12 (7)C9—C8—H8120.2
O7—Cd1—N183.53 (8)C7—C8—H8120.2
O6—Cd1—O554.11 (8)C8—C9—C10118.3 (3)
N2—Cd1—O588.02 (8)C8—C9—H9120.8
O9—Cd1—O5120.91 (8)C10—C9—H9120.8
O7—Cd1—O5113.85 (9)N1—C10—C9124.3 (3)
N1—Cd1—O589.16 (8)N1—C10—H10117.8
O6—Cd1—O8127.10 (8)C9—C10—H10117.8
N2—Cd1—O8100.06 (7)N1—C11—C7121.9 (2)
O9—Cd1—O872.22 (7)N1—C11—C12118.1 (2)
O7—Cd1—O853.74 (7)C7—C11—C12120.0 (3)
N1—Cd1—O883.04 (7)N2—C12—C4122.1 (2)
O5—Cd1—O8165.93 (8)N2—C12—C11117.7 (2)
O6—Cd1—C2527.24 (8)C4—C12—C11120.3 (2)
N2—Cd1—C25105.62 (8)N4—C13—C14122.1 (3)
O9—Cd1—C25103.49 (8)N4—C13—H13118.9
O7—Cd1—C25105.32 (8)C14—C13—H13118.9
N1—Cd1—C25114.20 (9)C15—C14—C13119.4 (3)
O5—Cd1—C2526.93 (8)C15—C14—H14120.3
O8—Cd1—C25152.81 (8)C13—C14—H14120.3
O12—Cd2—O9154.02 (9)C14—C15—C16120.8 (3)
O12—Cd2—O8122.81 (8)C14—C15—H15119.6
O9—Cd2—O874.79 (8)C16—C15—H15119.6
O12—Cd2—N4100.31 (9)C15—C16—C24116.0 (3)
O9—Cd2—N4101.90 (8)C15—C16—C17127.5 (3)
O8—Cd2—N479.41 (8)C24—C16—C17116.5 (3)
O12—Cd2—N591.08 (8)C18—C17—C16122.8 (3)
O9—Cd2—N584.82 (8)C18—C17—N6115.9 (3)
O8—Cd2—N5137.05 (8)C16—C17—N6121.3 (3)
N4—Cd2—N568.23 (8)C17—C18—C19121.2 (3)
O12—Cd2—O1153.49 (8)C17—C18—H18119.4
O9—Cd2—O11118.25 (8)C19—C18—H18119.4
O8—Cd2—O1182.38 (8)C20—C19—C23118.4 (3)
N4—Cd2—O11129.19 (8)C20—C19—C18122.4 (3)
N5—Cd2—O11140.16 (8)C23—C19—C18119.1 (3)
O12—Cd2—O10101.60 (9)C21—C20—C19119.3 (3)
O9—Cd2—O1052.43 (7)C21—C20—H20120.4
O8—Cd2—O10113.80 (8)C19—C20—H20120.4
N4—Cd2—O10141.00 (8)C20—C21—C22118.9 (3)
N5—Cd2—O1079.47 (8)C20—C21—H21120.5
O11—Cd2—O1089.67 (8)C22—C21—H21120.5
O12—Cd2—C3126.95 (8)N5—C22—C21123.7 (3)
O9—Cd2—C31141.09 (9)N5—C22—H22118.1
O8—Cd2—C31102.15 (8)C21—C22—H22118.1
N4—Cd2—C31115.84 (9)N5—C23—C19121.5 (3)
N5—Cd2—C31116.85 (9)N5—C23—C24118.4 (2)
O11—Cd2—C3126.62 (8)C19—C23—C24120.1 (3)
O10—Cd2—C3197.71 (9)N4—C24—C16122.5 (3)
C25—O5—Cd190.12 (19)N4—C24—C23117.3 (3)
C25—O6—Cd194.4 (2)C16—C24—C23120.2 (3)
C27—O7—Cd193.79 (18)O5—C25—O6121.1 (3)
C27—O8—Cd2141.80 (19)O5—C25—C26120.2 (3)
C27—O8—Cd191.11 (18)O6—C25—C26118.7 (3)
Cd2—O8—Cd1102.95 (8)O5—C25—Cd162.96 (17)
C29—O9—Cd299.70 (19)O6—C25—Cd158.39 (17)
C29—O9—Cd1144.47 (19)C26—C25—Cd1174.0 (2)
Cd2—O9—Cd1106.59 (8)C25—C26—H26A109.5
C29—O10—Cd286.91 (19)C25—C26—H26B109.5
C31—O11—Cd285.6 (2)H26A—C26—H26B109.5
C31—O12—Cd298.7 (2)C25—C26—H26C109.5
C10—N1—C11117.7 (2)H26A—C26—H26C109.5
C10—N1—Cd1125.5 (2)H26B—C26—H26C109.5
C11—N1—Cd1116.77 (17)O7—C27—O8121.3 (3)
C1—N2—C12118.5 (2)O7—C27—C28120.1 (3)
C1—N2—Cd1123.35 (19)O8—C27—C28118.5 (3)
C12—N2—Cd1118.05 (16)C27—C28—H28A109.5
O1—N3—O2124.0 (3)C27—C28—H28B109.5
O1—N3—C5118.3 (3)H28A—C28—H28B109.5
O2—N3—C5117.7 (3)C27—C28—H28C109.5
C13—N4—C24119.1 (3)H28A—C28—H28C109.5
C13—N4—Cd2121.9 (2)H28B—C28—H28C109.5
C24—N4—Cd2118.97 (18)O10—C29—O9120.5 (3)
C22—N5—C23118.1 (3)O10—C29—C30121.6 (3)
C22—N5—Cd2124.9 (2)O9—C29—C30117.9 (3)
C23—N5—Cd2116.91 (17)C29—C30—H30A109.5
O4—N6—O3122.0 (3)C29—C30—H30B109.5
O4—N6—C17118.8 (3)H30A—C30—H30B109.5
O3—N6—C17119.1 (3)C29—C30—H30C109.5
N2—C1—C2123.2 (3)H30A—C30—H30C109.5
N2—C1—H1118.4H30B—C30—H30C109.5
C2—C1—H1118.4O11—C31—O12121.8 (3)
C3—C2—C1119.4 (3)O11—C31—C32120.4 (3)
C3—C2—H2120.3O12—C31—C32117.8 (3)
C1—C2—H2120.3O11—C31—Cd267.75 (19)
C2—C3—C4119.7 (3)O12—C31—Cd254.32 (16)
C2—C3—H3A120.2C32—C31—Cd2170.2 (3)
C4—C3—H3A120.2C31—C32—H32A109.5
C3—C4—C12117.0 (3)C31—C32—H32B109.5
C3—C4—C5126.3 (3)H32A—C32—H32B109.5
C12—C4—C5116.6 (3)C31—C32—H32C109.5
C6—C5—C4123.3 (3)H32A—C32—H32C109.5
C6—C5—N3116.4 (3)H32B—C32—H32C109.5
O6—Cd1—O5—C252.85 (18)O10—Cd2—N5—C2223.4 (2)
N2—Cd1—O5—C25131.5 (2)C31—Cd2—N5—C2270.0 (3)
O9—Cd1—O5—C2554.7 (2)O12—Cd2—N5—C23105.1 (2)
O7—Cd1—O5—C2576.6 (2)O9—Cd2—N5—C23100.6 (2)
N1—Cd1—O5—C25159.1 (2)O8—Cd2—N5—C2339.6 (2)
O8—Cd1—O5—C25103.0 (3)N4—Cd2—N5—C234.41 (18)
N2—Cd1—O6—C2555.7 (2)O11—Cd2—N5—C23130.10 (19)
O9—Cd1—O6—C25130.7 (2)O10—Cd2—N5—C23153.3 (2)
O7—Cd1—O6—C25121.4 (2)C31—Cd2—N5—C23113.3 (2)
N1—Cd1—O6—C2539.1 (3)C12—N2—C1—C22.1 (4)
O5—Cd1—O6—C252.82 (18)Cd1—N2—C1—C2174.9 (2)
O8—Cd1—O6—C25165.36 (17)N2—C1—C2—C31.8 (5)
O6—Cd1—O7—C27137.37 (19)C1—C2—C3—C40.8 (4)
N2—Cd1—O7—C2746.9 (2)C2—C3—C4—C122.8 (4)
O9—Cd1—O7—C2751.2 (2)C2—C3—C4—C5179.3 (3)
N1—Cd1—O7—C2785.36 (19)C3—C4—C5—C6175.3 (3)
O5—Cd1—O7—C27171.56 (18)C12—C4—C5—C62.6 (4)
O8—Cd1—O7—C270.73 (17)C3—C4—C5—N35.7 (4)
C25—Cd1—O7—C27161.26 (18)C12—C4—C5—N3176.4 (2)
O12—Cd2—O8—C2764.1 (4)O1—N3—C5—C629.0 (5)
O9—Cd2—O8—C2794.8 (3)O2—N3—C5—C6148.4 (3)
N4—Cd2—O8—C27159.6 (3)O1—N3—C5—C4152.0 (3)
N5—Cd2—O8—C27159.4 (3)O2—N3—C5—C430.6 (4)
O11—Cd2—O8—C2727.3 (3)C4—C5—C6—C71.9 (4)
O10—Cd2—O8—C2759.0 (3)N3—C5—C6—C7177.1 (3)
C31—Cd2—O8—C2745.2 (3)C5—C6—C7—C110.4 (4)
O12—Cd2—O8—Cd1173.05 (9)C5—C6—C7—C8179.5 (3)
O9—Cd2—O8—Cd114.12 (8)C11—C7—C8—C91.0 (4)
N4—Cd2—O8—Cd191.44 (9)C6—C7—C8—C9179.9 (3)
N5—Cd2—O8—Cd150.45 (14)C7—C8—C9—C101.0 (4)
O11—Cd2—O8—Cd1136.21 (9)C11—N1—C10—C91.2 (4)
O10—Cd2—O8—Cd149.96 (10)Cd1—N1—C10—C9177.9 (2)
C31—Cd2—O8—Cd1154.15 (9)C8—C9—C10—N10.2 (5)
O6—Cd1—O8—C2760.1 (2)C10—N1—C11—C71.2 (4)
N2—Cd1—O8—C27153.89 (17)Cd1—N1—C11—C7178.05 (19)
O9—Cd1—O8—C27130.36 (19)C10—N1—C11—C12179.9 (2)
O7—Cd1—O8—C270.71 (16)Cd1—N1—C11—C120.7 (3)
N1—Cd1—O8—C2786.35 (18)C8—C7—C11—N10.1 (4)
O5—Cd1—O8—C2729.6 (4)C6—C7—C11—N1179.0 (2)
C25—Cd1—O8—C2745.4 (3)C8—C7—C11—C12178.8 (2)
O6—Cd1—O8—Cd284.10 (11)C6—C7—C11—C120.3 (4)
N2—Cd1—O8—Cd261.92 (9)C1—N2—C12—C40.1 (4)
O9—Cd1—O8—Cd213.83 (7)Cd1—N2—C12—C4177.31 (19)
O7—Cd1—O8—Cd2143.48 (12)C1—N2—C12—C11178.7 (2)
N1—Cd1—O8—Cd2129.46 (9)Cd1—N2—C12—C111.6 (3)
O5—Cd1—O8—Cd2173.8 (3)C3—C4—C12—N22.5 (4)
C25—Cd1—O8—Cd298.76 (17)C5—C4—C12—N2179.4 (2)
O12—Cd2—O9—C294.8 (3)C3—C4—C12—C11176.3 (2)
O8—Cd2—O9—C29141.16 (19)C5—C4—C12—C111.8 (4)
N4—Cd2—O9—C29143.44 (18)N1—C11—C12—N20.6 (4)
N5—Cd2—O9—C2977.00 (18)C7—C11—C12—N2179.3 (2)
O11—Cd2—O9—C2968.74 (19)N1—C11—C12—C4178.3 (2)
O10—Cd2—O9—C293.69 (16)C7—C11—C12—C40.4 (4)
C31—Cd2—O9—C2950.6 (2)C24—N4—C13—C140.6 (4)
O12—Cd2—O9—Cd1151.05 (15)Cd2—N4—C13—C14178.6 (2)
O8—Cd2—O9—Cd114.68 (8)N4—C13—C14—C150.0 (5)
N4—Cd2—O9—Cd160.72 (10)C13—C14—C15—C160.2 (5)
N5—Cd2—O9—Cd1127.16 (10)C14—C15—C16—C240.1 (4)
O11—Cd2—O9—Cd187.09 (11)C14—C15—C16—C17179.1 (3)
O10—Cd2—O9—Cd1152.15 (13)C15—C16—C17—C18179.0 (3)
C31—Cd2—O9—Cd1105.27 (13)C24—C16—C17—C180.3 (4)
O6—Cd1—O9—C299.6 (4)C15—C16—C17—N61.0 (5)
N2—Cd1—O9—C29134.3 (4)C24—C16—C17—N6179.8 (3)
O7—Cd1—O9—C2980.8 (4)O4—N6—C17—C1812.9 (5)
N1—Cd1—O9—C29179.6 (3)O3—N6—C17—C18164.6 (3)
O5—Cd1—O9—C2952.9 (4)O4—N6—C17—C16167.1 (3)
O8—Cd1—O9—C29121.5 (4)O3—N6—C17—C1615.5 (5)
C25—Cd1—O9—C2930.5 (4)C16—C17—C18—C192.5 (5)
O6—Cd1—O9—Cd2145.66 (10)N6—C17—C18—C19177.5 (3)
N2—Cd1—O9—Cd289.65 (9)C17—C18—C19—C20176.4 (3)
O7—Cd1—O9—Cd255.24 (10)C17—C18—C19—C232.6 (4)
N1—Cd1—O9—Cd244.39 (15)C23—C19—C20—C210.8 (5)
O5—Cd1—O9—Cd2171.10 (8)C18—C19—C20—C21178.1 (3)
O8—Cd1—O9—Cd214.48 (8)C19—C20—C21—C221.6 (5)
C25—Cd1—O9—Cd2166.57 (9)C23—N5—C22—C210.6 (5)
O12—Cd2—O10—C29176.75 (18)Cd2—N5—C22—C21176.1 (2)
O9—Cd2—O10—C293.74 (17)C20—C21—C22—N50.9 (5)
O8—Cd2—O10—C2949.21 (19)C22—N5—C23—C191.3 (4)
N4—Cd2—O10—C2953.8 (2)Cd2—N5—C23—C19175.7 (2)
N5—Cd2—O10—C2987.82 (18)C22—N5—C23—C24177.9 (3)
O11—Cd2—O10—C29130.73 (18)Cd2—N5—C23—C245.2 (3)
C31—Cd2—O10—C29156.19 (18)C20—C19—C23—N50.6 (4)
O12—Cd2—O11—C313.4 (2)C18—C19—C23—N5179.6 (3)
O9—Cd2—O11—C31154.07 (19)C20—C19—C23—C24178.5 (3)
O8—Cd2—O11—C31137.8 (2)C18—C19—C23—C240.5 (4)
N4—Cd2—O11—C3168.2 (2)C13—N4—C24—C160.9 (4)
N5—Cd2—O11—C3135.1 (3)Cd2—N4—C24—C16178.31 (19)
O10—Cd2—O11—C31108.1 (2)C13—N4—C24—C23178.7 (2)
O9—Cd2—O12—C3183.3 (3)Cd2—N4—C24—C232.1 (3)
O8—Cd2—O12—C3144.3 (3)C15—C16—C24—N40.7 (4)
N4—Cd2—O12—C31128.3 (2)C17—C16—C24—N4178.6 (2)
N5—Cd2—O12—C31163.7 (2)C15—C16—C24—C23178.9 (3)
O11—Cd2—O12—C313.3 (2)C17—C16—C24—C231.8 (4)
O10—Cd2—O12—C3184.2 (2)N5—C23—C24—N42.1 (4)
O6—Cd1—N1—C1063.3 (3)C19—C23—C24—N4178.7 (2)
N2—Cd1—N1—C10179.8 (2)N5—C23—C24—C16177.5 (2)
O9—Cd1—N1—C10131.5 (2)C19—C23—C24—C161.7 (4)
O7—Cd1—N1—C1022.1 (2)Cd1—O5—C25—O65.0 (3)
O5—Cd1—N1—C1092.0 (2)Cd1—O5—C25—C26174.2 (3)
O8—Cd1—N1—C1076.3 (2)Cd1—O6—C25—O55.3 (3)
C25—Cd1—N1—C1081.8 (2)Cd1—O6—C25—C26174.0 (2)
O6—Cd1—N1—C11115.82 (19)O6—Cd1—C25—O5175.0 (3)
N2—Cd1—N1—C111.04 (17)N2—Cd1—C25—O551.0 (2)
O9—Cd1—N1—C1149.4 (2)O9—Cd1—C25—O5134.0 (2)
O7—Cd1—N1—C11158.71 (19)O7—Cd1—C25—O5112.7 (2)
O5—Cd1—N1—C1187.17 (19)N1—Cd1—C25—O523.0 (2)
O8—Cd1—N1—C11104.57 (18)O8—Cd1—C25—O5148.8 (2)
C25—Cd1—N1—C1197.37 (19)N2—Cd1—C25—O6134.05 (19)
O6—Cd1—N2—C144.8 (2)O9—Cd1—C25—O651.1 (2)
O9—Cd1—N2—C133.4 (2)O7—Cd1—C25—O662.2 (2)
O7—Cd1—N2—C1140.3 (2)N1—Cd1—C25—O6151.94 (19)
N1—Cd1—N2—C1178.4 (2)O5—Cd1—C25—O6175.0 (3)
O5—Cd1—N2—C188.5 (2)O8—Cd1—C25—O626.2 (3)
O8—Cd1—N2—C1103.1 (2)Cd1—O7—C27—O81.3 (3)
C25—Cd1—N2—C167.9 (2)Cd1—O7—C27—C28175.7 (3)
O6—Cd1—N2—C12132.22 (18)Cd2—O8—C27—O7111.5 (3)
O9—Cd1—N2—C12149.61 (19)Cd1—O8—C27—O71.3 (3)
O7—Cd1—N2—C1242.7 (2)Cd2—O8—C27—C2871.4 (4)
N1—Cd1—N2—C121.36 (17)Cd1—O8—C27—C28175.8 (3)
O5—Cd1—N2—C1288.49 (19)Cd2—O10—C29—O96.2 (3)
O8—Cd1—N2—C1279.92 (19)Cd2—O10—C29—C30172.9 (3)
C25—Cd1—N2—C12109.10 (19)Cd2—O9—C29—O107.1 (3)
O12—Cd2—N4—C1390.4 (2)Cd1—O9—C29—O10130.4 (3)
O9—Cd2—N4—C13103.1 (2)Cd2—O9—C29—C30172.1 (2)
O8—Cd2—N4—C1331.3 (2)Cd1—O9—C29—C3050.4 (5)
N5—Cd2—N4—C13177.4 (2)Cd2—O11—C31—O125.7 (3)
O11—Cd2—N4—C1339.6 (3)Cd2—O11—C31—C32173.9 (3)
O10—Cd2—N4—C13146.3 (2)Cd2—O12—C31—O116.5 (4)
C31—Cd2—N4—C1367.1 (2)Cd2—O12—C31—C32173.1 (3)
O12—Cd2—N4—C2490.4 (2)O12—Cd2—C31—O11174.0 (4)
O9—Cd2—N4—C2476.0 (2)O9—Cd2—C31—O1137.8 (3)
O8—Cd2—N4—C24147.8 (2)O8—Cd2—C31—O1142.9 (2)
N5—Cd2—N4—C243.39 (18)N4—Cd2—C31—O11126.9 (2)
O11—Cd2—N4—C24141.21 (18)N5—Cd2—C31—O11155.60 (19)
O10—Cd2—N4—C2432.9 (3)O10—Cd2—C31—O1173.5 (2)
C31—Cd2—N4—C24113.7 (2)O9—Cd2—C31—O12136.2 (2)
O12—Cd2—N5—C2278.2 (3)O8—Cd2—C31—O12143.1 (2)
O9—Cd2—N5—C2276.1 (2)N4—Cd2—C31—O1259.1 (2)
O8—Cd2—N5—C22137.2 (2)N5—Cd2—C31—O1218.4 (3)
N4—Cd2—N5—C22178.9 (3)O11—Cd2—C31—O12174.0 (4)
O11—Cd2—N5—C2253.2 (3)O10—Cd2—C31—O12100.4 (2)

Experimental details

Crystal data
Chemical formula[Cd2(C2H3O2)4(C12H7N3O2)2]
Mr911.39
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)18.653 (3), 11.2236 (16), 15.510 (2)
β (°) 94.531 (2)
V3)3236.9 (8)
Z4
Radiation typeMo Kα
µ (mm1)1.39
Crystal size (mm)0.45 × 0.30 × 0.27
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.573, 0.705
No. of measured, independent and
observed [I > 2σ(I)] reflections
17895, 5988, 4970
Rint0.022
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.057, 1.02
No. of reflections5988
No. of parameters473
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.53, 0.36

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick,2008), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Cd1—O62.324 (2)Cd2—O122.238 (2)
Cd1—N22.372 (2)Cd2—O92.300 (2)
Cd1—O92.378 (2)Cd2—O82.365 (2)
Cd1—O72.390 (2)Cd2—N42.394 (2)
Cd1—N12.403 (2)Cd2—N52.435 (2)
Cd1—O52.423 (2)Cd2—O112.527 (3)
Cd1—O82.429 (2)Cd2—O102.590 (3)
 

Acknowledgements

Financial support from the National Natural Science Foundation of Henan Educational Committee (2011 A150018) is gratefully acknowledged.

References

First citationBraga, D., Grepioni, F. & Desiraju, G. R. (1998). Chem. Rev. 98, 1375–1406.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHarvey, M. A., Baggio, S., Garland, M. T. & Baggio, R. (2008). Acta Cryst. E64, m1450.  Google Scholar
First citationKruszynski, R., Malinowska, A., Czakis-Sulikowska, D. & Lamparska, A. (2009). J. Coord. Chem. 62, 911–922.  Google Scholar
First citationPeng, Z.-S., Jiang, Y.-H., Jiang, W.-J., Deng, Q., Liu, J.-X., Cai, T.-J. & Huang, M.-Z. (2008). Z. Naturforsch. Teil B, 63, 503–506.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXuan, X.-P., Zhao, P.-Z. & Zhang, S.-X. (2007a). Acta Cryst. E63, m1817.  Google Scholar
First citationXuan, X., Zhao, P. & Zhang, S. (2007b). Acta Cryst. E63, m2813–m2814.  Google Scholar
First citationXuan, X.-P., Zhao, P.-Z. & Zhang, S.-X. (2008). Acta Cryst. E64, m152–m153.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds