Download citation
Download citation
link to html
The title compound, lithium tris­[dioxidovanadium(V)] bis[tri­oxidotellurium(IV)], contains chains of edge-sharing distorted VO6 octa­hedra. The pyramidal TeO3 groups crosslink the chains into sheets. Finally, an Li+ cation adopting an unusual capped trigonal-bipyramidal LiO6 geometry bridges the layers to complete a three-dimensional structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010827010702954X/bc3051sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010702954X/bc3051Isup2.hkl
Contains datablock I

Comment top

The title compound, (I), is the second lithium vanadium tellurite to be characterized by single-crystal diffraction, complementing LiVO2(TeO3) (Darriet, 1973). Although vanadium can occur in the III, IV and V oxidation states in inorganic solids (see, for example, Hung et al., 2002; Calin et al., 2003), both these compounds contain only vanadium(V) ions.

The constituent polyhedra for (I) are shown in Fig. 1 and selected geometric data are listed in Table 1. Atom V1 adopts a distorted octahedral coordination with respect to its six O-atom neighbours, with one characteristic short formal double VO `vanadyl' bond [V—O = 1.582 (5) Å], four V—O bonds of intermediate length, and one longer V—O bond [2.325 (5) Å] trans to the VO bond. Atoms V2 and V3 also possess vanadyl links with VO < 1.6 Å and four V—O bonds in the range 1.75–2.03 Å. The sixth bond, trans to the vanadyl link, which completes the distorted octahedron for these atoms (V—O > 2.5 Å), is substantially longer than the equivalent bond for V1.

These very distorted coordination polyhedra are highly characteristic of vanadium(V) and can be correlated theoretically with a second-order Jahn–Teller distortion (Kunz & Brown, 1995) for this d0 metal ion. The bond-valence sums (BVS), in valence units, for V1, V2 and V3, calculated by the Brown (1996) method, are 5.10, 5.10 and 5.02, respectively (expected 5.00).

Both TeIV atoms in (I) display pyramidal geometries with respect to their three closest O-atom neighbours, with Te—O < 2.00 Å, and it is usually assumed that an unseen stereochemically active lone pair of electrons occupies the fourth tetrahedral vertex about Te (Wells, 1962). Te1 is displaced from the plane of O1, O2 and O3 by 0.946 (3) Å, and Te2 is displaced from the O4/O5/O6 plane by 1.042 (3) Å. However, as is typical for tellurium(IV) (Feger et al., 1999; Irvine et al., 2003), there are further O atoms with Te···O < 3.00 Å in the coordination spheres of both Te1 and Te2. The shortest Te···O distance, Te2—O11 = 2.557 (5) Å, might justify describing the Te2 coordination as 3 + 1 (Feger et al., 1999). The BVS for Te1 are 3.74 (for the three close O atoms) and 4.10 (all O atoms within 3.0 Å). For Te2, BVS values of 3.83 (three Te—O bonds < 2.0 Å), 4.03 (four Te—O bonds < 2.6 Å) or 4.24 (six Te—O bonds < 3.0 Å) arise.

Atom Li1 is surrounded by six O atoms within 2.5 Å. If the LiO6 polyhedron is not simply regarded as irregular, then a possible description is a monocapped trigonal bipyramid (Fig. 2), with the longest bond to O10i capping through the O3i/O4ii/O5 face [symmetry codes: (i) x, y, z - 1; (ii) -x, -y, -z]. If the five O atoms forming the trigonal bipyramid are considered, a BVS of 0.88 arises for Li1 (expected = 1.00). If O10i is included in the calculation, BVS(Li1) rises to 0.95. Thus, the Brown (2002) criterion that a ligand should contribute 4% of the metal valence to be considered as bonded is fulfilled.

The polyhedral connectivity in (I) results in edge-sharing chains of VO6 octahedra propagating along [001] (Fig. 3). Crystal symmetry requires that the V1 and V3 octahedra form inversion dimers, while the V2 polyhedron shares an edge with one V1 and one V3 octahedron. The edge-sharing V···V separations are: V1···V1iv = 3.4207 (16) Å, V1···V2iv = 3.3169 (16) Å, V2···V3iv = 3.7016 (17) Å and V3···V3viii = 3.4858 (18) Å [symmetry codes: (iv) 1 - x, -y, 1 - z; (viii) 1 - x, -y, -z]. The O—V—O bond angles for the O atoms involved in the edge-shared links show substantial compression from 90°, falling in the range 70.51 (7)–77.58 (19)°.

When the Te atoms are considered as well as the V and O atoms, (010) sheets arise (Fig. 4) in the structure of (I). It is notable that Te1 bonds to, or caps, a triangle of three vanadium polyheda in the same edge-shared chain. A different triangular capping mode for a TeIV atom was observed in Cs(VO2)3(TeO3)2 (Harrison & Buttrey, 2000), in which the three VO6 groups share corners. Although the title compound and Cs(VO2)3(TeO3)2 share the same stoichiometry and a `capping' Te atom, they are otherwise structurally quite dissimilar.

Finally, when the Li atoms in (I) are also considered, a three-dimensional network arises (Fig. 5), with LiO6 groups bridging the (010) sheets, the key bond being Li1–O12iii [symmetry code: (iii) 1 - x, 1 - y, -z]. Significant [100] pseudo-channels in the structure are apparent, which probably accommodate the TeIV lone pairs. Thus, any free space accessible by other chemical species is limited.

Related literature top

For related literature, see: Brown (1996, 2002); Calin et al. (2003); Darriet (1973); Feger et al. (1999); Harrison & Buttrey (2000); Hung et al. (2002); Irvine et al. (2003); Kunz & Brown (1995); Wells (1962).

Experimental top

A mixture of V2O5 (0.7276 g, 4 mmol), TeO2 (0.3249 g, 3 mmol) and 1 M aqueous LiOH (7 ml) was placed in a 23 ml Teflon-lined hydrothermal bomb and heated at 438 K for 4 d, followed by cooling to room temperature over a few hours. Upon opening the bomb, the solids were recovered by vacuum filtration, resulting in orange plates and shards of the title compound, accompanied by an as-yet unidentified orange–brown powder, in about a 50:50 ratio.

Refinement top

The Uij values for Li1 were restrained to approximate isostropic behaviour. The highest difference peak is 0.95 Å from Te2 and the deepest difference hole is 0.87 Å from Te1.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: HKL SCALEPACK (Otwinowski & Minor 1997); data reduction: HKL DENZO (Otwinowski & Minor 1997), SCALEPACK and SORTAV (Blessing 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and ATOMS (Dowty, 1999); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), expanded to show the metal coordination polyhedra. Displacement ellipsoids are drawn at the 70% probability level. Symmetry codes are as in Table 1.
[Figure 2] Fig. 2. The Li coordination in (I), drawn with 50% probability displacement ellipsoids. Symmetry codes are as in Table 1.
[Figure 3] Fig. 3. Polyhedral representation of an [001] chain of edge-sharing VO6 octahedra in (I). Symmetry codes are as in Table 1.
[Figure 4] Fig. 4. Polyhedral representation of an (010) sheet in (I).
[Figure 5] Fig. 5. The unit-cell packing for (I), in polyhedral representation for the VO6 and LiO6 moieties.
lithium tris[dioxidovanadium(V)] bis[trioxidotellurium(IV)] top
Crystal data top
Li(VO2)3(TeO3)2Z = 2
Mr = 606.96F(000) = 544
Triclinic, P1Dx = 4.365 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.2370 (4) ÅCell parameters from 5711 reflections
b = 7.2005 (5) Åθ = 2.9–27.5°
c = 10.7066 (8) ŵ = 9.23 mm1
α = 92.868 (4)°T = 120 K
β = 92.743 (5)°Shard, orange
γ = 105.524 (4)°0.12 × 0.10 × 0.03 mm
V = 461.77 (6) Å3
Data collection top
Nonius KappaCCD area-detector
diffractometer
1730 independent reflections
Radiation source: fine-focus sealed tube1499 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
ω and ϕ scansθmax = 26.0°, θmin = 2.9°
Absorption correction: multi-scan
SADABS (Bruker, 2003)
h = 77
Tmin = 0.404, Tmax = 0.769k = 88
3858 measured reflectionsl = 1311
Refinement top
Refinement on F218 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.036Secondary atom site location: difference Fourier map
wR(F2) = 0.089 w = 1/[σ2(Fo2) + (0.0498P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.015
1730 reflectionsΔρmax = 1.71 e Å3
163 parametersΔρmin = 1.93 e Å3
Crystal data top
Li(VO2)3(TeO3)2γ = 105.524 (4)°
Mr = 606.96V = 461.77 (6) Å3
Triclinic, P1Z = 2
a = 6.2370 (4) ÅMo Kα radiation
b = 7.2005 (5) ŵ = 9.23 mm1
c = 10.7066 (8) ÅT = 120 K
α = 92.868 (4)°0.12 × 0.10 × 0.03 mm
β = 92.743 (5)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
1730 independent reflections
Absorption correction: multi-scan
SADABS (Bruker, 2003)
1499 reflections with I > 2σ(I)
Tmin = 0.404, Tmax = 0.769Rint = 0.050
3858 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.036163 parameters
wR(F2) = 0.08918 restraints
S = 1.02Δρmax = 1.71 e Å3
1730 reflectionsΔρmin = 1.93 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Li10.210 (2)0.2067 (17)0.1027 (11)0.012 (3)
V10.62115 (19)0.19341 (16)0.41698 (10)0.0064 (3)
V20.6617 (2)0.20350 (17)0.75112 (11)0.0070 (3)
V30.6156 (2)0.22364 (18)0.08061 (11)0.0090 (3)
Te10.17387 (7)0.21515 (6)0.59701 (4)0.00690 (16)
Te20.13180 (7)0.18355 (6)0.21170 (4)0.00772 (16)
O10.1459 (8)0.0551 (7)0.5944 (4)0.0084 (10)
O20.3658 (8)0.2691 (7)0.4643 (4)0.0084 (10)
O30.3794 (7)0.2694 (7)0.7386 (4)0.0092 (10)
O40.1411 (8)0.1208 (7)0.1142 (4)0.0108 (11)
O50.3000 (8)0.2305 (7)0.0707 (4)0.0098 (10)
O60.0930 (8)0.0875 (7)0.2115 (4)0.0087 (10)
O70.7975 (8)0.3982 (7)0.4247 (4)0.0117 (11)
O80.6218 (7)0.1153 (7)0.5929 (4)0.0094 (10)
O90.8241 (8)0.4144 (7)0.7561 (4)0.0139 (11)
O100.5791 (8)0.1493 (7)0.9206 (4)0.0109 (11)
O110.5282 (8)0.1550 (7)0.2546 (4)0.0095 (10)
O120.7362 (8)0.4485 (8)0.0910 (5)0.0158 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Li10.010 (3)0.014 (4)0.011 (3)0.000 (3)0.002 (3)0.001 (3)
V10.0078 (6)0.0059 (6)0.0063 (6)0.0036 (5)0.0001 (5)0.0001 (5)
V20.0075 (6)0.0079 (6)0.0070 (6)0.0046 (5)0.0011 (5)0.0004 (4)
V30.0092 (6)0.0143 (7)0.0054 (6)0.0060 (5)0.0007 (5)0.0018 (5)
Te10.0085 (3)0.0065 (3)0.0067 (3)0.00394 (19)0.00026 (18)0.00020 (18)
Te20.0102 (3)0.0074 (3)0.0068 (3)0.00451 (19)0.00105 (18)0.00044 (18)
O10.011 (2)0.007 (2)0.009 (2)0.005 (2)0.0018 (19)0.0024 (19)
O20.0092 (17)0.0094 (18)0.0075 (17)0.0041 (14)0.0034 (14)0.0004 (14)
O30.0098 (17)0.0115 (18)0.0068 (17)0.0046 (14)0.0011 (14)0.0025 (14)
O40.012 (3)0.015 (3)0.007 (2)0.008 (2)0.000 (2)0.004 (2)
O50.011 (2)0.012 (3)0.008 (2)0.007 (2)0.001 (2)0.002 (2)
O60.011 (2)0.008 (2)0.008 (2)0.004 (2)0.0005 (19)0.0004 (19)
O70.011 (2)0.010 (3)0.015 (3)0.004 (2)0.002 (2)0.000 (2)
O80.010 (2)0.010 (3)0.009 (2)0.003 (2)0.000 (2)0.0011 (19)
O90.014 (3)0.016 (3)0.013 (3)0.007 (2)0.000 (2)0.003 (2)
O100.016 (3)0.014 (3)0.005 (2)0.009 (2)0.0010 (19)0.0029 (19)
O110.010 (2)0.014 (3)0.005 (2)0.004 (2)0.0005 (19)0.002 (2)
O120.016 (3)0.016 (3)0.017 (3)0.008 (2)0.003 (2)0.000 (2)
Geometric parameters (Å, º) top
Li1—O51.899 (12)V3—O10iv2.634 (5)
Li1—O3i2.049 (13)Te1—O21.890 (5)
Li1—O6ii2.119 (12)Te1—O31.892 (5)
Li1—O4ii2.277 (13)Te1—O11.905 (5)
Li1—O12iii2.411 (13)Te1—O6vi2.741 (5)
Li1—O10i2.447 (14)Te1—O7vii2.764 (5)
V1—O71.582 (5)Te1—O1vi2.765 (5)
V1—O111.790 (5)Te2—O51.873 (5)
V1—O21.899 (5)Te2—O41.888 (5)
V1—O1iv1.974 (5)Te2—O61.901 (5)
V1—O81.992 (5)Te2—O112.557 (5)
V1—O8iv2.325 (5)Te2—O1vi2.801 (5)
V2—O91.581 (5)Te2—O9vii2.836 (5)
V2—O81.762 (4)O1—V1iv1.974 (5)
V2—O101.940 (5)O3—Li1viii2.049 (13)
V2—O31.943 (5)O4—V3ix1.885 (5)
V2—O6iv1.964 (5)O4—Li1ii2.277 (13)
V2—O11iv2.532 (5)O6—V2iv1.964 (5)
V3—O121.588 (5)O6—Li1ii2.119 (12)
V3—O10i1.755 (4)O8—V1iv2.325 (5)
V3—O4v1.885 (5)O10—V3viii1.755 (4)
V3—O51.980 (5)O10—Li1viii2.447 (14)
V3—O112.014 (5)O12—Li1iii2.411 (13)
O5—Li1—O3i133.5 (7)O10i—V3—O10iv76.6 (2)
O5—Li1—O6ii135.4 (7)O4v—V3—O10iv77.67 (18)
O3i—Li1—O6ii91.0 (5)O5—V3—O10iv80.76 (18)
O5—Li1—O4ii93.2 (5)O11—V3—O10iv70.51 (17)
O3i—Li1—O4ii100.1 (5)O2—Te1—O3101.7 (2)
O6ii—Li1—O4ii71.7 (4)O2—Te1—O196.9 (2)
O5—Li1—O12iii87.6 (5)O3—Te1—O192.8 (2)
O3i—Li1—O12iii81.3 (4)O2—Te1—O6vi172.03 (17)
O6ii—Li1—O12iii105.9 (5)O3—Te1—O6vi77.42 (17)
O4ii—Li1—O12iii177.2 (6)O1—Te1—O6vi75.30 (18)
O5—Li1—O10i71.7 (4)O2—Te1—O7vii79.59 (17)
O3i—Li1—O10i69.1 (4)O3—Te1—O7vii92.36 (18)
O6ii—Li1—O10i137.6 (6)O1—Te1—O7vii174.23 (17)
O4ii—Li1—O10i75.4 (4)O6vi—Te1—O7vii108.32 (14)
O12iii—Li1—O10i107.4 (5)O2—Te1—O1vi83.50 (17)
O7—V1—O11103.4 (2)O3—Te1—O1vi167.64 (18)
O7—V1—O299.5 (2)O1—Te1—O1vi75.32 (19)
O11—V1—O293.5 (2)O6vi—Te1—O1vi95.83 (14)
O7—V1—O1iv92.7 (2)O7vii—Te1—O1vi99.63 (14)
O11—V1—O1iv96.1 (2)O5—Te2—O492.7 (2)
O2—V1—O1iv162.3 (2)O5—Te2—O698.2 (2)
O7—V1—O8103.6 (2)O4—Te2—O685.8 (2)
O11—V1—O8153.0 (2)O5—Te2—O1167.97 (17)
O2—V1—O882.3 (2)O4—Te2—O11151.21 (18)
O1iv—V1—O882.46 (19)O6—Te2—O1176.57 (17)
O7—V1—O8iv176.8 (2)O5—Te2—O1vi171.12 (17)
O11—V1—O8iv77.58 (19)O4—Te2—O1vi82.96 (17)
O2—V1—O8iv83.38 (19)O6—Te2—O1vi73.83 (17)
O1iv—V1—O8iv84.18 (18)O11—Te2—O1vi112.89 (14)
O8—V1—O8iv75.46 (19)O5—Te2—O9vii88.65 (18)
O9—V2—O8107.1 (2)O4—Te2—O9vii96.25 (18)
O9—V2—O10107.6 (2)O6—Te2—O9vii172.78 (16)
O8—V2—O10145.3 (2)O11—Te2—O9vii104.10 (14)
O9—V2—O398.7 (2)O1vi—Te2—O9vii99.51 (13)
O8—V2—O390.2 (2)Te1—O1—V1iv129.4 (2)
O10—V2—O382.9 (2)Te1—O2—V1134.9 (3)
O9—V2—O6iv92.6 (2)Te1—O3—V2125.8 (2)
O8—V2—O6iv94.2 (2)Te1—O3—Li1viii109.4 (4)
O10—V2—O6iv86.0 (2)V2—O3—Li1viii111.0 (4)
O3—V2—O6iv166.1 (2)V3ix—O4—Te2139.4 (3)
O9—V2—O11iv168.7 (2)V3ix—O4—Li1ii117.4 (4)
O8—V2—O11iv72.41 (19)Te2—O4—Li1ii98.6 (4)
O10—V2—O11iv73.93 (18)Te2—O5—Li1130.9 (5)
O3—V2—O11iv92.65 (18)Te2—O5—V3120.0 (2)
O6iv—V2—O11iv76.17 (18)Li1—O5—V3105.9 (4)
O12—V3—O10i107.0 (2)Te2—O6—V2iv123.3 (2)
O12—V3—O4v101.0 (2)Te2—O6—Li1ii103.8 (4)
O10i—V3—O4v95.5 (2)V2iv—O6—Li1ii129.1 (4)
O12—V3—O5100.0 (2)V2—O8—V1143.9 (3)
O10i—V3—O587.3 (2)V2—O8—V1iv107.7 (2)
O4v—V3—O5156.9 (2)V1—O8—V1iv104.54 (19)
O12—V3—O11106.0 (2)V3viii—O10—V2148.0 (3)
O10i—V3—O11146.0 (2)V3viii—O10—Li1viii93.5 (3)
O4v—V3—O1186.2 (2)V2—O10—Li1viii96.5 (3)
O5—V3—O1179.0 (2)V1—O11—V3143.9 (3)
O12—V3—O10iv176.2 (2)V3—O12—Li1iii160.6 (4)
O2—Te1—O1—V1iv45.3 (3)O3—V2—O8—V172.3 (5)
O3—Te1—O1—V1iv56.9 (3)O6iv—V2—O8—V1120.9 (5)
O3—Te1—O2—V151.2 (4)O11iv—V2—O8—V1165.0 (5)
O1—Te1—O2—V143.2 (4)O9—V2—O8—V1iv179.2 (2)
O7—V1—O2—Te1118.9 (4)O10—V2—O8—V1iv2.2 (5)
O11—V1—O2—Te1136.9 (4)O3—V2—O8—V1iv80.0 (2)
O1iv—V1—O2—Te114.2 (9)O6iv—V2—O8—V1iv86.8 (2)
O8—V1—O2—Te116.3 (3)O11iv—V2—O8—V1iv12.69 (18)
O8iv—V1—O2—Te159.8 (3)O7—V1—O8—V230.3 (5)
O2—Te1—O3—V240.6 (3)O11—V1—O8—V2150.1 (4)
O1—Te1—O3—V257.1 (3)O2—V1—O8—V267.7 (5)
Li1viii—Te1—O3—V2136.3 (6)O1iv—V1—O8—V2121.3 (5)
O2—Te1—O3—Li1viii176.9 (4)O8iv—V1—O8—V2152.8 (6)
O1—Te1—O3—Li1viii79.2 (4)O7—V1—O8—V1iv176.9 (2)
O9—V2—O3—Te1111.8 (3)O11—V1—O8—V1iv2.7 (5)
O8—V2—O3—Te14.4 (3)O2—V1—O8—V1iv85.1 (2)
O10—V2—O3—Te1141.5 (3)O1iv—V1—O8—V1iv85.9 (2)
O6iv—V2—O3—Te1104.2 (8)O8iv—V1—O8—V1iv0.0
O11iv—V2—O3—Te168.0 (3)O9—V2—O10—V3viii6.0 (6)
O9—V2—O3—Li1viii112.5 (4)O8—V2—O10—V3viii177.0 (4)
O8—V2—O3—Li1viii140.1 (4)O3—V2—O10—V3viii102.9 (6)
O10—V2—O3—Li1viii5.8 (4)O6iv—V2—O10—V3viii85.5 (6)
O6iv—V2—O3—Li1viii31.5 (10)O11iv—V2—O10—V3viii162.3 (6)
O11iv—V2—O3—Li1viii67.7 (4)O9—V2—O10—Li1viii101.4 (4)
O5—Te2—O4—V3ix109.7 (4)O8—V2—O10—Li1viii75.6 (5)
O6—Te2—O4—V3ix152.3 (4)O3—V2—O10—Li1viii4.5 (3)
O5—Te2—O4—Li1ii97.3 (4)O6iv—V2—O10—Li1viii167.1 (3)
O6—Te2—O4—Li1ii0.7 (4)O11iv—V2—O10—Li1viii90.3 (3)
O4—Te2—O5—Li12.6 (6)O9—V2—O10—V3iv167.7 (2)
O6—Te2—O5—Li183.5 (6)O8—V2—O10—V3iv15.3 (5)
O4—Te2—O5—V3159.5 (3)O3—V2—O10—V3iv95.4 (2)
O6—Te2—O5—V373.3 (3)O6iv—V2—O10—V3iv76.2 (2)
O3i—Li1—O5—Te2175.7 (6)O11iv—V2—O10—V3iv0.58 (17)
O6ii—Li1—O5—Te210.1 (13)O7—V1—O11—V326.0 (5)
O4ii—Li1—O5—Te277.1 (6)O2—V1—O11—V3126.7 (5)
O12iii—Li1—O5—Te2100.2 (5)O1iv—V1—O11—V368.2 (5)
O10i—Li1—O5—Te2150.6 (4)O8—V1—O11—V3153.6 (4)
O3i—Li1—O5—V325.0 (10)O8iv—V1—O11—V3150.9 (5)
O6ii—Li1—O5—V3149.2 (8)O7—V1—O11—V2iv165.2 (2)
O4ii—Li1—O5—V382.2 (4)O2—V1—O11—V2iv94.2 (2)
O12iii—Li1—O5—V3100.5 (4)O1iv—V1—O11—V2iv70.9 (2)
O10i—Li1—O5—V38.7 (3)O8—V1—O11—V2iv14.4 (5)
O12—V3—O5—Te2102.7 (3)O8iv—V1—O11—V2iv11.74 (17)
O10i—V3—O5—Te2150.5 (3)O12—V3—O11—V142.2 (5)
O4v—V3—O5—Te252.7 (6)O10i—V3—O11—V1152.4 (4)
O11—V3—O5—Te21.8 (3)O4v—V3—O11—V158.2 (5)
O10iv—V3—O5—Te273.6 (3)O5—V3—O11—V1139.5 (5)
O12—V3—O5—Li195.3 (5)O10iv—V3—O11—V1136.5 (5)
O10i—V3—O5—Li111.5 (5)O12—V3—O11—V2iv179.2 (2)
O4v—V3—O5—Li1109.3 (6)O10i—V3—O11—V2iv15.4 (5)
O11—V3—O5—Li1160.2 (5)O4v—V3—O11—V2iv78.8 (2)
O10iv—V3—O5—Li188.4 (4)O5—V3—O11—V2iv83.4 (2)
O5—Te2—O6—V2iv68.4 (3)O10iv—V3—O11—V2iv0.58 (17)
O4—Te2—O6—V2iv160.5 (3)O10i—V3—O12—Li1iii90.2 (12)
O5—Te2—O6—Li1ii91.4 (4)O4v—V3—O12—Li1iii170.4 (12)
O4—Te2—O6—Li1ii0.8 (4)O5—V3—O12—Li1iii0.0 (12)
O9—V2—O8—V126.9 (5)O11—V3—O12—Li1iii81.3 (12)
O10—V2—O8—V1150.1 (4)
Symmetry codes: (i) x, y, z1; (ii) x, y, z; (iii) x+1, y+1, z; (iv) x+1, y, z+1; (v) x+1, y, z; (vi) x, y, z+1; (vii) x+1, y+1, z+1; (viii) x, y, z+1; (ix) x1, y, z.

Experimental details

Crystal data
Chemical formulaLi(VO2)3(TeO3)2
Mr606.96
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)6.2370 (4), 7.2005 (5), 10.7066 (8)
α, β, γ (°)92.868 (4), 92.743 (5), 105.524 (4)
V3)461.77 (6)
Z2
Radiation typeMo Kα
µ (mm1)9.23
Crystal size (mm)0.12 × 0.10 × 0.03
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
SADABS (Bruker, 2003)
Tmin, Tmax0.404, 0.769
No. of measured, independent and
observed [I > 2σ(I)] reflections
3858, 1730, 1499
Rint0.050
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.089, 1.02
No. of reflections1730
No. of parameters163
No. of restraints18
Δρmax, Δρmin (e Å3)1.71, 1.93

Computer programs: COLLECT (Nonius, 1998), HKL SCALEPACK (Otwinowski & Minor 1997), HKL DENZO (Otwinowski & Minor 1997), SCALEPACK and SORTAV (Blessing 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997) and ATOMS (Dowty, 1999), SHELXL97.

Selected bond lengths (Å) top
Li1—O51.899 (12)V3—O121.588 (5)
Li1—O3i2.049 (13)V3—O10i1.755 (4)
Li1—O6ii2.119 (12)V3—O4v1.885 (5)
Li1—O4ii2.277 (13)V3—O51.980 (5)
Li1—O12iii2.411 (13)V3—O112.014 (5)
Li1—O10i2.447 (14)V3—O10iv2.634 (5)
V1—O71.582 (5)Te1—O21.890 (5)
V1—O111.790 (5)Te1—O31.892 (5)
V1—O21.899 (5)Te1—O11.905 (5)
V1—O1iv1.974 (5)Te1—O6vi2.741 (5)
V1—O81.992 (5)Te1—O7vii2.764 (5)
V1—O8iv2.325 (5)Te1—O1vi2.765 (5)
V2—O91.581 (5)Te2—O51.873 (5)
V2—O81.762 (4)Te2—O41.888 (5)
V2—O101.940 (5)Te2—O61.901 (5)
V2—O31.943 (5)Te2—O112.557 (5)
V2—O6iv1.964 (5)Te2—O1vi2.801 (5)
V2—O11iv2.532 (5)Te2—O9vii2.836 (5)
Symmetry codes: (i) x, y, z1; (ii) x, y, z; (iii) x+1, y+1, z; (iv) x+1, y, z+1; (v) x+1, y, z; (vi) x, y, z+1; (vii) x+1, y+1, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds