Download citation
Download citation
link to html
In the title compound, C27H39Br3O6, static gearing of the methyl­ene H atoms ensures that the β-groups alternate above (a) and below (b) the aromatic ring in a nearly trigonally symmetric conformation (ababab), resulting in the bromo substituents and ester groups being on opposite sides of the arene ring. A notable feature of the crystal packing is the inter­molecular inter­actions involving Br atoms: in each mol­ecule, two of the Br atoms are involved in inter­molecular Br...Br inter­actions [3.5911 (4) Å], while the third halogen makes two short contacts with the ester carbonyl O atom [Br...O 3.349 (2) Å] and one H atom of a CH2 group of an ester functionality of another mol­ecule.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807060072/bg2134sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807060072/bg2134Isup2.hkl
Contains datablock I

CCDC reference: 673085

Key indicators

  • Single-crystal X-ray study
  • T = 213 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.026
  • wR factor = 0.069
  • Data-to-parameter ratio = 18.9

checkCIF/PLATON results

No syntax errors found



Alert level A PLAT222_ALERT_3_A Large Non-Solvent H Ueq(max)/Ueq(min) ... 5.04 Ratio
Author Response: The hydrogen U for methyl groups is 1.5 times that of the C atom it is riding on. The methyl group that contains the largest Ueq is C13. We were unable to refine this group using a disorder model.

Alert level B PLAT220_ALERT_2_B Large Non-Solvent C Ueq(max)/Ueq(min) ... 4.40 Ratio
Alert level C PLAT154_ALERT_1_C The su's on the Cell Angles are Equal (x 10000) 200 Deg. PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C11 PLAT410_ALERT_2_C Short Intra H...H Contact H22A .. H23A .. 1.97 Ang. PLAT410_ALERT_2_C Short Intra H...H Contact H23B .. H30B .. 1.95 Ang. PLAT431_ALERT_2_C Short Inter HL..A Contact Br1 .. Br2 .. 3.59 Ang. PLAT431_ALERT_2_C Short Inter HL..A Contact Br3 .. O11 .. 3.35 Ang.
1 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 6 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 6 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

To the best of our knowledge, the first reported crystal structure of a hexasubstituted benzene was hexakisbromomethylbenzene (Marsau, 1965). Many other hexasubsituted benzenes have since been crystallized. The particularity of this class of compounds is their tendency to orient their 1,3,5 and 2,4,6 substituents respectively on the opposite side, above (a) and below (b), of the central ring due to static gearing (Iverson et al., 1981), resulting in an ababab pattern.

Hexasubstituted benzene analogues in which the functional groups are observed or predicted to point alternately up and down around the ring perimeter have been extensively studied mainly due to their applications in supramolecular chemistry. For example, this kind of system, which offers a preorganized site, has been used in the design of chlathrates (MacNicol et al., 1977), artificial receptors (Stack et al., 1993; Perreault et al., 1997; Wiskur et al., 2001) and self-assembling molecular capsules (Szabo et al., 1998).

While there are numerous crystal structures reported containing hexasubstituted benzene systems with the same six functional groups or with three functional groups in the 2,4, and 6-positions, the 1,3,5 positions bearing simple methyl or ethyl groups, very few (Hennrich et al., 2002) do not follow the ababab pattern. We report here the X-ray structure of a new molecular scaffold with alternating alkyl-bromo and alkyl-ester functions on either face of the six-membered ring.

The title compound, (C6(CH2Br)3(CH2C(CH3)2CO2CH3)3) 1, is shown in Figure 1. As expected, the substituents adopt a three-up-three-down conformation (Figure 2). However, this result is contrary to the crystal structure of 1,3,5-tris(acetoxymethyl)-2,4,6-trithiophenyl benzene (Hennrich et al., 2002) for which the three-dimensional arrangement of substituents is 1,3-up, 5-down tris-(acetoxymethyl), 2,4-down, 6-up-trithiophenyl benzene.

Although usually unpredictable, crystal packing is often guided and assisted by weak interactions like hydrogen bonds (Desiraju, 2002; Steiner, 2002) or halogen bonds (Metrangolo et al., 2005). In our compound, both of these interactions are at work.

Thus, two bromine atoms per molecule (Figure 3) face two other bromine atomes of another molecule. Since the alignments are linear and the Br—Br distances are sufficiently short (Br1—Br2i/Br2—Br1i = 3.5911 (4) Å, i: -x, 1 - y, 1 - z), each pair of such neighboring bromine atoms is in fact brought together by a halogen bond (Awwadi et al., 2006). The remaining Br atom forms Br···H—C (Br3—H23aii = 2.904 Å, ii: -x, -y, 1 - z) and Br···OC (Br3—O11iii = 3.349 (2) Å, iii: -1 - x, -y, 2 - z) bonds (Auffinger et al., 2004) involving two different molecules.

Only one ester per molecule is part of such O—Br interactions.

In conclusion, the crystal structure of (C6(CH2Br)3(CH2C(CH3)2CO2CH3)3) shows an original arrangement in which the crystal packing displays halogen bonds that do not disturb the intuitive alternate three-up-three-down conformation.

Related literature top

For related literature, see: Auffinger et al. (2004); Awwadi et al., (2006); Desiraju (2002); Hennrich et al. (2002); Iverson et al. (1981); MacNicol et al. (1977); Marsau (1965); Metrangolo et al. (2005); Perreault et al. (1997); Stack et al. (1993); Steiner (2002); Szabo et al. (1998); Wiskur et al. (2001).

Experimental top

C6(CH3)3(CH2C (CH3)2CO2CH3)3) was treated with NBS and Bz2O2 in CCl4 under reflux to yield compound 1. A ether/pentane solution of C6(CH2Br)3(CH2 C(CH3)2CO2CH3)3 was kept until complete evaporation of the solvent. Colourless, transparent crystals of 1 suitable for X-ray analysis were obtained.

Refinement top

Hydrogen atoms were placed in calculated positions and refined using a riding model.

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 2000); software used to prepare material for publication: SHELXTL (Sheldrick, 2000).

Figures top
[Figure 1] Fig. 1. A molecular view of the title compound with thermal ellpsoids at the 50% level. Hydrogen atoms have been omitted for clarity.
[Figure 2] Fig. 2. Side view of 1 as a pipe and space filling model showing the ababab pattern of the substituents.
[Figure 3] Fig. 3. Main interactions involving the bromine atoms. Symmetry codes: i: -x, 1 - y, 1 - z; ii: -x, -y, 1 - z; iii: -1 - x, -y, 2 - z.
1,3,5-Tris(bromomethyl)-2,4,6-tris(2-methoxycarbonyl-2-methylpropyl)benzene top
Crystal data top
C27H39Br3O6Z = 2
Mr = 699.31F(000) = 708
Triclinic, P1Dx = 1.600 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.8160 (9) ÅCell parameters from 5471 reflections
b = 10.9110 (9) Åθ = 2.3–28.1°
c = 14.4422 (13) ŵ = 4.21 mm1
α = 83.279 (2)°T = 213 K
β = 70.934 (2)°Parallelepiped, colourless
γ = 89.364 (2)°0.40 × 0.38 × 0.28 mm
V = 1451.3 (2) Å3
Data collection top
Bruker SMART1000/P4
diffractometer
6311 independent reflections
Radiation source: fine-focus sealed tube, K7605523 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
ϕ and ω scansθmax = 27.5°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1212
Tmin = 0.212, Tmax = 0.313k = 1413
10173 measured reflectionsl = 1718
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.069H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0379P)2 + 0.5054P]
where P = (Fo2 + 2Fc2)/3
6311 reflections(Δ/σ)max = 0.001
334 parametersΔρmax = 0.62 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C27H39Br3O6γ = 89.364 (2)°
Mr = 699.31V = 1451.3 (2) Å3
Triclinic, P1Z = 2
a = 9.8160 (9) ÅMo Kα radiation
b = 10.9110 (9) ŵ = 4.21 mm1
c = 14.4422 (13) ÅT = 213 K
α = 83.279 (2)°0.40 × 0.38 × 0.28 mm
β = 70.934 (2)°
Data collection top
Bruker SMART1000/P4
diffractometer
6311 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
5523 reflections with I > 2σ(I)
Tmin = 0.212, Tmax = 0.313Rint = 0.014
10173 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.069H-atom parameters constrained
S = 1.04Δρmax = 0.62 e Å3
6311 reflectionsΔρmin = 0.34 e Å3
334 parameters
Special details top

Experimental. Crystal decay was monitored by repeating the initial 50 frames at the end of the data collection and analyzing duplicate reflections.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.11458 (19)0.17480 (16)0.79133 (13)0.0219 (4)
C20.01962 (19)0.27822 (16)0.76904 (13)0.0224 (4)
C30.11470 (19)0.28177 (16)0.69291 (13)0.0219 (4)
C40.15113 (19)0.18209 (16)0.63661 (13)0.0221 (4)
C50.05705 (19)0.07814 (16)0.65758 (13)0.0213 (4)
C60.07767 (19)0.07690 (16)0.73304 (13)0.0214 (3)
C70.2565 (2)0.17176 (18)0.87601 (13)0.0260 (4)
H7A0.32790.12300.86070.031*
H7B0.29120.25610.88060.031*
C80.2474 (2)0.1163 (2)0.97943 (15)0.0347 (5)
C90.2373 (3)0.0242 (2)0.98707 (18)0.0523 (7)
H9A0.23630.05611.05240.078*
H9B0.14940.04630.93800.078*
H9C0.31990.05940.97560.078*
C100.1218 (3)0.1692 (3)1.00545 (17)0.0474 (6)
H10A0.13420.25691.01000.071*
H10B0.03150.15660.95450.071*
H10C0.12040.12761.06830.071*
C110.3887 (3)0.1479 (3)1.05471 (16)0.0428 (6)
O110.4844 (2)0.0769 (2)1.09979 (17)0.0838 (8)
O120.3940 (2)0.2676 (2)1.06339 (17)0.0709 (6)
C130.5216 (4)0.3084 (4)1.1352 (3)0.0938 (14)
H13A0.60670.27961.12310.141*
H13B0.51970.39791.12960.141*
H13C0.52410.27511.20100.141*
C140.0685 (2)0.39069 (18)0.82093 (15)0.0288 (4)
H14A0.01540.43690.82280.035*
H14B0.13010.36550.88900.035*
C150.2184 (2)0.39274 (16)0.67068 (15)0.0256 (4)
H15A0.16110.46660.68440.031*
H15B0.27280.40240.59990.031*
C160.3291 (2)0.38894 (18)0.72834 (15)0.0293 (4)
C170.3977 (3)0.2633 (2)0.73542 (18)0.0419 (5)
H17A0.46180.26540.77400.063*
H17B0.45200.24440.66970.063*
H17C0.32270.20030.76700.063*
C180.4480 (3)0.4877 (3)0.6719 (2)0.0494 (6)
H18A0.51620.49200.70730.074*
H18B0.40450.56740.66670.074*
H18C0.49780.46580.60640.074*
C190.2559 (2)0.42944 (18)0.83050 (16)0.0310 (4)
O190.2168 (2)0.53239 (15)0.84482 (14)0.0494 (4)
O200.2371 (2)0.33924 (15)0.90415 (12)0.0485 (4)
C210.1737 (4)0.3742 (3)1.0022 (2)0.0643 (8)
H21A0.23440.43711.01250.097*
H21B0.16540.30251.05040.097*
H21C0.07870.40641.00940.097*
C220.2857 (2)0.19154 (18)0.54706 (14)0.0277 (4)
H22A0.31900.10870.53250.033*
H22B0.36250.23610.56000.033*
C230.1000 (2)0.03083 (16)0.59799 (14)0.0231 (4)
H23A0.16130.00030.53100.028*
H23B0.01270.06790.59290.028*
C240.1823 (2)0.13454 (17)0.64124 (15)0.0263 (4)
C250.0828 (3)0.20735 (19)0.73649 (15)0.0358 (5)
H25A0.00340.24520.72300.054*
H25B0.04520.15180.78610.054*
H25C0.13690.27100.76050.054*
C260.3150 (3)0.0854 (2)0.6614 (2)0.0426 (6)
H26A0.35910.15300.69010.064*
H26B0.28550.02380.70690.064*
H26C0.38420.04830.59990.064*
C270.2345 (2)0.22309 (17)0.56309 (14)0.0275 (4)
O270.35750 (17)0.24632 (17)0.52245 (13)0.0462 (4)
O280.12400 (17)0.27239 (14)0.54482 (12)0.0417 (4)
C290.1565 (3)0.3534 (2)0.46845 (19)0.0461 (6)
H29A0.21800.30950.40680.069*
H29B0.06760.38000.46030.069*
H29C0.20580.42490.48700.069*
C300.1906 (2)0.02155 (17)0.74423 (14)0.0259 (4)
H30A0.24630.04280.81420.031*
H30B0.14400.09620.71860.031*
Br10.17711 (3)0.49697 (2)0.750578 (19)0.04397 (7)
Br20.24186 (3)0.28042 (2)0.433048 (15)0.03893 (7)
Br30.31992 (2)0.04030 (2)0.670707 (16)0.03421 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0200 (9)0.0256 (9)0.0186 (8)0.0032 (7)0.0046 (7)0.0017 (7)
C20.0222 (9)0.0220 (8)0.0224 (9)0.0030 (7)0.0062 (7)0.0042 (7)
C30.0202 (9)0.0208 (8)0.0243 (9)0.0008 (7)0.0074 (7)0.0014 (7)
C40.0177 (8)0.0245 (8)0.0214 (9)0.0016 (7)0.0035 (7)0.0014 (7)
C50.0210 (9)0.0212 (8)0.0214 (9)0.0034 (7)0.0066 (7)0.0024 (7)
C60.0198 (8)0.0215 (8)0.0212 (9)0.0006 (7)0.0050 (7)0.0004 (7)
C70.0198 (9)0.0337 (10)0.0215 (9)0.0026 (7)0.0021 (7)0.0053 (7)
C80.0272 (10)0.0501 (13)0.0227 (10)0.0002 (9)0.0034 (8)0.0024 (9)
C90.0676 (18)0.0522 (15)0.0321 (12)0.0066 (13)0.0144 (12)0.0087 (11)
C100.0324 (12)0.0808 (18)0.0285 (12)0.0001 (12)0.0111 (10)0.0008 (11)
C110.0317 (12)0.0701 (16)0.0226 (11)0.0052 (11)0.0018 (9)0.0104 (11)
O110.0522 (13)0.1063 (18)0.0619 (14)0.0280 (12)0.0254 (11)0.0134 (13)
O120.0459 (11)0.0826 (15)0.0690 (14)0.0033 (10)0.0124 (10)0.0407 (12)
C130.0494 (19)0.138 (4)0.091 (3)0.020 (2)0.0015 (18)0.075 (3)
C140.0270 (10)0.0292 (9)0.0309 (10)0.0050 (8)0.0084 (8)0.0099 (8)
C150.0250 (9)0.0222 (9)0.0298 (10)0.0014 (7)0.0094 (8)0.0020 (7)
C160.0244 (10)0.0302 (10)0.0346 (11)0.0010 (8)0.0112 (8)0.0044 (8)
C170.0408 (13)0.0473 (13)0.0459 (13)0.0209 (10)0.0223 (11)0.0171 (11)
C180.0322 (12)0.0621 (16)0.0539 (15)0.0173 (11)0.0151 (11)0.0018 (12)
C190.0296 (10)0.0308 (10)0.0389 (12)0.0023 (8)0.0181 (9)0.0085 (8)
O190.0637 (12)0.0342 (8)0.0575 (11)0.0153 (8)0.0264 (9)0.0167 (8)
O200.0722 (12)0.0383 (9)0.0334 (9)0.0112 (8)0.0142 (8)0.0083 (7)
C210.088 (2)0.0687 (19)0.0360 (14)0.0148 (16)0.0168 (15)0.0146 (13)
C220.0238 (9)0.0285 (9)0.0258 (10)0.0005 (7)0.0017 (8)0.0028 (8)
C230.0241 (9)0.0222 (8)0.0224 (9)0.0035 (7)0.0065 (7)0.0038 (7)
C240.0279 (10)0.0230 (9)0.0301 (10)0.0056 (7)0.0110 (8)0.0070 (7)
C250.0486 (13)0.0298 (10)0.0280 (11)0.0116 (9)0.0120 (10)0.0023 (8)
C260.0429 (13)0.0336 (11)0.0656 (16)0.0105 (10)0.0352 (12)0.0133 (11)
C270.0290 (10)0.0230 (9)0.0284 (10)0.0053 (7)0.0070 (8)0.0017 (7)
O270.0282 (8)0.0646 (11)0.0470 (10)0.0181 (8)0.0093 (7)0.0223 (8)
O280.0315 (8)0.0427 (9)0.0515 (10)0.0007 (6)0.0065 (7)0.0289 (8)
C290.0538 (15)0.0357 (12)0.0518 (15)0.0041 (10)0.0145 (12)0.0251 (11)
C300.0233 (9)0.0239 (9)0.0284 (10)0.0012 (7)0.0063 (8)0.0009 (7)
Br10.05016 (15)0.03338 (12)0.05592 (15)0.01883 (10)0.02485 (12)0.01511 (10)
Br20.04493 (14)0.03935 (12)0.02538 (11)0.00344 (9)0.00353 (9)0.00146 (8)
Br30.02797 (11)0.04168 (12)0.03524 (12)0.00208 (8)0.01226 (9)0.00812 (9)
Geometric parameters (Å, º) top
C1—C61.408 (2)C16—C181.545 (3)
C1—C21.410 (3)C17—H17A0.9700
C1—C71.522 (2)C17—H17B0.9700
C2—C31.412 (3)C17—H17C0.9700
C2—C141.505 (2)C18—H18A0.9700
C3—C41.407 (2)C18—H18B0.9700
C3—C151.526 (2)C18—H18C0.9700
C4—C51.411 (2)C19—O191.202 (2)
C4—C221.511 (2)C19—O201.329 (3)
C5—C61.411 (2)O20—C211.443 (3)
C5—C231.524 (2)C21—H21A0.9700
C6—C301.509 (2)C21—H21B0.9700
C7—C81.575 (3)C21—H21C0.9700
C7—H7A0.9800C22—Br21.979 (2)
C7—H7B0.9800C22—H22A0.9800
C8—C111.522 (3)C22—H22B0.9800
C8—C91.529 (3)C23—C241.571 (2)
C8—C101.538 (3)C23—H23A0.9800
C9—H9A0.9700C23—H23B0.9800
C9—H9B0.9700C24—C271.529 (3)
C9—H9C0.9700C24—C251.537 (3)
C10—H10A0.9700C24—C261.539 (3)
C10—H10B0.9700C25—H25A0.9700
C10—H10C0.9700C25—H25B0.9700
C11—O111.186 (3)C25—H25C0.9700
C11—O121.326 (3)C26—H26A0.9700
O12—C131.446 (3)C26—H26B0.9700
C13—H13A0.9700C26—H26C0.9700
C13—H13B0.9700C27—O271.196 (2)
C13—H13C0.9700C27—O281.330 (2)
C14—Br11.979 (2)O28—C291.446 (2)
C14—H14A0.9800C29—H29A0.9700
C14—H14B0.9800C29—H29B0.9700
C15—C161.568 (3)C29—H29C0.9700
C15—H15A0.9800C30—Br31.9719 (19)
C15—H15B0.9800C30—H30A0.9800
C16—C171.528 (3)C30—H30B0.9800
C16—C191.530 (3)
C6—C1—C2119.19 (16)C18—C16—C15106.64 (17)
C6—C1—C7121.01 (16)C16—C17—H17A109.5
C2—C1—C7119.78 (16)C16—C17—H17B109.5
C1—C2—C3120.94 (16)H17A—C17—H17B109.5
C1—C2—C14119.17 (16)C16—C17—H17C109.5
C3—C2—C14119.64 (16)H17A—C17—H17C109.5
C4—C3—C2119.07 (16)H17B—C17—H17C109.5
C4—C3—C15120.24 (16)C16—C18—H18A109.5
C2—C3—C15120.68 (16)C16—C18—H18B109.5
C3—C4—C5120.70 (16)H18A—C18—H18B109.5
C3—C4—C22119.56 (16)C16—C18—H18C109.5
C5—C4—C22119.50 (16)H18A—C18—H18C109.5
C4—C5—C6119.43 (16)H18B—C18—H18C109.5
C4—C5—C23120.09 (16)O19—C19—O20121.9 (2)
C6—C5—C23120.47 (16)O19—C19—C16124.3 (2)
C1—C6—C5120.50 (16)O20—C19—C16113.80 (17)
C1—C6—C30118.93 (16)C19—O20—C21115.81 (19)
C5—C6—C30120.17 (16)O20—C21—H21A109.5
C1—C7—C8114.53 (16)O20—C21—H21B109.5
C1—C7—H7A108.6H21A—C21—H21B109.5
C8—C7—H7A108.6O20—C21—H21C109.5
C1—C7—H7B108.6H21A—C21—H21C109.5
C8—C7—H7B108.6H21B—C21—H21C109.5
H7A—C7—H7B107.6C4—C22—Br2109.10 (13)
C11—C8—C9108.2 (2)C4—C22—H22A109.9
C11—C8—C10108.71 (19)Br2—C22—H22A109.9
C9—C8—C10108.5 (2)C4—C22—H22B109.9
C11—C8—C7105.47 (17)Br2—C22—H22B109.9
C9—C8—C7111.31 (18)H22A—C22—H22B108.3
C10—C8—C7114.43 (18)C5—C23—C24115.18 (15)
C8—C9—H9A109.5C5—C23—H23A108.5
C8—C9—H9B109.5C24—C23—H23A108.5
H9A—C9—H9B109.5C5—C23—H23B108.5
C8—C9—H9C109.5C24—C23—H23B108.5
H9A—C9—H9C109.5H23A—C23—H23B107.5
H9B—C9—H9C109.5C27—C24—C25108.36 (16)
C8—C10—H10A109.5C27—C24—C26107.98 (17)
C8—C10—H10B109.5C25—C24—C26108.85 (18)
H10A—C10—H10B109.5C27—C24—C23106.26 (15)
C8—C10—H10C109.5C25—C24—C23111.83 (16)
H10A—C10—H10C109.5C26—C24—C23113.36 (16)
H10B—C10—H10C109.5C24—C25—H25A109.5
O11—C11—O12123.0 (2)C24—C25—H25B109.5
O11—C11—C8125.7 (3)H25A—C25—H25B109.5
O12—C11—C8111.3 (2)C24—C25—H25C109.5
C11—O12—C13116.5 (3)H25A—C25—H25C109.5
O12—C13—H13A109.5H25B—C25—H25C109.5
O12—C13—H13B109.5C24—C26—H26A109.5
H13A—C13—H13B109.5C24—C26—H26B109.5
O12—C13—H13C109.5H26A—C26—H26B109.5
H13A—C13—H13C109.5C24—C26—H26C109.5
H13B—C13—H13C109.5H26A—C26—H26C109.5
C2—C14—Br1109.75 (13)H26B—C26—H26C109.5
C2—C14—H14A109.7O27—C27—O28123.31 (19)
Br1—C14—H14A109.7O27—C27—C24125.74 (19)
C2—C14—H14B109.7O28—C27—C24110.95 (16)
Br1—C14—H14B109.7C27—O28—C29117.52 (17)
H14A—C14—H14B108.2O28—C29—H29A109.5
C3—C15—C16116.98 (15)O28—C29—H29B109.5
C3—C15—H15A108.1H29A—C29—H29B109.5
C16—C15—H15A108.1O28—C29—H29C109.5
C3—C15—H15B108.1H29A—C29—H29C109.5
C16—C15—H15B108.1H29B—C29—H29C109.5
H15A—C15—H15B107.3C6—C30—Br3109.25 (12)
C17—C16—C19111.47 (18)C6—C30—H30A109.8
C17—C16—C18109.34 (19)Br3—C30—H30A109.8
C19—C16—C18106.46 (18)C6—C30—H30B109.8
C17—C16—C15113.15 (17)Br3—C30—H30B109.8
C19—C16—C15109.45 (16)H30A—C30—H30B108.3
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C23—H23A···Br3i0.982.903.7875 (19)151
Symmetry code: (i) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC27H39Br3O6
Mr699.31
Crystal system, space groupTriclinic, P1
Temperature (K)213
a, b, c (Å)9.8160 (9), 10.9110 (9), 14.4422 (13)
α, β, γ (°)83.279 (2), 70.934 (2), 89.364 (2)
V3)1451.3 (2)
Z2
Radiation typeMo Kα
µ (mm1)4.21
Crystal size (mm)0.40 × 0.38 × 0.28
Data collection
DiffractometerBruker SMART1000/P4
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.212, 0.313
No. of measured, independent and
observed [I > 2σ(I)] reflections
10173, 6311, 5523
Rint0.014
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.069, 1.04
No. of reflections6311
No. of parameters334
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.62, 0.34

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Sheldrick, 2000).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C23—H23A···Br3i0.982.903.7875 (19)151
Symmetry code: (i) x, y, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds